
A hybrid GA-PSO strategy for computing
task offloading towards MES scenarios
Wenzao Li1,2, Xiulan Sun1, BingWan3, Hantao Liu4, Jie Fang1 and Zhan
Wen1

1 College of Communication Engineering, Chengdu University of Information Technology,
Chengdu, China

2 Network and Data Security Key Lab. of Sichuan Pro., University of Electronic Science and
Technology of China, Chengdu, China

3 School of Software, Chengdu Polytechnic, Chengdu, China
4 Educational Informationization and Big Data Center, Education Department of Sichuan
Province, Chengdu, China

ABSTRACT
As a new type of computing paradigm closer to service terminals, mobile edge
computing (MEC), can meet the requirements of computing-intensive and delay-
sensitive applications. In addition, it can also reduce the burden on mobile terminals
by offloading computing. Due to cost issues, results in the deployment density of
mobile edge servers (MES) is restricted in real scenario, whereas the suitable MES
should be chosen for better performance. Therefore, this article proposes a task
offloading strategy under the sparse MES density deployment scenario. Commonly,
mobile terminals may reach MES through varied access points (AP) based on multi-
hop transmitting mode. The transmission delay and processing delay caused by the
selection of AP and MES will affect the performance of MEC. For the purpose of
reducing the transmission delay due to system load balancing and superfluous multi-
hop, we formulated the multi-objective optimization problem. The optimization
goals are the workload balancing of edge servers and the completion delay of all task
offloading. We express the formulated system as an undirected and unweighted
graph, and we propose a hybrid genetic particle swarm algorithm based on two-
dimensional genes (GA-PSO). Simulation results show that the hybrid GA-PSO
algorithm does not outperform state-of-the-art GA and NSA algorithms in obtaining
all task offloading delays. However, the workload by standard deviation approach is
about 90% lower than that of the GA and NSA algorithms, which effectively
optimizes the performance of load balancing and verifies the effectiveness of the
proposed algorithm.

Subjects Artificial Intelligence, Distributed and Parallel Computing, Mobile and Ubiquitous
Computing, Optimization Theory and Computation, Scientific Computing and Simulation
Keywords Mobile edge computing, Load balancing, Average transmission delay, Task offloading

INTRODUCTION
Background and motivation
With the advent of 5G and the Internet of Things, the demand for mobile applications is
increasing. Scholars believe that mobile edge computing (MEC) is an emerging technology
to meet the needs of mobile network business (Wang, Cheng & Chen, 2020b). A mobile
edge network is commonly considered as a three-tier architecture consisting of core layer,

How to cite this article Li W, Sun X, Wan B, Liu H, Fang J, Wen Z. 2023. A hybrid GA-PSO strategy for computing task offloading towards
MES scenarios. PeerJ Comput. Sci. 9:e1273 DOI 10.7717/peerj-cs.1273

Submitted 23 November 2022
Accepted 13 February 2023
Published 6 April 2023

Corresponding author
Xiulan Sun, sxlan12@163.com

Academic editor
Mehmet Cunkas

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.1273

Copyright
2023 Li et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1273
mailto:sxlan12@�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1273
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

edge layer, and user layer. The MEC network architecture assists computing and data
storage resources near the terminal equipment. These solutions can effectively reduce
computing latency through cloud computing, thereby alleviating network congestion. This
solution has become a hot topic due to its excellent delay performance and security
characteristics (Chen et al., 2021). Mobile devices with limited resources can obtain
excellent performance (Mahmud, Ramamohanarao & Buyya, 2018; Mao et al., 2017) and
perform tasks efficiently by offloading computing tasks to nearby mobile edge servers.
Meanwhile, energy consumption of mobile devices can be reduced (Du et al., 2020) and
battery life of devices can be extended (Feng et al., 2019).

Edge server (ES) is a new mobile edge computing framework (Zhao et al., 2018), which
has computing and data storage capabilities. The MEC network architecture can improve
the efficiency of real-time data analysis and processing by placing edge servers in network
base stations or access points (Xu et al., 2020; Deng et al., 2021). In actual application,
numerous traditional task offloading strategies disregard some critical problems that need
additional discussion. There are terminals with computing requirements that are typically
distributed over a relatively wide area. Then, the geographic location of offloading tasks
usually lead the mobile edge servers (MES) overload in some ultra-dense networks (UDN).
Overmuch tasks are offloaded to the same edge server, which can lead to server overload
and congestion, which not only affects the system performance and server lifespan, but
also leads to a sharp drop in quality of service and quality of experience (Guo, Liu & Zhang,
2018; He et al., 2019; Fan & Ansari, 2018). Thus, it is vital to resolve the problem of load
balancing among edge servers.

Limitations of prior work
The optimization of two main indicators in the research of task offloading strategies has
attracted great attention, namely, minimizing energy consumption and minimizing delay.
There are existing works on optimizing these two indicators independently or
simultaneously. InDing et al. (2019) and Pan et al. (2018), the propagation time and energy
consumption of the MEC system were optimized using geometric programming and
successive convex approximation, respectively. In multi-server and multi-task scenarios,
Zhang et al. (2021) designed an optimization problem with the goal of minimizing the
completion time of all tasks. Wang, Xing & Xu (2020a) proposed a wirelessly powered
multi-user mobile edge computing system environment to minimize the total system
energy consumption within a limited time horizon. Fan et al. (2020) aim to decrease the
latency and energy consumption of mobile terminals during task processing. The research
introduces a balance factor to flexibly adjust the minimum value between the energy
consumption of the mobile terminal and the processing delay of the task (Fan et al., 2020).
The efforts focus on addressing system energy consumption and computation latency in
these artilces, while they have ignored the impact and consequences of unbalanced
workload on mobile edge servers.

Yu, Tang & Li (2019) and Lu et al. (2020) proposed task offloading strategies based on
reinforcement learning and deep reinforcement learning (DRL), respectively. Their
researches has achieved the purpose of optimizing load balancing. Mogi, Nakayama &

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 2/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

Asaka (2018) mainly research load balancing among mobile edge servers when load
conditions fluctuate dynamically. They proposed a load balancing approach, which is
mainly used in IoT sensor systems. In the edge computing network of the joint cloud data
center, Dong et al. (2019) proposed a task offloading algorithm, in order to solve the server
selection problem of task offloading. This algorithm combines the advantages of task
clustering method and firefly swarm optimization algorithm. Guo et al. (2018) proposed an
efficient suboptimal algorithm by minimizing the energy consumption of each terminal
through joint optimization. Zeng & Fodor (2019) transformed network wide resource
allocation into a convex optimization problem to allocate communication and computing
resources for users. Tran & Pompili (2018) decompose the optimization problem that
minimizes task execution delays and user energy consumption into task allocation
problem and resource allocation problem, and apply multiple algorithms to solve the
problem. Wang et al. (2019) considered the limited power of equipment in the three-layer
collaborative computing network and optimized the minimum average task duration. In
the part of the literature, scholars considered the objective of load balancing optimization.
However, the network scenarios considered by the scholars all have sufficient edge server
resources and do not take into account the limited environment of edge servers. While in
these research which considers the limited computing resources of edge servers or terminal
devices, the optimization objectives of these studies are still focused on system energy
consumption or offloading latency (Zeng & Fodor, 2019; Tran & Pompili, 2018; Wang
et al., 2019).

Challenges and solutions
A wireless metropolitan area network (WMAN) is composed of a large number of wireless
access points (APs) (Xu et al., 2015; Zeng et al., 2018). Under the condition of limited
deployment of edge servers, that is, when edge servers are deployed in some APs, the
advantages of multi-hop edge computing networks can be used for a large number of
terminals render computing services (Al-Abiad, Zoheb & Hossain, 2021). Yet, in such this
scenario, there are numerous challenges to be resolved. The task offloading strategy
determines which MEC server to process the offloading requirement. But because of the
huge number of tasks and data received by APs, different task offloading strategies
considerably alter the load balancing among edge servers. To achieve load balancing
among servers, it is necessary to design a suitable global offload scheme for all tasks. In
addition, APs receive offloaded large-scale tasks and transmit them to nearby MEC servers
or other APs by utilizing wireless links for data delivery. However, multi-hop
communication in the network may cause additional delays, so this article focuses on the
strategy design for delay reduction for system performance.

Contributions and organization
In this article, we consider task offloading in scenarios with limited deployment of edge
servers in a wireless metropolitan area network. We propose an optimization problem to

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 3/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

jointly optimize the load balancing between edge servers and task offloading latency. The
main contributions of this article are summarized as follows:

1. The scenario of deploying edge servers on some APs in the wireless metropolitan area
network is reconstructed into a simple and easy-to-understand un-directed
unweighted graph, and a multi-objective optimization problem for optimizing edge
server load balancing and offloading latency are constructed. And we prove that the
optimization problem is NP-hard.

2. The system is expressed as an un-directed and un-weighted graph, and a hybrid genetic
particle swarm algorithm based on two-dimensional particles is proposed. The
algorithm utilizes two-dimensional particles to represent the offloading decision,
through the task grouping under the AP service scope, server selection, and path
selection to achieve the optimization objective function.

3. The algorithm is simulated using the actual base station geographic location data set.
Experimental results show that the proposed algorithm has a good effect on solving
optimization problems.

The rest of this article is organized as follows. The second part elaborates on the system
model. “Problem definition and proof” is the problem formation and related proof process.
Detailed solutions are provided in “Solving method”. “Simulation analysis” evaluates the
performance of the proposed algorithm based on the simulation results. “Conclusion”
concludes this article and future work.

SYSTEM MODEL
Under the specific scenarios in this section, we build network models to derive optimized
models for offloading time and load balancing in edge computing scenarios. Table 1 gives
the main symbols and their meanings.

Network model
As shown in Fig. 1, we include a multi-hop mobile edge computing scenario consisting of
several APs and multiple servers. This article uses a connected un-directed graph
G ¼ ðA \ S;EÞ to represent the network, A represents the set of wireless APs,
A ¼ fa1; a2; . . . ; ang, E represents the set of links between APs; when APs aiði 2 AÞ and
ajðj 2 AÞ links are connected, there is an edge ði; jÞ 2 E; S represents the set of edge servers,

S ¼ fs1; s1; . . . ; smg. Where n and m respectively represent the number of APs and edge
servers, and the value of m must be much smaller than the value of n. Some APs in the
network are deployed with edge servers with the same capacity. If an AP is deployed with
an edge server, the AP and the server are collectively referred to as edge computing nodes.
The user terminal under the radius R of each AP service area has a task request
offloading, in which the task request under the AP ai service range is represented as
Ti ¼ ft1; t1; . . . ; tvg (Xiulan Sun & Li, 2022). Each task is indivisible, and dv represents the
data size of task tv, vi represents the number of all tasks of ai. hij represents the number of
tasks that ai offloads to the server sj. In this article, each AP is connected with each other
that are geographically close to each other through a wireless link, and the distance

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 4/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

between the two APs is less than R before they can communicate. At the same time, the
number of APs that each AP can communicate with each other does not exceed 3, and a
represents the rate of data transmission between APs. In intelligent edge computing, after a
large number of computing tasks are offloaded from mobile devices to nearby base
stations, edge computing nodes need to determine how to allocate computing resources for

Table 1 Notations.

Notation Definition

G Mobile edge computing network

E The set of links between base stations in the network

B The set of all base stations in the network

S The set of all edge servers

R Circle radius of AP’s service area

Kj The collection of tasks computed by the server sj

n The number of APs

m The number of edge servers

v Total number of tasks received by all APs

kj The number of tasks computed by the server sj

Ti The set of task sizes received on AP ai

dv The data size of task tv

hij The number of tasks that AP ai offloads to edge server sj

a Data transmission rate between APs

a0 The amount of data transmitted by the wireless link in one time slot

e Time slot

hn The number of hops in the transmission path

b Workload weight

Figure 1 The scenario with limited edge server deployment.
Full-size DOI: 10.7717/peerj-cs.1273/fig-1

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 5/23

http://dx.doi.org/10.7717/peerj-cs.1273/fig-1
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

execution (Xu et al., 2019). The network’s intelligent manager receives the servers’ load
information from the edge computing nodes and formulates the offloading strategy.

Computation model
Calculation of load balancing
Load balancing of MES is one of the main research issues in edge computing. Due to the
uneven distribution of intensive tasks and edge servers, some edge servers may be
overloaded, causing network congestion. An important purpose of researching load
balancing of MES is to help improve resource usage, to assure that no single node is
overloaded, to decrease mobile users’ waiting time, and to improve mobile users’
experience (Xu et al., 2019).

This article does not consider the process of task uploading, because although a
communication model is introduced in most research work, the allocated channel
bandwidth, uploading power and signal interference of each mobile terminal are
considered to be fixed, which will lead to the fixed task uploading delay, such as references
(Chen, Zhou & Xu, 2018; Wang et al., 2019). If parameters such as channel bandwidth
allocation are regarded as dynamic variables, the entire system model will be too complex
to be resolved. Thus, by researching the literature (Mondal, Das & Wong, 2020; He et al.,
2019; Dong et al., 2019), this article mainly studies the workload balance of edge servers in
mobile edge computing, without considering the communication model of task uploading.

By referring to the research literature, this article mainly studies the computing load
balancing of edge servers in mobile edge computing, mainly balancing the task load that
has reached the AP but has not started to execute, and does not consider the
communication model of task uploading.

This research uses standard deviation to evaluate the workload balancing of edge
servers. We know that m edge servers are located among APs, then we calculate the
workload of each edge server sj as wj and the workload of server sj as:

wj ¼
Xk
k¼1

dk (1)

where kj represents the number of tasks calculated by server sj, Kj represents the task set
calculated by server sj. The average workload of all edge servers is expressed as follows:

wave ¼ 1
m

Xm
j¼1

wj (2)

The standard deviation of the workload can be calculated as follows:

wB ¼
ffiPm

i¼1 ðwi � waveÞ2
m

s
(3)

It is straightforward to know that the smaller the value of the standard deviation, the
more balanced the workload of each edge server (Xiulan Sun & Li, 2022).

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 6/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

Calculation of offloading delay
The above mode ignores the time consumption of task upload process, accordingly we
principally consider the time when the task is offloaded to the target server through the AP.
The tasks on each AP are offloaded to the edge server for computing through a wireless
link. If the AP is deployed with an edge server, we assume that the received tasks on the AP
will have the smallest transmission delay, which can be ignored. If the AP is not deployed
nearby an edge server, then the received task of the AP needs to be forwarded to the nearby
edge server through the linked adjacent base station for computing, and the cumulative
delay of the multi-hop transmission of each task constitutes the task offloading delay
(Xiulan Sun & Li, 2022).

Task data in the network is transmitted over the wireless link in parallel. In this article, a
time slot e is defined as 1 s, then the value of the data amount a0 transmitted in a time slot is
equal to a. In a certain time slot, if the sum of the data amounts of b tasks under the service
range of an AP is less than or equal to a0, and the sum of the data amounts of bþ 1 tasks is
greater than a0. The current time slot only transmits the data amount of a0, and the data
that has not been transmitted in the ðbþ 1Þth task needs to be transmitted in the next time
slot. Until there are no outstanding task requests under the service scope of all APs in the
network.

The delay for all tasks to be completely offloaded in the network is

ttranall ¼ max ttran1 ; ttran2 ; . . . ; ttrann

� �
(4)

ttranall indicates the time required to complete the offloading of all user tasks under the AP

service scope with serial number n.

PROBLEM DEFINITION AND PROOF
Problem formulation
In our research, we focus on reducing the workload standard deviation among edge
servers, while minimizing the latency for all task offloading to complete. Then our
objective function is formulated as follows:

P1 : Minimize wB; t
tran
all

� �
s:t: a :

Xm
j¼1

hij ¼ vi i 2 A; j 2 S

b :
Xm
j¼1

kj ¼
Xn
i¼1

vi i 2 A; j 2 S

c :
Xb
i¼1

di ¼ a0 i 2 A

(5)

Constraint a ensures that all task requests under the AP ai service scope will be offloaded
to the edge server for processing, and no tasks have not been offloaded. Constraint b
ensures that all tasks in the network are offloaded to the server for computation. Constraint

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 7/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

c means that the amount of task data transmitted per second by the wireless link is less
than or equal to a0.

NP-hard proof
This subsection will prove that the proposed offload optimization problem is an NP-hard
problem. We can summarize the offload optimization problem as follows: Consider the
task offloading problem in a given un-directed complete graph G0 ¼ ðA; S0Þ, where A is the
position of each AP ai 2 A and S′ Sj 2 S is the position of each MES. The task offloading
problem is to offload the tasks within the service range of each AP into MES for
calculation. The optimization goal is to reduce the standard deviation of workload among
MES and minimize the delay of all task offloading completion.

In mobile edge computing environment network G ¼ ðB; SÞ, a task offloading problem
whose optimization goal is MES load balancing has been proved to be an NP-hard problem
(Chen et al., 2021). B stands for small base station (SBSs). We construct a mobile edge
computing network G0 ¼ ðA; S0Þ from network G ¼ ðB; SÞ, where A = B, S′ = S.
Meanwhile, in G′, we consider the case where the number of deployed MES is less than the
number of APs, and simultaneously optimize the standard deviation of the workload and
the delay of task offloading completion. Therefore, the optimal solution of the proposed
offloading problem is also the optimal solution ofG. Since the task offloading problem in G
is an NP-hard problem, our proposed offloading problem is also an NP-hard problem.

SOLVING METHOD
In the previous section we proved that the optimization problem of Eq. (5) is NP-hard.
Currently, in the study of MEC systems, researchers design MEC offloading strategies
mainly in the following ways: (1) Designing the offloading strategy based on convex
optimization theory. This approach may take a long time. However, the original intention
of mobile edge computing is to shorten the computation delay, and this approach goes
against this. (2) Using artificial intelligence technology to design offloading strategy. But
reinforcement learning, machine learning, and other techniques require large amounts of
historical data for training and learning. Moreover, due to the complexity and dynamics
of the MEC research environment, the authenticity of the training data is highly
desired. If the correlation between the training data and the real-time data is low, the
offloading strategy devised by the AI technique cannot achieve the optimization purpose.
(3) Designing the offloading strategy using relevant heuristic algorithms. The offloading
decisions designed in this approach have low complexity and great applicability. Therefore,
in this article, we propose an efficient algorithm to solve this problem by innovating
heuristics for the purpose of this study.

Details of hybrid genetic particle swarm optimization based on
two-dimensional particles
Genetic algorithms and particle swarm algorithms are frequently used in searching for
optimal offloading strategy, and both have their own characteristics (You & Tang, 2021;
Liu & Zhang, 2019). Because of its population diversity, the genetic algorithm is suitable

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 8/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

for global search. Nevertheless, due to the blindness of genetic crossover, mutation and
other operations, the convergence time is long. The particles in the particle swarm
algorithm have memory, and rapid convergence can be achieved by adjusting the speed
and position of the particles. However, the population diversity and search range of the
particle swarm optimization algorithm are limited and it is easy to fall into the local
optimal solution (Zewei et al., 2021). Consequently, based on the model of this article,
combined with the basic idea of genetic algorithm and particle swarm optimization, a
hybrid genetic particle swarm algorithm is proposed. This algorithm combines the
advantages of particle swarm optimization and genetic algorithm, improves the diversity of
the population and the global search ability, and avoids the algorithm from falling into the
local optimal solution.

Particle position vector encoding: In this article, the particle is defined as a two-
dimensional array, the number of rows is n, the number of columns is m, and
X ¼ ½x1; x2; . . . ; xn�. xn is an array in the nth row, representing the task offloading scheme
on AP an. The elements in the array are the numbers in 0 to m: 0 is used to represent the
placeholder. If the non-zero number in the array has a bit, all task requests are divided into
a shares. A non-zero number indicates that tasks are offloaded to the edge server
corresponding to a non-zero number. If the number of APs on the network is 10, the
number of sequences of APs ranges from 1 to 10. If the number of MES is 5 and APs with
sequence numbers 1, 2, 3, 4, 5 deploy MESs, then the numbers in the particle position
vector can only be 0, 1, 2, 3, 4, 5. The particle position vector X, which should be a 10� 5
array depending on the number of APs and MESs, represents the offloading decision for
the whole system. The one-dimensional array x1 in the first row represents the offloading
scheme for the tasks received by a1. When x1 ¼ ½0; 1; 5; 3; 0�, there are three nonzero
numbers, which means that all task requests in the service range of a1 are divided into three
parts after sorting according to the size of data. The tasks of these three parts are offloaded
to MESs deployed by a1, a5, and a3 in order.

Particle velocity vector encoding: Velocity represents the span of offloading tasks to
other servers, denoted by V ¼ ½v1; v2; . . . ; vn�, the number of rows and columns is either n,
m. vn is the array of the nth row, represents a change in the task offloading scheme of the
AP an service scope. If the position vector is x1, the particle velocity vector v1 is
½1; 2;�1; 0; 1�. Thus the particle position vector x1 is updated to ½1; 3; 4; 3; 1�. The change
of the position vector means that task requests under the service scope of the AP with
sequence number one are split into five groups, and the task requests divided into five
groups are offloaded to the edge servers with sequence numbers 1, 3, 4, 3, and 1,
respectively.

Fitness function: For each particle, the fitness value depicts the quality of the task
offloading decision expressed by the particle, utilizing Eq. (6) as the fitness function f . The
smaller the fitness value, the better the fitness of the particle. Therefore, our goal is to
obtain the particle with the smallest fitness value during the iteration of the algorithm.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 9/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

f ¼ b � wB

wBðmaxÞ
þ ð1� bÞ � ttranall

ttranallðmaxÞ
(6)

In Eq. (6) b and 1� bð Þ represent the weight of workload standard deviation and task
offloading delay, respectively. In this article, let wBðmaxÞ and ttranallðmaxÞ be the maximum wB

and ttranall obtained at the initial iteration of the algorithm.
In the similar problem of shortest path, the Dijkstra algorithm, Floyd algorithm, A�

algorithm and other algorithms are commonly used to solve the problem. However, the
time complexity of the single iteration path search process of Floyd algorithm is higher
than that of Dijkstra algorithm, and the algorithm speed is slower (Li, Tong & Zhang,
2022). The Bellman-Ford algorithm has the problems of extreme redundancy and low
efficiency (Wang, 2018). The A� algorithm can be regarded as an extension of Dijkstra’s
algorithm, but the heuristic function in the algorithm will affect the behavior of the A�

algorithm and may cause the A� algorithm to slow down. However, using the Dijkstra
algorithm to solve the shortest path correlation problem, the path search procedure is
computationally efficient with low time cost. Dijkstra’s algorithm is based on graphs to
solve the difficulty of the shortest path and generate the shortest path tree. This algorithm
is generally used in the study of path planning problems (Wang et al., 2022; Sun, Fang &
Su, 2021). Thus, when the task is offloaded from the initial AP to the destination edge
server, our algorithm obtains the offloading path of the task via the Dijkstra algorithm.

In this article, the data transmission rate between APs is made the same, so the network
can be expressed as an un-directed and unweighted graph. When the element in the array
of the particle swarm is a number in 1 to m, it indicates which server to offload to. The
input of the Dijkstra algorithm is the adjacency array of the un-directed unweighted graph,
the sequence number corresponding to the initial AP and the destination server. And the
output is the shortest path between the initial node and the server node.

The process of the hybrid genetic particle swarm optimization algorithm based on two-
dimensional particles is as follows:

(1) Initialize the particle swarm according to the parameter constraints, and obtain the
initial velocity and initial position of each particle.

(2) Calculate the offloading delay and workload standard deviation through the
offloading scheme represented by the particle position vector. When the task starts
offloading, the task information of each AP and edge server is updated every time slot
until there are no task requests under the service scope of all APs.

(3) Calculate the fitness value of each particle, save or update the historical best fitness
value Pbest of each particle.

(4) If the minimum fitness value in the particle swarm is smaller than the group’s
historical optimal fitness value, update the group’s historical optimal fitness value
Gbest.

(5) Sort the particle swarm according to the order of fitness value from small to large. Join
the elite retention strategy to directly conserve the speed and position of the top 10%

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 10/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

particles after sorting. At the same time, the speed and position of the top 90% of the
sorted particles are updated and saved after the update.

(6) Equations (7) and (8) are used to update the velocity and position of the particle.

vhþ1
i ¼ wvhi þ c1r1 Pbesth � xhi

� �
(7)

xhþ1
i ¼ xhi þ vhþ1

i (8)

In Eqs. (7) and (8), the superscript h, hþ 1 represents the number of iterations, and w is
the inertia weight that regulates the search for space exploration. c1 and c2 are the self-
perception factor and the overall perception factor, respectively, with a value of 2. r1 and r2
are two random numbers in the range ð0; 1Þ. When updating the speed vhþ1

i , when the
obtained value is not an integer, only the integer part is retained. And judge whether it
exceeds the maximum speed vmax and the minimum speed vmin, if not within the range,
then regenerate. After the position is updated, it is necessary to judge whether the value of
each digit in the position is between 0 andm. If the value is negative, take its opposite; if the
value is greater than m, subtract m from the value.

(7) When the number of iterations is less than or equal to the maximum number of
iterations, repeat steps (2) (3) (4) (5) (6); otherwise the iteration terminates.

The inertia weight w in the algorithm, this article adopts the method of linear decline in
w through Eq. (9) (Yi & Zijiang, 2020). The particle swarm explores the large area at the
beginning of the iteration and the approximate position of the optimal solution at the later
stage of the iteration through the weight change of linear descent. In the process of
weakening the inertia weight, the particle velocity is reduced, and the precise local search is
started (Dongqiang & Xiaoxia, 2017).

wh ¼ ðwini � wendÞ � ðitermax � hÞ
itermax

þ wend (9)

In Eq. (9) itermax is the maximum number of iterations, h is the current number of
iterations, wini is the initial inertia weight, and wend is the inertia weight when the iteration
reaches the maximum number of iterations.

Algorithmic time complexity analysis
The proposed algorithm is mainly based on the GA and PSO algorithmic innovations. In
algorithm, the number of iterations of the particle swarm is i, the size of the particle
population is p, and the shape of the particle position vector is n rows and m columns. In
the iterative update of the particle swarm, each iteration mainly computes the fitness value
and updates the particle position vector. The calculation of fitness value and updating of
particle position vector are related to the shape of particle position vector, and the time
complexity of both parts is OðpmnÞ. Then, the entire iteration time is approximately
Oð2ipmnÞ. Therefore, the time complexity of genetic algorithm is OðipmnÞ.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 11/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

SIMULATION ANALYSIS
This section illustrates how to conduct simulation experiments to determine the
effectiveness of our solution, which is simulated using Python.

Simulation parameters
In the simulations presented in this article, we selected a certain range of real-world base
station locations in Jinniu District of Chengdu City for our experiments. As shown in the
Fig. 2. According to the proportion of the area range, we finally determined the location of
20 base stations (AP). The coverage radius of each base station (AP) was 750 m (Al-Abiad,
Zoheb & Hossain, 2021). In the experiments, we validate the effectiveness of the proposed
algorithm under different total number of tasks and make comparisons. The total number
of tasks on the network is 3,000, 4,000, 5,000, 6,000, and 7,000. The data size of each task is
[7,40]Mbit (You & Tang, 2021), and the data transfer rate between APs is 20 MB/s (Fan
et al., 2017). At the same time, to balance the importance of the workload standard
deviation with the task offloading delay of the edge server, we set the weight b to 0.5. In the
process of task offloading, we determined the unit of time slot as seconds (Tang et al., 2021;
Liao et al., 2021). To obtain additional accurate results, we finally settled on a time slot e of
1 s. In algorithm, wini and wend are determined to be 0.9 and 0.4, respectively (Yi & Zijiang,
2020). The parameter settings stated in this experiment are shown in Table 2.

In a network scenario with restricted server deployment, the number of servers is less
than the number of APs, and some APs will deploy servers. This article uses the actual
latitude and longitude of some base stations in Jinniu District, Chengdu, and converts
them into two-dimensional coordinates. Then use the bisection K-means algorithm to split
numerous AP points into m clusters, and the value of m is equal to the number of servers.
The bipartite K-means algorithm overcomes the problem that the K-means algorithm is

Figure 2 The location map of some real base stations in Jinniu District, Chengdu.
Full-size DOI: 10.7717/peerj-cs.1273/fig-2

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 12/23

http://dx.doi.org/10.7717/peerj-cs.1273/fig-2
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

sensitive to the initial cluster centroids. After clustering, we find the AP closest to the
cluster center in each cluster, and set this AP as the AP where the server is deployed. After
the location of the server is determined, each AP node communicates with up to three
nodes. At the same time, the distance between the two APs is less than R to communicate
with each other, and the topology map of the two scenarios is randomly generated.

Figure 3 shows the result of the AP location after the bipartite K-means clustering
algorithm. Points with the same mark belong to the same cluster, and the greater mark in
the cluster represents the cluster center. Figure 4 is a corresponding network topology
diagram generated randomly after selecting an AP node to deploy a server according to the
clustering result. The small dots in each picture represent APs, the numbers on them
represent the serial numbers of APs, and the triangle-shaped dots represent APs with
deployed servers. Figures 3 and 4 show the topological scenario obtained when the number
of deployed edge servers is 5. At the same time, we also obtain topological scenarios when

Table 2 Parameter settings.

Parameter Value

n 20

m 4,5,6

v 3,000, 4,000, 5,000, 6,000, and 7,000

R 750 m

di ½7; 40�Mbit

a 20 M/s

b 0.5

e 1 s

wini 0.9

wend 0.4

Figure 3 These are the two clustering results from bipartite K-means. (A) Clustering result 1; (B)
clustering result 2. Full-size DOI: 10.7717/peerj-cs.1273/fig-3

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 13/23

http://dx.doi.org/10.7717/peerj-cs.1273/fig-3
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

the number of deployed edge servers is 4 and 6. Figure 5 shows the clustering results and
the network topology graph when the number of deployed edge servers is four. Figure 6
shows the clustering results and the network topology graph when the number of deployed
edge servers is 6.

In simulation experiments, we compared the performance of several different offloading
decisions in terms of workload balancing and offloading completion delay: Genetic
algorithm (GA) based on one-dimensional genes (Xiulan Sun & Li, 2022), hybrid genetic
particle swarm optimization based on two-dimensional particles (GA-PSO), and the
nearest selection algorithm (NSA). The main idea of the offloading strategy of the nearest

Figure 4 These are the two clustering results from bipartite K-means. (A) Network topology map 1
corresponding to clustering result 1; (B) network topology map 2 corresponding to clustering result 2.

Full-size DOI: 10.7717/peerj-cs.1273/fig-4

Figure 5 This is the (A) cluster result and the (B) network topology when the number of deployed
servers is 4. Full-size DOI: 10.7717/peerj-cs.1273/fig-5

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 14/23

http://dx.doi.org/10.7717/peerj-cs.1273/fig-4
http://dx.doi.org/10.7717/peerj-cs.1273/fig-5
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

selection algorithm: according to the Dijkstra algorithm, each AP finds the server with the
least number of hops in the offloading process, and all task requests under the service scope
of each AP are offloaded to this server.

From Figs. 7 and 8, we can see that our proposed method outperforms the NSA and GA
methods in general. Figures 7A and 7B respectively, show the results of load balancing and
offloading completion delay when the total number of tasks in the network is different in
topology scenario 1. For load balancing, it can be seen in Fig. 7A that the standard
deviation of workload of GA-PSO algorithm is the lowest, followed by that of GA
algorithm, while that of NSA algorithm is the highest. The lower the workload standard

Figure 6 This is the (A) cluster result and the (B) network topology when the number of deployed
servers is 6. Full-size DOI: 10.7717/peerj-cs.1273/fig-6

Figure 7 (A) Workload standard deviation and (B) average transmission delay of various algorithm offloading strategies in network topology
scenario 1. Full-size DOI: 10.7717/peerj-cs.1273/fig-7

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 15/23

http://dx.doi.org/10.7717/peerj-cs.1273/fig-6
http://dx.doi.org/10.7717/peerj-cs.1273/fig-7
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

deviation value, the more balanced the workload among the edge servers. We conclude
that in network scenario 1, the GA-PSO algorithm outperforms the GA and NSA
algorithms in load balancing optimization. In terms of specific numerical performance,
when the total number of tasks is different, the GA-PSO algorithm achieves values that are
92–96% lower than GA and 98% lower than NSA. At the same time, the values obtained by
the GA algorithm are also 76–80% lower than those obtained by the NSA.

In Fig. 7B, in the topology of the first network scene, we can see that the offloading
completion delay obtained by NSA algorithm is the lowest, while the delay value obtained
by GA-PSO algorithm is the highest. This means that the NSA algorithm has the best
performance in terms of latency optimization, followed by the GA algorithm and GA-PSO
algorithm. In terms of specific numerical performance, when the total number of tasks is
different, the values obtained by NSA algorithm are respectively 35–46% and 37–50%
lower than those obtained by GA and GA-PSO algorithm, and the values obtained by GA
algorithm are also 5–20% lower than those obtained by GA-PSO algorithm.

In the NSA algorithm, the server with the fewest hops is chosen to offload all the tasks
received by the same AP. As a result, the tasks received by several APs without deployed
edge servers are offloaded to one server for computation. At this point, the offloading
completion delay for all tasks can be minimized, but this also results in the highest
workload standard deviation values, making the workload of each edge server highly
imbalanced. The GA algorithm selects the edge servers with less workload and offload hops
for offloading, and achieves mediocre performance in terms of latency and workload. The
GA-PSO algorithm refines the assignment of tasks. The tasks received by the same AP may
be offloaded to different edge servers for computation, with different completion delays for
each task. It minimizes the load imbalance among edge servers, but has higher latency than
the other two algorithms.

Figure 8 (A) Workload standard deviation and (B) average transmission delay of various algorithm offloading strategies in network topology
scenario 2. Full-size DOI: 10.7717/peerj-cs.1273/fig-8

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 16/23

http://dx.doi.org/10.7717/peerj-cs.1273/fig-8
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

Let us look at the resulting graphs in the second network topology scenario. Observing
Fig. 8A, we can conclude that the GA-PSO algorithm also outperforms the GA and NSA
algorithms for workload balancing in network scenario 2. The standard deviation of
workload is different from that in scenario 1 in specific value. The GA-PSO algorithm
yields a value that is 92–95% lower than GA and 95–98% lower than NSA. At the same
time, the values obtained by the GA algorithm are also 63–73% lower than those obtained
by the NSA. By looking at Fig. 8B, we can see that in network scenario 2, the NSA
algorithm performs the best in delay optimization, followed by the GA algorithm and GA-
PSO. In terms of specific numerical performance, when the total number of tasks is
different, the values obtained by the NSA algorithm are 42–50% and 45–62% lower than
those obtained by the GA and GA-PSO algorithms, respectively, and the values obtained
by the GA algorithm are also 20–30% lower than those obtained by the GA-PSO
algorithm.

A further comparison is made by the numerical results for the two scenarios above:
while NSA can achieve the lowest offloading completion delay, which is 30–50% lower
than GA and GA-PSO numerically, the standard deviation of the NSA workload is 70%
and 90% higher than GA and GA-PSO, respectively. Hence, the effect of NSA optimization
is relatively modest. Although the offloading completion delay of GA-PSO is 10–20%
higher than that of GA, the standard deviation of workload of GA-PSO is 90% lower than
that of GA. Therefore, GA-PSO has the best optimization effect.

In the same scenario, as the total number of tasks increases, the standard deviation of
the workload obtained by the NSA algorithm also increases substantially. However, both
GA and GA-PSO show some fluctuations as the total number of tasks increases, although
the standard deviation of the overall workload increases. Moreover, the fluctuations in GA
are more pronounced. Look closely at Figs. 7 and 8: in network topology scenario 1, when
the total number of tasks increases from 4,000 to 5,000, the GA task offloading delay and
the standard deviation of the workload decrease accordingly. In network topology scenario
2, when the total number of tasks increases from 6,000 to 7,000, the GA task offloading
latency and the standard deviation of the workload also decrease. This is related to the GA
algorithm design, where the tasks received by each AP are offloaded to the server
represented in the gene. Network offloading decisions differ when the total number of
tasks on the network increases. In this case, the tasks received by the same AP are offloaded
to different edge servers. As a result, the offloading completion delay decreases for all tasks
received by the same AP, and the workload of some servers will also modify, which will
affect the standard deviation of the workload of all servers in the network.

At the same time, to validate the effectiveness of the proposed algorithm in more
scenarios, we conduct experiments when the number of deployed edge servers is 4 and 6.
Figures 9 and 10 show the comparison of the performance results of the three algorithms
when the number of deployed edge servers is 4 and 6, respectively. In both Figs. 9A and
10A, we can see that GA-PSO has the lowest standard deviation of workload, while NSA
has the highest standard deviation. GA-PSO is nicely optimized for load balancing. In Figs.
9B and 10B, we can see that NSA has the lowest task offloading completion delay, while

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 17/23

http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

GA-PSO algorithm has the higher task offloading completion delay. Therefore, our
proposed GA-PSO is also effective when the number of edge servers is different.

We choose the fitness values when the total number of tasks is intermediate for
comparison. Figure 11 shows the convergence results when the total number of tasks is
5,000 for the four network topological scenarios. As can be seen in Fig. 11, the algorithm is
able to converge within 40 iterations in all four network topology scenarios, showing good
convergence.

Figure 9 (A) Workload standard deviation and (B) average transmission delay of various algorithm offloading strategies in network topology
scenario 3. Full-size DOI: 10.7717/peerj-cs.1273/fig-9

Figure 10 (A)Workload standard deviation and (B) average transmission delay of various algorithm offloading strategies in network topology
scenario 4. Full-size DOI: 10.7717/peerj-cs.1273/fig-10

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 18/23

http://dx.doi.org/10.7717/peerj-cs.1273/fig-9
http://dx.doi.org/10.7717/peerj-cs.1273/fig-10
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

Based on the above observations, although the offloading delay of GA-PSO is slightly
higher than that of GA and NSA, GA-PSO can achieve the lowest standard deviation of the
workload for different network scenarios, thus balancing the load of edge servers.

CONCLUSION
In this article, we address the multi-objective optimization problem of simultaneously
optimizing server workload and offloading latency in networks with limited deployment of
edge servers. We have presented a hybrid genetic particle swarm optimization algorithm
based on two-dimensional genes. This method has the following two innovations: (1) In
the algorithm, we consider the task received by AP to be offloaded by group. (2) When the
task is offloaded in the algorithm, the selection of multi-hop path we adopt Dijkstra
algorithm to select the shortest path between AP nodes. Experimental results show that
PSO-GA can achieve the lowest standard deviation of workloads across different network
topologies in multi-hop MEC systems with limited server resources, although it has
average performance in terms of task offloading delay. At the same time, GA-PSO
converges well. During the experiments, we found that the distribution of task data had an
influential effect on the results. Therefore, we would like to further investigate and adopt
different task offloading methods to optimize the edge server load and task offloading
latency under different task distribution patterns.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the fund from the Network and Data Security Key Laboratory
of Sichuan Province, UESTC (NO. NDS2021-7), the Sichuan Province General Education
Scientific Research (NO. 2019514), the Open Project of National Intelligent Society

Figure 11 Fitness values for the four network scenarios when the total number of tasks is 5,000.
Full-size DOI: 10.7717/peerj-cs.1273/fig-11

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 19/23

http://dx.doi.org/10.7717/peerj-cs.1273/fig-11
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

Governance Testing Area (NO. ZNZL2023A04), the Research on Intelligent Access
Control Technology for heterogeneous networks (CXHCL202201), the Meteorological
Information and Signal Processing Key Laboratory of Sichuan Higher Education Institutes
of Chengdu University of Information Technology, the fund of the Scientific and
Technological Activities for Overseas Students of Sichuan Province 2022(30) and funds
from the Sichuan Provincial Department of Human Resources and Social Welfare
“Researches on Key Issues of Edge Computing Server Deployment and Computing task
Offloading”. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Network and Data Security Key Laboratory of Sichuan Province, UESTC: NDS2021-7.
Sichuan Province General Education Scientific Research: 2019514.
Open Project of National Intelligent Society Governance Testing Area: ZNZL2023A04.
Research on Intelligent Access Control Technology: CXHCL202201.
Meteorological Information and Signal Processing Key Laboratory of Sichuan Higher
Education Institutes of Chengdu University of Information Technology.
Scientific and Technological Activities for Overseas Students of Sichuan Province.
Sichuan Provincial Department of Human Resources and Social Welfare.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Wenzao Li conceived and designed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.

� Xiulan Sun conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

� Bing Wan conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Hantao Liu conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Jie Fang performed the experiments, analyzed the data, performed the computation
work, authored or reviewed drafts of the article, and approved the final draft.

� Zhan Wen performed the experiments, analyzed the data, performed the computation
work, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and raw data are available in the Supplemental Files.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 20/23

http://dx.doi.org/10.7717/peerj-cs.1273#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1273#supplemental-information.

REFERENCES
Al-Abiad MS, Zoheb M, Hossain MJ. 2021. Task offloading optimization in noma-enabled multi-

hop mobile edge computing system using conflict graph. ArXiv preprint
DOI 10.48550/arXiv.2104.11801.

Chen L, Zhou S, Xu J. 2018. Computation peer offloading for energy-constrained mobile edge
computing in small-cell networks. IEEE/ACM Transactions on Networking 26(4):1619–1632
DOI 10.1109/TNET.2018.2841758.

Chen W, Zhu Y, Liu J, Chen Y. 2021. Enhancing mobile edge computing with efficient load
balancing using load estimation in ultra-dense network. Sensors 21(9):3135
DOI 10.3390/s21093135.

Deng S, Zhang C, Li C, Yin J, Dustdar S, Zomaya AY. 2021. Burst load evacuation based on
dispatching and scheduling in distributed edge networks. IEEE Transactions on Parallel and
Distributed Systems 32(8):1918–1932 DOI 10.1109/TPDS.2021.3052236.

Ding Z, Xu J, Dobre OA, Poor HV. 2019. Joint power and time allocation for noma–mec
offloading. IEEE Transactions on Vehicular Technology 68(6):6207–6211
DOI 10.1109/TVT.2019.2907253.

Dong Y, Xu G, Ding Y, Meng X, Zhao J. 2019. A ‘joint-me’task deployment strategy for load
balancing in edge computing. IEEE Access 7:99658–99669 DOI 10.1109/ACCESS.2019.2928582.

Dongqiang W, Xiaoxia W. 2017. Large data optimization particle swarm clustering algorithm
based on cloud storag. Electronic Design Engineering 25(2):26–30
DOI 10.14022/j.cnki.dzsjgc.2017.02.007.

Du J, Yu FR, Lu G,Wang J, Jiang J, Chu X. 2020.Mec-assisted immersive vr video streaming over
terahertz wireless networks: a deep reinforcement learning approach. IEEE Internet of Things
Journal 7(10):9517–9529 DOI 10.1109/JIOT.2020.3003449.

Fan Q, Ansari N. 2018. Towards workload balancing in fog computing empowered IoT. IEEE
Transactions on Network Science and Engineering 7(1):253–262
DOI 10.1109/TNSE.2018.2852762.

Fan W, Han J, Yao L, Wu F, Liu Y. 2020. Latency-energy optimization for joint wifi and cellular
offloading in mobile edge computing networks. Computer Networks 181(4):107570
DOI 10.1016/j.comnet.2020.107570.

Fan W, Liu Y, Tang B, Wu F, Wang Z. 2017. Computation offloading based on cooperations of
mobile edge computing-enabled base stations. IEEE Access 6:22622–22633
DOI 10.1109/ACCESS.2017.2787737.

Feng J, Yu FR, Pei Q, Chu X, Du J, Zhu L. 2019. Cooperative computation offloading and
resource allocation for blockchain-enabled mobile-edge computing: a deep reinforcement
learning approach. IEEE Internet of Things Journal 7(7):6214–6228
DOI 10.1109/JIOT.2019.2961707.

Guo H, Liu J, Zhang J. 2018. Computation offloading for multi-access mobile edge computing in
ultra-dense networks. IEEE Communications Magazine 56(8):14–19
DOI 10.1109/MCOM.2018.1701069.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 21/23

http://dx.doi.org/10.7717/peerj-cs.1273#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1273#supplemental-information
http://dx.doi.org/10.48550/arXiv.2104.11801
http://dx.doi.org/10.1109/TNET.2018.2841758
http://dx.doi.org/10.3390/s21093135
http://dx.doi.org/10.1109/TPDS.2021.3052236
http://dx.doi.org/10.1109/TVT.2019.2907253
http://dx.doi.org/10.1109/ACCESS.2019.2928582
http://dx.doi.org/10.14022/j.cnki.dzsjgc.2017.02.007
http://dx.doi.org/10.1109/JIOT.2020.3003449
http://dx.doi.org/10.1109/TNSE.2018.2852762
http://dx.doi.org/10.1016/j.comnet.2020.107570
http://dx.doi.org/10.1109/ACCESS.2017.2787737
http://dx.doi.org/10.1109/JIOT.2019.2961707
http://dx.doi.org/10.1109/MCOM.2018.1701069
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

Guo F, Zhang H, Ji H, Li X, Leung VC. 2018. An efficient computation offloading management
scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM
Transactions on Networking 26(6):2651–2664 DOI 10.1109/TNET.2018.2873002.

He J, Zhang D, Zhou Y, Zhang Y. 2019. An online computation offloading mechanism for mobile
edge computing in ultra-dense small cell networks. In: 2019 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Piscataway: IEEE, 826–833.

Li H, Tong P, Zhang X. 2022. Method for determining the location of highway passenger
transportation hubs using poi data and the dijkstra algorithm in large city. Mathematical
Problems in Engineering 2022:1–12 DOI 10.1155/2022/2189598.

Liao Z, Peng J, Xiong B, Huang J. 2021. Adaptive offloading in mobile-edge computing for ultra-
dense cellular networks based on genetic algorithm. Journal of Cloud Computing 10(1):1–16
DOI 10.1186/s13677-021-00232-y.

Liu J, Zhang Q. 2019. Code-partitioning offloading schemes in mobile edge computing for
augmented reality. IEEE Access 7:11222–11236 DOI 10.1109/ACCESS.2019.2891113.

Lu H, Gu C, Luo F, Ding W, Liu X. 2020. Optimization of lightweight task offloading strategy for
mobile edge computing based on deep reinforcement learning. Future Generation Computer
Systems 102(5):847–861 DOI 10.1016/j.future.2019.07.019.

Mahmud R, Ramamohanarao K, Buyya R. 2018. Latency-aware application module management
for fog computing environments. ACM Transactions on Internet Technology (TOIT) 19(1):1–21
DOI 10.1145/3186592.

Mao Y, You C, Zhang J, Huang K, Letaief KB. 2017. A survey on mobile edge computing: the
communication perspective. IEEE Communications Surveys & Tutorials 19(4):2322–2358
DOI 10.1109/COMST.2017.2745201.

Mogi R, Nakayama T, Asaka T. 2018. Load balancing method for iot sensor system using multi-
access edge computing. In: 2018 Sixth International Symposium on Computing and Networking
Workshops (CANDARW). Piscataway: IEEE, 75–78.

Mondal S, Das G, Wong E. 2020. A game-theoretic approach for non-cooperative load balancing
among competing cloudlets. IEEE Open Journal of the Communications Society 1:226–241
DOI 10.1109/OJCOMS.2020.2971613.

Pan Y, Chen M, Yang Z, Huang N, Shikh-Bahaei M. 2018. Energy-efficient noma-based mobile
edge computing offloading. IEEE Communications Letters 23(2):310–313
DOI 10.1109/LCOMM.2018.2882846.

Sun Y, Fang M, Su Y. 2021. Agv path planning based on improved dijkstra algorithm. Journal of
Physics: Conference Series 1746:012052 DOI 10.1088/1742-6596/1746/1/012052.

Tang F, Liu C, Li K, Tang Z, Li K. 2021. Task migration optimization for guaranteeing delay
deadline with mobility consideration in mobile edge computing. Journal of Systems Architecture
112(8):101849 DOI 10.1016/j.sysarc.2020.101849.

Tran TX, Pompili D. 2018. Joint task offloading and resource allocation for multi-server mobile-
edge computing networks. IEEE Transactions on Vehicular Technology 68(1):856–868
DOI 10.1109/TVT.2018.2881191.

Wang XZ. 2018. The comparison of three algorithms in shortest path issue. Journal of Physics:
Conference Series 1087(2):022011 DOI 10.1088/1742-6596/1087/2/022011.

Wang M, Cheng B, Chen J. 2020b. An efficient service function chaining placement algorithm in
mobile edge computing. ACM Transactions on Internet Technology (TOIT) 20(4):1–21
DOI 10.1145/3388241.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 22/23

http://dx.doi.org/10.1109/TNET.2018.2873002
http://dx.doi.org/10.1155/2022/2189598
http://dx.doi.org/10.1186/s13677-021-00232-y
http://dx.doi.org/10.1109/ACCESS.2019.2891113
http://dx.doi.org/10.1016/j.future.2019.07.019
http://dx.doi.org/10.1145/3186592
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/OJCOMS.2020.2971613
http://dx.doi.org/10.1109/LCOMM.2018.2882846
http://dx.doi.org/10.1088/1742-6596/1746/1/012052
http://dx.doi.org/10.1016/j.sysarc.2020.101849
http://dx.doi.org/10.1109/TVT.2018.2881191
http://dx.doi.org/10.1088/1742-6596/1087/2/022011
http://dx.doi.org/10.1145/3388241
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

Wang Y, Tao X, Zhang X, Zhang P, Hou YT. 2019. Cooperative task offloading in three-tier
mobile computing networks: an admm framework. IEEE Transactions on Vehicular Technology
68(3):2763–2776 DOI 10.1109/TVT.2019.2892176.

Wang F, Xing H, Xu J. 2020a. Real-time resource allocation for wireless powered multiuser mobile
edge computing with energy and task causality. IEEE Transactions on Communications
68(11):7140–7155 DOI 10.1109/TCOMM.2020.3011990.

Wang J, Yu X, Zong R, Lu S. 2022. Evacuation route optimization under real-time toxic gas
dispersion through CFD simulation and Dijkstra algorithm. Journal of Loss Prevention in the
Process Industries 76(1):104733 DOI 10.1016/j.jlp.2022.104733.

Xiulan Sun YW, Li W. 2022. Research on task offloading strategy based on genetic algorithm.
International Journal of Scientific Engineering and Science 6:1–5.

Xu X, Li Y, Huang T, Xue Y, Peng K, Qi L, Dou W. 2019. An energy-aware computation
offloading method for smart edge computing in wireless metropolitan area networks. Journal of
Network and Computer Applications 133(C):75–85 DOI 10.1016/j.jnca.2019.02.008.

Xu Z, Liang W, Xu W, Jia M, Guo S. 2015. Efficient algorithms for capacitated cloudlet
placements. IEEE Transactions on Parallel and Distributed Systems 27(10):2866–2880
DOI 10.1109/TPDS.2015.2510638.

Xu X, Shen B, Yin X, Khosravi MR, Wu H, Qi L, Wan S. 2020. Edge server quantification and
placement for offloading social media services in industrial cognitive IoV. IEEE Transactions on
Industrial Informatics 17(4):2910–2918 DOI 10.1109/TII.2020.2987994.

Yi H, Zijiang Z. 2020. Pso-based big data clustering algorithm in cloud environment. Modern
Electronics Technique 43(14):72–75.

You Q, Tang B. 2021. Efficient task offloading using particle swarm optimization algorithm in edge
computing for industrial internet of things. Journal of Cloud Computing 10(1):1–11
DOI 10.1186/s13677-021-00256-4.

Yu M, Tang J, Li J. 2019. Resource allocation scheme for multi-point mec based on reinforcement
learning. Communications Technology 52(12):2920–2925
DOI 10.3969/j.issn.1002-0802.2019.12.015.

Zeng M, Fodor V. 2019. Dynamic spectrum sharing for load balancing in multi-cell mobile edge
computing. IEEE Wireless Communications Letters 9(2):189–193
DOI 10.1109/LWC.2019.2947479.

Zeng F, Ren Y, Deng X, Li W. 2018. Cost-effective edge server placement in wireless metropolitan
area networks. Sensors 19(1):32 DOI 10.3390/s19010032.

Zewei Y, Jiawen L, Junqin H, Xing C. 2021. Pso-ga based approach to multi-edge load balancing.
Computer Science 48(11A):456–463 DOI 10.11896/jsjkx.210100191.

Zhang H, Yang Y, Huang X, Fang C, Zhang P. 2021. Ultra-low latency multi-task offloading in
mobile edge computing. IEEE Access 9:32569–32581 DOI 10.1109/ACCESS.2021.3061105.

Zhao L, Sun W, Shi Y, Liu J. 2018. Optimal placement of cloudlets for access delay minimization
in sdn-based internet of things networks. IEEE Internet of Things Journal 5(2):1334–1344
DOI 10.1109/JIOT.2018.2811808.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1273 23/23

http://dx.doi.org/10.1109/TVT.2019.2892176
http://dx.doi.org/10.1109/TCOMM.2020.3011990
http://dx.doi.org/10.1016/j.jlp.2022.104733
http://dx.doi.org/10.1016/j.jnca.2019.02.008
http://dx.doi.org/10.1109/TPDS.2015.2510638
http://dx.doi.org/10.1109/TII.2020.2987994
http://dx.doi.org/10.1186/s13677-021-00256-4
http://dx.doi.org/10.3969/j.issn.1002-0802.2019.12.015
http://dx.doi.org/10.1109/LWC.2019.2947479
http://dx.doi.org/10.3390/s19010032
http://dx.doi.org/10.11896/jsjkx.210100191
http://dx.doi.org/10.1109/ACCESS.2021.3061105
http://dx.doi.org/10.1109/JIOT.2018.2811808
http://dx.doi.org/10.7717/peerj-cs.1273
https://peerj.com/computer-science/

	A hybrid GA-PSO strategy for computing task offloading towards MES scenarios
	Introduction
	System model
	Problem definition and proof
	Solving method
	Simulation analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

