
Accelerating the XGBoost algorithm using
GPU computing

Rory Mitchell and Eibe Frank

Department of Computer Science, University of Waikato, Hamilton, New Zealand

ABSTRACT
We present a CUDA-based implementation of a decision tree construction

algorithm within the gradient boosting library XGBoost. The tree construction

algorithm is executed entirely on the graphics processing unit (GPU) and shows high

performance with a variety of datasets and settings, including sparse input matrices.

Individual boosting iterations are parallelised, combining two approaches. An

interleaved approach is used for shallow trees, switching to a more conventional

radix sort-based approach for larger depths. We show speedups of between 3� and

6� using a Titan X compared to a 4 core i7 CPU, and 1.2� using a Titan X compared

to 2� Xeon CPUs (24 cores). We show that it is possible to process the Higgs dataset

(10 million instances, 28 features) entirely within GPU memory. The algorithm is

made available as a plug-in within the XGBoost library and fully supports all

XGBoost features including classification, regression and ranking tasks.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science

Keywords Supervised machine learning, Gradient boosting, GPU computing

INTRODUCTION
Gradient boosting is an important tool in the field of supervised learning, providing

state-of-the-art performance on classification, regression and ranking tasks. XGBoost is

an implementation of a generalised gradient boosting algorithm that has become a tool

of choice in machine learning competitions. This is due to its excellent predictive

performance, highly optimised multicore and distributed machine implementation and

the ability to handle sparse data.

Despite good performance relative to existing gradient boosting implementations,

XGBoost can be very time consuming to run. Common tasks can take hours or even days

to complete. Building highly accurate models using gradient boosting also requires

extensive parameter tuning. In this process, the algorithm must be run many times to

explore the effect of parameters such as the learning rate and L1/L2 regularisation terms

on cross validation accuracy.

This paper describes and evaluates a graphics processing unit (GPU) algorithm for

accelerating decision tree construction within individual boosting iterations in the

single machine XGBoost setting. GPUs have been used to accelerate compute intensive

tasks in machine learning and many other fields through the utilisation of their specialised

SIMD architecture (Coates et al., 2013; Merrill & Grimshaw, 2011). GPU-accelerated

decision tree algorithms have been tried before with moderate success. Our unique

contributions are as follows. We describe a completely GPU-based implementation that

scales to arbitrary numbers of leaf nodes and exhibits stable performance characteristics

How to cite this article Mitchell and Frank (2017), Accelerating the XGBoost algorithm using GPU computing. PeerJ Comput. Sci.

3:e127; DOI 10.7717/peerj-cs.127

Submitted 4 April 2017
Accepted 27 June 2017
Published 24 July 2017

Corresponding authors
Rory Mitchell,

ramitchellnz@gmail.com

Eibe Frank, eibe@cs.waikato.ac.nz

Academic editor
Charles Elkan

Additional Information and
Declarations can be found on
page 36

DOI 10.7717/peerj-cs.127

Copyright
2017 Mitchell and Frank

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.127
mailto:ramitchellnz@�gmail.�com
mailto:eibe@�cs.�waikato.�ac.�nz
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.127
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


on a range of datasets and settings. We experiment with novel approaches to processing

interleaved subsets of data on GPUs and develop a massively parallel tree construction

algorithm that natively handles sparse data. We also provide a feature complete

implementation for classification, regression and learning to rank tasks in the open source

XGBoost library (https://github.com/dmlc/xgboost/tree/master/plugin/updater_gpu).

BACKGROUND AND RELATED WORK
We review the basic strategy of tree boosting for machine learning and revisit the

derivation of the XGBoost algorithm, before considering the execution model and

memory architecture of GPUs as well as languages and libraries for GPU computing.

Our GPU-based implementation makes extensive use of high-performance GPU

primitives and we discuss these next. We briefly discuss the effect of using single-precision

floating point arithmetic before reviewing related work on GPU-based induction of

decision trees from data.

Tree boosting algorithms
XGBoost is a supervised learning algorithm that implements a process called boosting

to yield accurate models. Supervised learning refers to the task of inferring a predictive

model from a set of labelled training examples. This predictive model can then be applied

to new unseen examples. The inputs to the algorithm are pairs of training examples

ð~x0; y0Þ; ð~x1; y1Þ � � � ð~xn; ynÞ where~x is a vector of features describing the example and

y is its label. Supervised learning can be thought of as learning a function Fð~xÞ ¼ y

that will correctly label new input instances.

Supervised learning may be used to solve classification or regression problems.

In classification problems the label y takes a discrete (categorical) value. For example,

we may wish to predict if a manufacturing defect occurs or does not occur based on

attributes recorded from the manufacturing process, such as temperature or time, that are

represented in~x. In regression problems the target label y takes a continuous value.

This can be used to frame a problem such as predicting temperature or humidity on a

given day.

XGBoost is at its core a decision tree boosting algorithm. Boosting refers to the

ensemble learning technique of building many models sequentially, with each new model

attempting to correct for the deficiencies in the previous model. In tree boosting each new

model that is added to the ensemble is a decision tree. We explain how to construct a

decision tree model and how this can be extended to generalised gradient boosting with

the XGBoost algorithm.

Decision trees
Decision tree learning is a method of predictive modelling that learns a model by

repeatedly splitting subsets of the training examples (also called instances) according to

some criteria. Decision tree inducers are supervised learners that accept labelled

training examples as an input and generate a model that may be used to predict the

labels of new examples.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 2/37

https://github.com/dmlc/xgboost/tree/master/plugin/updater_gpu
http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


In order to construct a decision tree, we start with the full set of training instances and

evaluate all possible ways of creating a binary split among those instances based on the

input features in~x. We choose the split that produces the most meaningful separation

of the target label y. Different measures can be used to evaluate the quality of a split.

After finding the ‘best’ split, we can create a node in the tree that partitions training

instances down the left or right branch according to some feature value. The subsets of

training instances can then be recursively split to continue growing the tree to some

maximum depth or until the quality of the splits is below some threshold. The leaves

of the tree will contain predictions for the target label y. For categorical labels, the

prediction can be set as the majority class from the training instances that end up in

that leaf. For regression tasks, the label prediction can be set as the mean of the

training instances in that leaf.

To use the tree for prediction, we can input an unlabelled example at the root of the

tree and follow the decision rules until the example reaches a leaf. The unlabelled

example can be labelled according to the prediction of that leaf.

Figure 1 shows an example decision tree that can predict whether or not an individual

owns a house. The decision is based on their age and whether or not they have a job.

The tree correctly classifies all instances from Table 1.

Decision tree algorithms typically expand nodes from the root in a greedy manner

in order to maximise some criterion measuring the value of the split. For example,

decision tree algorithms from the C4.5 family (Quinlan, 2014), designed for classification,

Figure 1 Example decision tree.

Table 1 Example training instances.

Instance Age Has job Owns house

0 12 N N

1 32 Y Y

2 25 Y Y

3 48 N N

4 67 N Y

5 18 Y N

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 3/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


use information gain as the split criterion. Information gain describes a change in entropy

H from some previous state to a new state. Entropy is defined as

HðTÞ ¼ �
X
y2Y

PðyÞlogbPðyÞ

where T is a set of labelled training instances, y ∈ Y is an instance label and P(y) is the

probability of drawing an instance with label y from T. Information gain is defined as

IGðT ;Tleft;TrightÞ ¼ HT � ðnleft=ntotalÞ �HðTleftÞ � ðnright=ntotalÞ �HðTrightÞ
Here Tleft and Tright are the subsets of T created by a decision rule. ntotal, nleft and

nright refer to the number of examples in the respective sets.

Many different criteria exist for evaluating the quality of a split. Any function can

be used that produces some meaningful separation of the training instances with

respect to the label being predicted.

In order to find the split that maximises our criterion, we can enumerate all possible

splits on the input instances for each feature. In the case of numerical features and

assuming the data has been sorted, this enumeration can be performed in O(nm) steps,

where n is the number of instances and m is the number of features. A scan is

performed from left to right on the sorted instances, maintaining a running sum of

labels as the input to the gain calculation. We do not consider the case of categorical

features in this paper because XGBoost encodes all categorical features using one-hot

encoding and transforms them into numerical features.

Another consideration when building decision trees is how to perform regularisation

to prevent overfitting. Overfitting on training data leads to poor model generalisation

and poor performance on test data. Given a sufficiently large decision tree it is possible

to generate unique decision rules for every instance in the training set such that each

training instance is correctly labelled. This results in 100% accuracy on the training set

but may perform poorly on new data. For this reason it is necessary to limit the growth

of the tree during construction or apply pruning after construction.

Gradient boosting
Decision trees produce interpretable models that are useful for a variety of problems, but

their accuracy can be considerably improved when many trees are combined into an

ensemble model. For example, given an input instance to be classified, we can test it

against many trees built on different subsets of the training set and return the mode of

all predictions. This has the effect of reducing classifier error because it reduces variance

in the estimate of the classifier.

Figure 2 shows an ensemble of two decision trees. We can predict the output label using

all trees by taking the most common class prediction or some weighted average of all

predictions.

Ensemble learning methods can also be used to reduce the bias component in the

classification error of the base learner. Boosting is an ensemble method that creates

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 4/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


ensemble members sequentially. The newest member is created to compensate for the

instances incorrectly labelled by the previous learners.

Gradient boosting is a variation on boosting which represents the learning problem

as gradient descent on some arbitrary differentiable loss function that measures

the performance of the model on the training set. More specifically, the boosting

algorithm executes M boosting iterations to learn a function F(x) that outputs

predictions ŷ ¼ FðxÞ minimising some loss function Lðy; ŷÞ. At each iteration we

add a new estimator f(x) to try to correct the prediction of y for each training instance:

Fmþ1ðxÞ ¼ FmðxÞ þ f ðxÞ ¼ y

We can correct the model by setting f(x) to:

f ðxÞ ¼ y � FmðxÞ
This fits the model f(x) for the current boosting iteration to the residuals y - Fm(x)

of the previous iteration. In practice, we approximate f(x), for example by using a

depth-limited decision tree.

This iterative process can be shown to be a gradient descent algorithm when the

loss function is the squared error:

Lðy; FðxÞÞ ¼ 1

2
ðy � FðxÞÞ2

To see this, consider that the loss over all training instances can be written as

J ¼
X
i

Lðyi; FðxiÞÞ

We seek to minimise J by adjusting F(xi). The gradient for a particular instance xi

is given by

dJ

dFðxiÞ ¼
d
P
i

Lðyi; FðxiÞÞ
dFðxiÞ ¼ dLðyi; FðxiÞÞ

dFðxiÞ ¼ FmðxiÞ � yi

Figure 2 Decision tree ensemble.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 5/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


We can see that the residuals are the negative gradient of the squared error loss

function:

f ðxÞ ¼ y � FmðxÞ ¼ � dLðy; FðxÞÞ
dFðxÞ

By adding a model that approximates this negative gradient to the ensemble we move

closer to a local minimum of the loss function, thus implementing gradient descent.

Generalised gradient boosting and XGBoost
Herein, we derive the XGBoost algorithm following the explanation in Chen &

Guestrin (2016). XGBoost is a generalised gradient boosting implementation that includes

a regularisation term, used to combat overfitting, as well as support for arbitrary

differentiable loss functions.

Instead of optimising plain squared error loss, an objective function with two parts

is defined, a loss function over the training set as well as a regularisation term which

penalises the complexity of the model:

Obj ¼
X
i

Lðyi; ŷiÞ þ
X
k

�ðfkÞ

Lðyi; ŷiÞ can be any convex differentiable loss function that measures the difference

between the prediction and true label for a given training instance. Ω(fk) describes the

complexity of tree fk and is defined in the XGBoost algorithm (Chen & Guestrin, 2016) as

�ðfkÞ ¼ �T þ 1

2
�w2 (1)

where T is the number of leaves of tree fk and w is the leaf weights (i.e. the predicted values

stored at the leaf nodes). WhenΩ(fk) is included in the objective function we are forced to

optimise for a less complex tree that simultaneously minimises Lðyi; ŷiÞ. This helps to
reduce overfitting. �T provides a constant penalty for each additional tree leaf and �w2

penalises extreme weights. � and � are user configurable parameters.

Given that boosting proceeds in an iterative manner we can state the objective function

for the current iteration m in terms of the prediction of the previous iteration ŷi
ðm�1Þ

adjusted by the newest tree fk:

Objm ¼
X
i

Lðyi; ŷiðm�1Þ þ fkðxiÞÞ þ
X
k

�ðfkÞ

We can then optimise to find the fk which minimises our objective.

Taking the Taylor expansion of the above function to the second order allows us to

easily accommodate different loss functions:

Objm ’
X
i

½Lðyi; ŷiðm�1ÞÞ þ gifkðxÞ þ 1

2
hifkðxÞ2� þ

X
k

�ðfkÞ þ constant

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 6/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Here, gi and hi are the first and second order derivatives respectively of the loss function

for instance i:

gi ¼ dLðyi; ŷiðm�1ÞÞ
dŷi

ðm�1Þ hi ¼ d2Lðyi; ŷ iðm�1ÞÞ
dðŷiðm�1ÞÞ2

Note that the model ŷi
ðm�1Þ is left unchanged during this optimisation process.

The simplified objective function with constants removed is

Objm ¼
X
i

½gifkðxÞ þ 1

2
hifkðxÞ2� þ

X
k

�ðfkÞ

We can also make the observation that a decision tree predicts constant values within a

leaf. fk(x) can then be represented as wq(x) where w is the vector containing scores for each

leaf and q(x) maps instance x to a leaf.

The objective function can then be modified to sum over the tree leaves and the

regularisation term from Eq. (1):

Objm ¼
XT
j¼1

X
i2Ij

gi

0
@

1
AwqðxÞ þ 1

2

X
i2Ij

hi

0
@

1
Aw2

qðxÞ

2
4

3
5þ �T þ 1

2
�
XT
j¼1

w2

Here, Ij refers to the set of training instances in leaf j. The sums of the derivatives in each

leaf can be defined as follows:

Gj ¼
X
i2Ij

gi Hj ¼
X
i2Ij

hi

Also note that wq(x) is a constant within each leaf and can be represented as wj. Simplifying

we get

Objm ¼
XT
j¼1

Gjwj þ 1

2
ðHj þ �Þw2

j

� �
þ �T (2)

The weight wj for each leaf minimises the objective function at

@Objm

@wj

¼ Gj þ ðHj þ �Þwj ¼ 0

The best leaf weight wj given the current tree structure is then

wj ¼ � Gj

Hj þ �

Using the best wj in Eq. (2), the objective function for finding the best tree structure

then becomes

Objm ¼ � 1

2

XT
j¼1

G2
j

Hj þ �
þ �T (3)

Eq. (3) is used in XGBoost as a measure of the quality of a given tree.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 7/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Growing a tree
Given that it is intractable to enumerate through all possible tree structures, we greedily

expand the tree from the root node. In order to evaluate the usefulness of a given split,

we can look at the contribution of a single leaf node j to the objective function from

Eq. (3):

Objleaf ¼ � 1

2

G2
j

Hj þ �
þ �

We can then consider the contribution to the objective function from splitting this leaf

into two leaves:

Objsplit ¼ � 1

2

G2
jL

HjL þ �
þ G2

jR

HjR þ �

 !
þ 2�

The improvement to the objective function from creating the split is then defined as

Gain ¼ Objleaf �Objsplit

which yields

Gain ¼ 1

2

G2
L

HL þ �
þ G2

R

HR þ �
� ðGL þ GRÞ2
HL þHR þ �

" #
� � (4)

The quality of any given split separating a set of training instances is evaluated using the

gain function in Eq. (4). The gain function represents the reduction in the objective

function from Eq. (3) obtained by taking a single leaf node j and partitioning it into two

leaf nodes. This can be thought of as the increase in quality of the tree obtained by

creating the left and right branch as compared to simply retaining the original node.

This formula is applied at every possible split point and we expand the split with

maximum gain. We can continue to grow the tree while this gain value is positive.

The � regularisation cost at each leaf will prevent the tree arbitrarily expanding. The split

point selection is performed in O(nm) time (given n training instances and m features)

by scanning left to right through all feature values in a leaf in sorted order. A running sum

of GL and HL is kept as we move from left to right, as shown in Table 3. GR and HR

are inferred from this running sum and the node total.

Table 2 shows an example set of instances in a leaf. We can assume we know the

sums G and H within this node as these are simply the GL or GR from the parent split.

Therefore, we have everything we need to evaluate Gain for every possible split within

these instances and select the best.

XGBoost: data format
Tabular data input to a machine learning library such as XGBoost or Weka (Hall et al.,

2009) can be typically described as a matrix with each row representing an instance

and each column representing a feature as shown in Table 3. If f2 is the feature to be

predicted then an input training pair ð~xi; yiÞ takes the form ((f0i, f1i), f2i) where i is

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 8/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


the instance id. A data matrix within XGBoost may also contain missing values. One of

the key features of XGBoost is the ability to store data in a sparse format by implicitly

keeping track of missing values instead of physically storing them. While XGBoost

does not directly support categorical variables, the ability to efficiently store and

process sparse input matrices allows us to process categorical variables through one-hot

encoding. Table 4 shows an example where a categorical feature with three values is

instead encoded as three binary features. The zeros in a one-hot encoded data matrix

can be stored as missing values. XGBoost users may specify values to be considered as

missing in the input matrix or directly input sparse formats such as libsvm files

to the algorithm.

XGBoost: handling missing values

Representing input data using sparsity in this way has implications on how splits are

calculated. XGBoost’s default method of handling missing data when learning decision

tree splits is to find the best ‘missing direction’ in addition to the normal threshold

decision rule for numerical values. So a decision rule in a tree now contains a numeric

decision rule such as f0 � 5.53, but also a missing direction such as missing = right

that sends all missing values down the right branch. For a one-hot encoded categorical

variable where the zeros are encoded as missing values, this is equivalent to testing ‘one vs

all’ splits for each category of the categorical variable.

Table 2 Enumerating splits.

Feature value 0.1 0.4 0.5 0.6 0.9 1.1

gi 0.1 0.8 0.2 -1.1 -0.2 -0.5
hi 1.0 1.0 1.0 1.0 1.0 1.0

GL 0.0 0.1 0.9 1.1 0.0 -0.2
HL 0.0 1.0 2.0 3.0 4.0 5.0

Table 3 Example data matrix.

Instance id f0 f1 f2

0 0.32 399 10.1

1 0.27 521 11.3

2 0.56 896 13.0

3 0.11 322 9.7

Table 4 Sparse data matrix.

Instance id f0 f1 f2

0 1 0 0

1 1 0 0

2 0 0 1

3 0 1 0

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 9/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


The missing direction is selected as the direction which maximises the gain from

Eq. (4). When enumerating through all possible split values, we can also test the effect on

our gain function of sending all missing examples down the left or right branch and select

the best option. This makes split selection slightly more complex as we do not know

the gradient statistics of the missing values for any given feature we are working on,

although we do know the sum of all the gradient statistics for the current node. The

XGBoost algorithm handles this by performing two scans over the input data, the second

being in the reverse direction. In the first left to right scan the gradient statistics for

the left direction are the scan values maintained by the scan, the gradient statistics

for the right direction are the sum gradient statistics for this node minus the scan

values. Hence, the right direction implicitly includes all of the missing values. When

scanning from right to left, the reverse is true and the left direction includes all of the

missing values. The algorithm then selects the best split from either the forwards or

backwards scan.

Graphics processing units
The purpose of this paper is to describe how to efficiently implement decision tree

learning for XGBoost on a GPU. GPUs can be thought of at a high level as having a

shared memory architecture with multiple SIMD (single instruction multiple data)

processors. These SIMD processors operate in lockstep typically in batches of 32 ‘threads’

(Matloff, 2011). GPUs are optimised for high throughput and work to hide latency

through the use of massive parallelism. This is in contrast to CPUs which use multiple

caches, branch prediction and speculative execution in order to optimise latency with

regards to data dependencies (Baxter, 2013). GPUs have been used to accelerate a variety

of tasks traditionally run on CPUs, providing significant speedups for parallelisable

problems with a high arithmetic intensity. Of particular relevance to machine learning

is the use of GPUs to train extremely large neural networks. It was shown in 2013 that

one billion parameter networks could be trained in a few days on three GPU machines

(Coates et al., 2013).

Languages and libraries
The two main languages for general purpose GPU programming are CUDA and

OpenCL. CUDA was chosen for the implementation discussed in this paper due to the

availability of optimised and production ready libraries. The GPU tree construction

algorithm would not be possible without a strong parallel primitives library. We make

extensive use of scan, reduce and radix sort primitives from the CUB (Merrill &

NVIDIA-Labs, 2016) and Thrust (Hoberock & Bell, 2017) libraries. These parallel

primitives are described in detail in ‘Parallel primitives.’ The closest equivalent to these

libraries in OpenCL is the boost compute library. Several problems were encountered

when attempting to use Boost Compute and the performance of its sorting primitives

lagged considerably behind those of CUB/Thrust. At the time of writing this paper

OpenCL was not a practical option for this type of algorithm.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 10/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Execution model
CUDA code is written as a kernel to be executed by many thousands of threads. All threads

execute the same kernel function but their behaviour may be distinguished through a

unique thread ID. Listing 1 shows an example of kernel adding values from two arrays

into an output array. Indexing is determined by the global thread ID and any unused

threads are masked off with a branch statement.

Listing 1 Example CUDA kernel

__global__ void example(float �d_a, float �d_b,
float �d_output, int n){

//Calculate global thread index

//blockIdx.x - the current thread block number

//blockDim.x - the thread block size

//threadIdx.x - the thread index within the current block

int global_tid = blockIdx.x � blockDim.x + threadIdx.x;

if(global_tid < n){

d_output[global_tid] = d_a[global_tid] + d_b[global_tid];

}

}

Threads are grouped according to thread blocks that typically each contain some

multiple of 32 threads. A group of 32 threads is known as a warp. Thread blocks are

queued for execution on hardware streaming multiprocessors. Streaming multiprocessors

switch between different warps within a block during program execution in order to

hide latency. Global memory latency may be hundreds of cycles and hence it is important

to launch sufficiently many warps within a thread block to facilitate latency hiding.

A thread block provides no guarantees about the order of thread execution unless

explicit memory synchronisation barriers are used. Synchronisation across thread blocks

is not generally possible within a single kernel launch. Device-wide synchronisation is

achieved by multiple kernel launches. For example, if a global synchronisation barrier is

required within a kernel, the kernel must be separated into two distinct kernels where

synchronisation occurs between the kernel launches.

Memory architecture
CUDA exposes three primary tiers of memory for reading and writing. Device-wide global

memory, thread block accessible shared memory and thread local registers.

� Global memory: Global memory is accessible by all threads and has the highest latency.

Input data, output data and large amounts of working memory are typically stored

in global memory. Global memory can be copied from the device (i.e. the GPU) to the

host computer and vice versa. Bandwidth of host/device transfers is much slower

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 11/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


than that of device/device transfers and should be avoided if possible. Global memory is

accessed in 128 byte cache lines on current GPUs. Memory accesses should be

coalesced in order to achieve maximum bandwidth. Coalescing refers to the grouping

of aligned memory load/store operations into a single transaction. For example,

a fully coalesced memory read occurs when a warp of 32 threads loads 32 contiguous

4 byte words (128 bytes). Fully uncoalesced reads (typical of gather operations) can

limit device bandwidth to less than 10% of peak bandwidth (Harris, 2013).

� Shared memory: 48 KB of shared memory is available to each thread block. Shared

memory is accessible by all threads in the block and has a significantly lower latency

than global memory. It is typically used as working storage within a thread block

and sometimes described as a ‘programmer-managed cache.’

� Registers: A finite number of local registers is available to each thread. Operations on

registers are generally the fastest. Threads within the same warp may read/write registers

from other threads in the warp through intrinsic instructions such as shuffle or

broadcast (Nvidia, 2017).

Parallel primitives
Graphics processingunit primitives are small algorithmsused as building blocks inmassively

parallel algorithms. While many data parallel tasks can be expressed with simple programs

without them, GPU primitives may be used to compose more complicated algorithms

while retaining high performance, readability and reliability. Understanding which specific

tasks can be achieved using parallel primitives and the relative performance of GPU primitives

as compared to their CPU counterparts is key to designing effective GPU algorithms.

Reduction
A parallel reduction reduces an array of values into a single value using a binary-associative

operator. Given a binary-associative operator 	 and an array of elements the reduction

returns ða0 	 a1 	 � � � 	 an�1Þ. Note that floating point addition is not strictly associative.

This means a sequential reduction operation will likely result in a different answer to a

parallel reduction (the same applies to the scan operation described below). This is

discussed in greater detail in ‘Floating point precision.’ The reduction operation is easy to

implement in parallel by passing partial reductions up a tree, taking O(logn) iterations

given n input items and n processors. This is illustrated in Fig. 3.

In practice, GPU implementations of reductions do not launch one thread per input

item but instead perform parallel reductions over ‘tiles’ of input items then sum the

tiles together sequentially. The size of a tile varies according to the optimal granularity for

a given hardware architecture. Reductions are also typically tiered into three layers: warp,

block and kernel. Individual warps can very efficiently perform partial reductions over

32 items using shuffle instructions introduced from Nvidia’s Kepler GPU architecture

onwards. As smaller reductions can be combined into larger reductions by simply

applying the binary associative operator on the outputs, these smaller warp reductions can

be combined together to get the reduction for the entire tile. The thread block can

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 12/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


iterate over many input tiles sequentially, summing the reduction from each. When all

thread blocks are finished the results from each are summed together at the kernel

level to produce the final output. Listing 2 shows code for a fast warp reduction using

shuffle intrinsics to communicate between threads in the same warp. The ‘shuffle down’

instruction referred to in Listing 2 simply allows the current thread to read a register

value from the thread d places to the left, so long as that thread is in the same warp.

The complete warp reduction algorithm requires five iterations to sum over 32 items.

Listing 2 Warp reduction

__device__

float warp_reduce(float x) {

for (int d = 16; d > 0; d /= 2)

x += __shfl_down(x, d);

return x;

}

Reductions are highly efficient operations on GPUs. An implementation is given in

Harris (2007) that approaches the maximum bandwidth of the device tested.

Parallel prefix sum (scan)
The prefix sum takes a binary associative operator (most commonly addition) and

applies it to an array of elements. Given a binary associative operator 	 and an array of

elements the prefix sum returns ½a0; ða0 	 a1Þ; :::; ða0 	 a1 	 :::	 an�1Þ�. A prefix sum is

an example of a calculation which seems inherently serial but has an efficient parallel

algorithm: the Blelloch scan algorithm.

Let us consider a simple implementation of a parallel scan first, as described in Hillis &

Steele (1986). It is given in Algorithm 1. Figure 4 shows it in operation: we apply a

simple scan with the addition operator to an array of 1’s. Given one thread for each input

element the scan takes log2 n ¼ 3 iterations to complete. The algorithm performs

O(nlog2n) addition operations.

Given that a sequential scan performs only n addition operations, the simple parallel scan

is not work efficient. A work efficient parallel algorithm will perform the same number

Figure 3 Sum parallel reduction.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 13/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


of operations as the sequential algorithm and may provide significantly better performance

in practice. A work efficient algorithm is described in Blelloch (1990). The algorithm is

separated into two phases, an ‘upsweep’ phase similar to a reduction and a ‘downsweep’

phase. We give pseudocode for the upsweep (Algorithm 2) and downsweep (Algorithm 3)

phases by following the implementation in Harris, Sengupta & Owens (2007).

Figure 4 Simple parallel scan example.

Algorithm 1 Simple scan

1 for d=1 to log2n do

2 for k=0 to n-1 in parallel do

3 if k 
 2d-1 then

4 x[k] := x[k - 2d-1] + x[k]

5 end

6 end

7 end

Algorithm 2 Blelloch scan—upsweep

1 offset = 1

2 for d= log2 n to 1 do

3 for k=0 to n-1 in parallel do

4 if k < 2d-1 then

5 ai = offset � (2 � k + 1) - 1

6 bi = offset � (2 � k + 2) - 1

7 x[bi] = x[bi] + x[ai]

8 end

9 end

10 offset = offset * 2

11 end

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 14/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Figures 5 and 6 show examples of the work efficient Blelloch scan, as an exclusive

scan (the sum for a given item excludes the item itself). Solid lines show summation with

the previous item in the array, dotted lines show replacement of the previous itemwith the

new value. O(n) additions are performed in both the upsweep and downsweep phase

resulting in the same work efficiency as the serial algorithm.

A segmented variation of scan that processes contiguous blocks of input items with

different head flags can be easily formulated. This is achieved by creating a binary

associative operator on key value pairs. The operator tests the equality of the keys

and sums the values if they belong to the same sequence. This is discussed further

in ‘Scan and reduce on multiple sequences.’

Figure 5 Blelloch scan upsweep example.

Algorithm 3 Blelloch scan—downsweep

1 offset ¼ 2log2n�1

2 x[n - 1] := 0

3 for d=1 to log2n do

4 for k=0 to n-1 in parallel do

5 if k < 2d-1 then

6 ai = offset � (2 � k + 1) - 1

7 bi = offset � (2 � k + 2) - 1

8 t = x[ai]

9 x[ai] = x[bi]

10 x[bi] = x[bi] + t

11 end

12 end

13 offset = offset/2

14 end

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 15/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


A scan may also be implemented using warp intrinsics to create fast 32 item prefix

sums based on the simple scan in Fig. 4. Code for this is shown in Listing 3. Although

the simple scan algorithm is not work efficient, we use this approach for small arrays

of size 32.

Listing 3 Warp scan

__device__

float warp_scan(float x) {

int lane_id = threadIdx.x % 32;

for (int d = 1; d < 32; d �= 2){

float tmp = __shfl_up(x, d);

if (lane_id >= offset){

x += tmp;

}

}

return x;

}

Radix sort
Radix sorting on GPUs follows from the ability to perform parallel scans. A scan operation

may be used to calculate the scatter offsets for items within a single radix digit as

described in Algorithm 4 and Fig. 7. Flagging all ‘0’ digits with a one and performing an

exclusive scan over these flags gives the new position of all zero digits. All ‘1’ digits

must be placed after all ‘0’ digits, therefore the final positions of the ‘1’s can be calculated

as the exclusive scan of the ‘1’s plus the total number of ‘0’s. The exclusive scan of ‘1’

digits does not need to be calculated as it can be inferred from the array index and the

exclusive scan of ‘0’s. For example, at index 5 (using 0-based indexing), if our exclusive

scan shows a sum of 3 ‘0’s, then there must be two ‘1’s because a digit can only be 0 or 1.

Figure 6 Blelloch scan downsweep example.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 16/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


The basic radix sort implementation only sorts unsigned integers but this can be

extended to correctly sort signed integers and floating point numbers through simple

bitwise transformations. Fast implementations of GPU radix sort perform a scan over

many radix bits in a single pass. Merrill & Grimshaw (2011) show a highly efficient

and practical implementation of GPU radix sorting. They show speedups of 2� over a

32 core CPU and claim to have the fastest sorting implementation for any fully

programmable microarchitecture.

Algorithm 4 Radix sort pass

Input :X

Output :Y

1 for i = 0 to n - 1 in parallel do

2 F[i] := bit_flip(X[i])

3 end

4 S := exclusive_scan(F)

5 r := S[n - 1] + F[n - 1]

6 for i = 0 to n - 1 in parallel do

7 if X[i] = 0 then

8 A[i] := S[i]

9 else if X[i] = 1 then

10 A[i] := i - S[i] + r

11 end

12 for i = 0 to n - 1 in parallel do

13 Y[A[i]] := X[i]

14 end

Figure 7 Radix sort example.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 17/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Scan and reduce on multiple sequences
Variations on scan and reduce consider multiple sequences contained within the same

input array and identified by key flags. This is useful for building decision trees as the data

can be repartitioned into smaller and smaller groups as we build the tree.

We will describe an input array as containing either ‘interleaved’ or ‘segmented’

sequences. Table 5 shows an example of two interleaved sequences demarcated by flags.

Its values are mixed up and do not reside contiguously in memory. This is in contrast

to Table 6, with two ‘segmented’ sequences. The segmented sequences reside contiguously

in memory.

Segmented scan
A scan can be performed on the sequences from Table 6 using the conventional scan

algorithm described in ‘Parallel prefix sum (scan)’ by modifying the binary associative

operator to accept key value pairs. Listing 4 shows an example of a binary associative

operator that performs a segmented summation. It resets the sum when the key changes.

Listing 4 Segmented sum operator

KeyValue op(KeyValue a, KeyValue b){

if(a.key == b.key){

b.value += a.value;

return b;

}

else{

return b;

}

}

Segmented reduce
A segmented reduction can be implemented efficiently by applying the segmented scan

described above and collecting the final value of each sequence. This is because the

last element in a scan is equivalent to a reduction.

Table 5 Interleaved sequences.

Sequence Id 0 0 1 0 1 1

Values 1 1 1 1 1 1

Values scan 1 2 1 3 2 3

Table 6 Segmented sequences.

Sequence Id 0 0 0 1 1 1

Values 1 1 1 1 1 1

Values scan 1 2 3 1 2 3

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 18/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Interleaved sequences: multireduce
A reduction operation on interleaved sequences is commonly described as a multireduce

operation. To perform a multireduce using the conventional tree algorithm described

in ‘Reduction’ a vector of sums can be passed up the tree instead of a single value, with one

sum for each unique sequence. As the number of unique sequences or ‘buckets’ increases,

this algorithm becomes impractical due to limits on temporary storage (registers and

shared memory).

A multireduce can alternatively be formulated as a histogram operation using atomic

operations in shared memory. Atomic operations allow multiple threads to safely

read/write a single piece of memory. A single vector of sums is kept in shared memory for

the entire thread block. Each thread can then read an input value and increment the

appropriate sum using atomic operations. When multiple threads contend for atomic

read/write access on a single piece of memory they are serialised. Therefore, a histogram

with only one bucket will result in the entire thread block being serialised (i.e. only one

thread can operate at a time). As the number of buckets increases this contention is

reduced. For this reason the histogram method will only be appropriate when the input

sequences are distributed over a large number of buckets.

Interleaved sequences: multiscan
A scan operation performed on interleaved sequences is commonly described as a

multiscan operation. A multiscan may be implemented, like multireduce, by passing a

vector of sums as input to the binary associative operator. This increases the local storage

requirements proportionally to the number of buckets.

General purpose multiscan for GPUs is discussed in Eilers (2014) with the

conclusion that ‘multiscan cannot be recommended as a general building block for

GPU algorithms.’ However, highly practical implementations exist that are efficient up to

a limited number of interleaved buckets, where the vector of sums approach does not

exceed the capacity of the device. The capacity of the device in this case refers to the

amount of registers and shared memory available for each thread to store and process a

vector.

Merill and Grimshaw’s optimised radix sort implementation (Merrill & NVIDIA-Labs,

2016; Merrill & Grimshaw, 2011), mentioned in ‘Radix sort,’ relies on an eight-way

multiscan in order to calculate scatter addresses for up to 4 bits at a time in a single pass.

Floating point precision
The CPU implementation of the XGBoost algorithm represents gradient/Hessian pairs

using two 32 bit floats. All intermediate summations are performed using 64 bit

doubles to control loss of precision from floating point addition. This is problematic

when using GPUs as the number of intermediate values involved in a reduction scales with

the input size. Using doubles significantly increases the usage of scarce registers and

shared memory; moreover, gaming GPUs are optimised for 32 bit floating point

operations and give relatively poor double precision throughput.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 19/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Table 7 shows the theoretical GFLOPs of two cards we use for benchmarking.

The single precision GFLOPs are calculated as 2� number of CUDA cores � core clock

speed (in GHz), where the factor of 2 represents the number of operations per required

FMA (fused-multiply-add) instruction. Both these cards have 32 times more single

precision ALUs (arithmetic logic units) than double precision ALUs, resulting in 1/32 the

theoretical double precision performance. Therefore, an algorithm relying on double

precision arithmetic will have severely limited performance on these GPUs.

We can test the loss of precision from 32 bit floating point operations to see if double

precision is necessary by considering 32 bit parallel and sequential summation,

summing over a large array of random numbers. Sequential double precision summation

is used as the baseline, with the error measured as the absolute difference from the

baseline. The experiment is performed over 10 million random numbers between -1
and 1, with 100 repeats. The mean error and standard deviation are reported in Table 8.

The Thrust library is used for parallel GPU reduction based on single precision

operations.

The 32 bit parallel summation shows dramatically superior numerical stability

compared to the 32 bit sequential summation. This is because the error of parallel

summation grows proportionally to O(logn), as compared to O(n) for sequential

summation (Higham, 1993). The parallel reduction algorithm from Fig. 3 is commonly

referred to as ‘pairwise summation’ in literature relating to floating point precision.

The average error of 0.0007 over 10 million items shown in Table 8 is more than acceptable

for the purposes of gradient boosting. The results also suggests that the sequential

summation within the original XGBoost could be safely performed in single precision

floats. A mean error of 0.0694 over 10 million items is very unlikely to be significant

compared to the noise typically present in the training sets of supervised learning tasks.

Building tree classifiers on GPUs
Graphics processing unit-accelerated decision trees and forests have been studied as early

as 2008 in Sharp (2008) for the purpose of object recognition, achieving speedups of

up to 100� for this task. Decision forests were mapped to a 2-D texture array and

trained/evaluated using GPU pixel and vertex shaders. A more general purpose

random forest implementation is described in Grahn et al. (2011) showing speedups of

Table 7 GPU GFLOPs.

GPU Single precision Double precision

GTX 970 (Maxwell) 3,494 109

Titan X (Pascal) 10,157 317

Table 8 32 bit floating point precision.

Algorithm Mean error SD

Sequential 0.0694 0.0520

Parallel 0.0007 0.0005

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 20/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


up to 30� over state-of-the-art CPU implementations for large numbers of trees.

The authors use an approach where one GPU thread is launched to construct each tree

in the ensemble.

A decision tree construction algorithm using CUDA based on the SPRINT decision tree

inducer is described in Chiu, Luo & Yuan (2011). No performance results are reported.

Another decision tree construction algorithm is described in Lo et al. (2014). They report

speedups of 5–55� over WEKA’s Java-based implementation of C4.5 (Quinlan, 2014),

called J48, and 18� over SPRINT. Their algorithm processes one node at a time and as a

result scales poorly at higher tree depths due to higher per-node overhead as compared

to a CPU algorithm.

Nasridinov, Lee & Park (2014) describe a GPU-accelerated algorithm for ID3 decision

tree construction, showing moderate speedups over WEKA’s ID3 implementation.

Nodes are processed one at a time and instances are resorted at every node. Strnad &

Nerat (2016) devise a decision tree construction algorithm that stores batches of nodes in

a work queue on the host and processes these units of work on the GPU. They achieve

speedups of between 2� and 7� on large data sets as compared to a multithreaded

CPU implementation. Instances are resorted at every node (Strnad & Nerat, 2016).

Our work has a combination of key features differentiating it from these previous

approaches. First, our implementation processes all nodes in a level concurrently, allowing

it to scale beyond trivial depths with near constant run-time. A GPU tree construction

algorithm that processes one node at a time will incur a nontrivial constant kernel launch

overhead for each node processed. Additionally, as the training set is recursively

partitioned at each level, the average number of training examples in each node decreases

rapidly. Processing a small number of training examples in a single GPU kernel will

severely underutilise the device. This means the run-time increases dramatically with

tree depth. To achieve state-of-the-art results in data mining competitions we found that

users very commonly required tree depths of greater than 10 in XGBoost. This contradicts

the conventional wisdom that a tree depth of between 4 and 8 is sufficient for most

boosting applications (Friedman, Hastie & Tibshirani, 2001). Our approach of processing

all nodes on a level concurrently is far more practical in this setting.

Secondly, our decision tree implementation is not a hybrid CPU/GPU approach and

so does not use the CPU for computation. We find that all stages of the tree construction

algorithm can be efficiently completed on the GPU. This was a conscious design

decision in order to reduce the bottleneck of host/device memory transfers. At the

time of writing, host/device transfers are limited to approximately 16 GB/s by the

bandwidth of the Gen 3 PCIe standard. The Titan XGPU we use for benchmarking has an

on-device memory bandwidth of 480 GB/s, a factor of 30 times greater. Consequently,

applications that move data back and forward between the host and device will not be

able to achieve peak performance. Building the entire decision tree in device memory

has the disadvantage that the device often has significantly lower memory capacity than

the host. Despite this, we show that it is possible to process some very large benchmark

datasets entirely in device memory on a commodity GPU.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 21/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Thirdly, our algorithm implements the sparsity aware tree construction method

introduced by XGBoost. This allows it to efficiently process sparse input matrices in terms

of run-time and memory usage. This is in contrast to previous GPU tree construction

algorithms. Additionally, our implementation is provided as a part of a fully featured

machine learning library. It implements regression, binary classification, multiclass

classification and ranking through the generalised gradient boosting framework of

XGBoost and has an active user base. No published implementations exist for any of the

existing GPU tree construction algorithms described above, making direct comparison to

the approach presented in this work infeasible.

PARALLEL TREE CONSTRUCTION
Our algorithm builds a single decision tree for a boosting iteration by processing decision

tree nodes in a level-wise manner. At each level we search for the best split within each leaf

node, update the positions of training instances based on these new splits and then

repartition data if necessary. Processing an entire level at a time allows us to saturate the

GPU with the maximum amount of work available in a single iteration. Our algorithm

performs the following three high level phases for each tree level until the maximum tree

depth is reached: (1) find splits, (2) update node positions, and (3) sort node buckets

(if necessary).

Phase 1: find splits
The first phase of the algorithm finds the best split for each leaf node at the current level.

Data layout
To facilitate enumeration through all split points, the feature values should be kept in

sorted order. Hence, we use the device memory layout shown in Tables 9 and 10. Each

feature value is paired with the ID of the instance it belongs to as well as the leaf node it

currently resides in. Data are stored in sparse column major format and instance IDs are

used to map back to gradient pairs for each instance. All data are stored in arrays in device

memory. The tree itself can be stored in a fixed length device array as it is strictly binary

and has a maximum depth known ahead of time.

Block level parallelism
Given the above data layout notice that each feature resides in a contiguous block and may

be processed independently. In order to calculate the best split for the root node of the tree,

we greedily select the best split within each feature, delegating a single thread block per

feature. The best splits for each feature are then written out to global memory and are

reduced by a second kernel. A downside of this approach is that when the number of

features is not enough to saturate the number of streamingmultiprocessors—the hardware

units responsible for executing a thread block—the device will not be fully utilised.

Calculating splits
In order to calculate the best split for a given feature we evaluate Eq. (4) at each

possible split location. This depends on (GL, HL) and (GR, HR). We obtain (GL, HL)

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 22/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


from a parallel scan of gradient pairs associated with each feature value. (GR, HR) can

be obtained by subtracting (GL, HL) from the node total which we know from the

parent node.

The thread block moves from left to right across a given feature, consuming ‘tiles’ of

input. A tile herein refers to the set of input items able to be processed by a thread block in

one iteration. Table 11 gives an example of a thread block with four threads evaluating

a tile with four items. For a given tile, gradient pairs are scanned and all splits are

evaluated.

Each 32 thread warp performs a reduction to find the best local split and keeps track

of the current best feature value and accompanying gradient statistics in shared memory.

At the end of processing the feature, another reduction is performed over all the warps’

best items to find the best split for the feature.

Missing values
The original XGBoost algorithm accounts for missing values by scanning through the

input values twice as described in ‘XGBoost: handling missing values’—once in the

forwards direction and once in the reverse direction. An alternative method used by our

GPU algorithm is to perform a sum reduction over the entire feature before scanning.

The gradient statistics for the missing values can then be calculated as the node sum

statistics minus the reduction. If the sum of the gradient pairs from the missing values is

known, only a single scan is then required. This method was chosen as the cost of a

reduction can be significantly less than performing the second scan.

Table 10 Device memory layout: gradient pairs.

Instance id 0 1 2 3

Gradient pair p0 p1 p2 p3

Table 9 Device memory layout: feature values.

f0 f1 f2

Node id 0 0 0 0 0 0 0 0

Instance id 0 2 3 3 2 0 1 3

Feature value 0.1 0.5 0.9 5.2 3.1 3.6 3.9 4.7

Table 11 A single thread block evaluating splits.

Thread block 0 ⇒
B B B B

f0

Instance id 0 2 3 1 7 5 6 4

Feature value 0.1 0.2 0.3 0.5 0.5 0.7 0.8 0.8

Gradient pair p0 p2 p3 p1 p7 p5 p6 p4

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 23/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Node buckets
So far the algorithm description only explains how to find a split at the first level where all

instances are bucketed into a single node. A decision tree algorithm must, by definition,

separate instances into different nodes and then evaluate splits over these subsets of

instances. This leaves us with two possible options for processing nodes. The first is to

leave all data instances in their current location, keeping track of which node they

currently reside in using an auxiliary array as shown in Table 12. When we perform a scan

across all data values we keep temporary statistics for each node. We therefore scan

across the array processing all instances as they are interleaved with respect to their node

buckets. This is the method used by the CPU XGBoost algorithm. We also perform

this method on the GPU, but only to tree depths of around 5. This interleaved algorithm is

fully described in ‘Interleaved algorithm: finding a split.’

The second option is to radix sort instances by their node buckets at each level in the

tree. This second option is described fully in ‘Sorting algorithm: finding a split.’ Briefly,

data values are first ordered by their current node and then by feature values within

their node buckets as shown in Table 13. This transforms the interleaved scan

(‘multiscan’) problem described above into a segmented scan, which has constant

temporary storage requirements and thus scales to arbitrary depths in a GPU

implementation.

In our implementation, we use the interleaved method for trees of up to depth 5 and

then switch to the sorting version of the algorithm. Avoiding the expensive radix

sorting step for as long as possible can provide speed advantages, particularly when

building small trees. The maximum number of leaves at depth 5 is 32. At greater depths

there are insufficient shared memory resources and the exponentially increasing run-time

begins to be uncompetitive.

Interleaved algorithm: finding a split
In order to correctly account for missing values a multireduce operation must be

performed to obtain the sums within interleaved sequences of nodes. A multiscan is

Table 12 Interleaved node buckets.

f0 f1 f2

Node id 2 1 2 2 1 2 1 2

Instance id 0 2 3 3 2 0 1 3

Feature value 0.1 0.5 0.9 5.2 3.1 3.6 3.9 4.7

Table 13 Sorted node buckets.

f0 f1 f2

Node id 1 2 2 1 2

Instance id 0 2 3 3 2 1 0 3

Feature value 0.5 0.1 0.9 5.2 3.1 3.9 3.6 4.7

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 24/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


then performed over gradient pairs. Following that, unique feature values are identified

and gain values calculated to identify the best split for each node. We first discuss the

multireduce and multiscan operations before considering how to evaluate splits.

Multireduce and multiscan

Algorithms 5 and 6 outline the approach used for multireduce/multiscan at the thread

block level. Our multiscan/multireduce approach is formulated around sequentially

executing fast warp synchronous scan/reduce operations for each bucket. Passing vectors of

items to the binary associative operator is not generally possible given the number of

buckets and the limited temporary storage. This was discussed in ‘Scan and reduce on

multiple sequences.’ We instead perform warp level multiscan operations. Listing 5 shows

how a 32-threadwarp can perform amultiscan bymasking off non-active node buckets and

performing a normal warp scan for each node bucket. The function ‘WarpExclusiveScan()’

herein refers to an exclusive version of the warp scan described in Listing 3.

Listing 5 Warp multiscan

gpu_gpair gpair; //Gradient values for current item

int node_id; //Node bucket of current item

gpu_gpair exclusive_scan_output;

for (int NODE = 0; NODE < N_NODES; NODE++) {

bool node_active = node_id == NODE;

gpu_gpair scan_result;

gpu_gpair node_sum;

Algorithm 5 Multireduce—thread block execution

1. An input tile is loaded.

2. Each warp performs local reduction for each bucket, masking off items for the current bucket.

3. Each warp adds its local reductions into shared memory.

4. The remaining tiles are processed.

5. The partial sums in shared memory are reduced by a single warp into the final node sums.

Algorithm 6 Multiscan—thread block execution

1. An input tile is loaded.

2. Each warp performs local scans for each bucket, masking off items for the current bucket.

3. The sums from each local scan are placed into shared memory.

4. The partial sums in shared memory are scanned.

5. The scanned partial sums in shared memory are added back into the local values.

6. The running sum from the previous tile is added to the local values.

7. The remaining tiles are processed.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 25/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


//First argument is the scan input

//Result is placed in the second argument

//Warp sum is placed in the third argument

WarpExclusiveScan(node_active ? gpair : gpu_gpair(),

scan_result, node_sum);

if (node_active) {

exclusive_scan_output = scan_result;

}

}

Note that the number of warp reductions/scans performed over a warp of data increases

exponentially with tree depth. This leads to an exponentially increasing run time relative to

the depth of the tree, but is surprisingly performant even up to depth 6 aswarp synchronous

reductions/scans using shuffle instructions are cheap to compute. They only perform

operations on registers and incur no high latency reads or writes into global memory.

The exclusive scan for the entire input tile is calculated from individual warp scans by

performing the same multiscan operation over the sums of each warp scan and scattering

the results of this back into each item. More detailed information on how to calculate a

block-wide scan from smaller warp scan operations is given in Nvidia (2016).

Evaluating splits

There is one additional problem that must be solved. It arises as a consequence of

processing node buckets in interleaved order. In a decision tree algorithm, when

enumerating through feature values to find a split, we should not choose a split that falls

between two elements with the same value. This is because a decision rule will not be able

to separate elements with the same value. For a value to be considered as a split, the

corresponding item must be the leftmost item with that feature value for that particular

node (we could also arbitrarily take the rightmost value).

Because the node buckets are interleaved, it is not possible to simply check the item to

the left to see if the feature value is the same—the item to the left of a given item may

reside in a different node. To check if an item with a certain feature value is the leftmost

item with that value in its node bucket, we can formulate a scan with a special binary

associative operator. First, each item is assigned a bit vector~x of length n + 1 where n is the

number of buckets. If the item resides within bucket i then xi will be set to 1. If the item’s

feature value is distinct from the value of the item directly to the left (irrespective of

bucket) then xn+1 is set to 1. All other bits are set to 0.

We can then define a binary associative operator as follows:

opð~a;~bÞ ¼
�

~b if bnþ1 ¼ 1

~a _~b
;

otherwise
(5)

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 26/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Bit xn+1 acts as a segmentation flag, resetting the scan so many small scans are

performed across groups of items with the same feature value. Scanning the bucket flags

with a logical or operator determines which node buckets are represented in the items

to the left of the current item. Therefore, within a group of items with the same feature

value, if the current item’s bucket flag is set to 0 for the bucket it resides in, the item

represents the leftmost item with that value in its bucket. This item can then be used as a

split point.

In practice, a 64 bit integer is used as the bit vector in order to hold a maximum of

33 bits at the sixth level of the tree (the maximum number of active nodes at this

level +1 for the segmentation flag). The operator is formulated according to Listing 6

in C++ code. Moreover, when applying this interleaved algorithm we cannot choose

the split value as the halfway point between two training examples: We do not

know the value of the item to the left within the current node, only if it is the same as

the current item or not. The split value is accordingly calculated as the current

value minus some small constant. This distinction in the split value does not affect

accuracy in practice.

Listing 6 Binary associative operator

BitFlagSet op(const BitFlagSet &a, const BitFlagSet &b) {

if (check_bit(b, 63)) {

return b;

} else {

return a | b;

}

}

Complete algorithm

Given a reduction, scan and the above method for finding unique feature values we have

all the machinery necessary to enumerate splits and select the best. The complete

algorithm for a thread block processing a single feature at a given tree level is shown in

Algorithm 7.

The output of this algorithm contains the best split for each leaf node for a given

feature. Each thread block outputs the best splits for its assigned feature. These splits are

then further reduced by a global kernel to find the best splits for any feature.

Sorting algorithm: finding a split

The sorting implementation of the split finding algorithm operates on feature value data

grouped into node buckets. Given data sorted by node ID first and then feature values

second we can perform segmented scan/reduce operations over an entire feature only

needing a constant amount of temporary storage.

The segmented reduction to find gradient pair sums for each node is implemented as a

segmented sum scan, storing the final element from each segment as the node sum.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 27/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Another segmented scan is then performed over the input feature to get the exclusive scan

of gradient pairs. After scanning each tile, the split gain is calculated using the scan and

reduction as input and the best splits are stored in shared memory.

The segmented scan is formulated by performing an ordinary scan over key value pairs

with a binary associative operator that resets the sum when the key changes. In this

case the key is the current node bucket and the value is the gradient pair. The operator

is shown in Eq. (6).

opðakey; avalue; bkey; bvalueÞ ¼ ðbkey; bvalueÞ; if akey 6¼ bkey
ðbkey; avalue þ bvalueÞ; otherwise

�
(6)

An overview of the split finding algorithm for a single thread block processing a feature

is provided in Algorithm 8. The output of this algorithm, like that of the interleaved

algorithm, consists of the best splits for each feature, and each node. This is reduced by a

global kernel to find the best splits for each node, of any feature.

Algorithm 7 Interleaved algorithm—thread block execution

1. Load input tile

2. Multireduce tile gradient pairs

3. Go to 1. until all tiles processed

4. Return to first tile

5. Load input tile

6. Multiscan tile gradient pairs

7. Scan tile for unique feature values

8. Calculate gain for each split

9. Store best split for each warp

10. Go to 5. until all tiles processed

11. Output best splits

Algorithm 8 Sorting algorithm split finding—thread block execution

1. Load input tile

2. Segmented reduction over tile gradient pairs

3. Go to 1. until all tiles processed

4. Return to first tile

5. Load input tile

6. Segmented scan over tile gradient pairs

7. Calculate gain for each split

8. Store best split for each warp

9. Go to 5. until all tiles processed

10. Output best splits

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 28/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Phase 2: update node positions
Once the best splits for each node have been calculated, the node positions for each

instance must be updated. This is made non-trivial because of the presence of missing

values. We first create an array containing the pre-split node position of each training

instance. These node positions are then updated as if they contained all missing values,

according to the default missing direction in the newly calculated splits. We then update

this array again based on the feature values of the instances. Any instance which does not

have a value for that feature (missing value) will have its node position left unchanged

as per the missing direction. Because we now have the updated node position for each

instance, we write these node positions back to each feature value.

To illustrate this with an example, Fig. 8 shows the state of a decision tree after having

calculated splits for level 1. The node positions in the data structure used for split finding

(Table 14) must be updated before proceeding to calculate the splits for level 2. To do

this we update the array in Table 15 that maps instances to a node.

First we update the node ID map in the missing direction. All instances residing in

node 1 are updated in the right direction to node 4. Instances residing in node 2 are

updated in the left direction to node 5. The node ID map now looks like Table 16.

We now update the map again using the feature values from Table 14, overwriting

the previous values. Instance 0 resides in node 1 so we check if f0 < 0.8. This is true so

instance 0 moves down the left branch into node 3. Instance 1 moves into node 5 and

instance 2 moves into node 6 based on their f1 values. Note that instance 3 has a missing

value for f0. Its node position is therefore kept as the missing direction updated in the

previous step. This process is shown in Table 17.

The per instance node ID array is now up-to-date for the new level so we write these

values back into the per feature value array, giving Table 18.

Phase 3: sort node buckets
If the sorting version of the algorithm is used, the feature values need to be sorted by node

position. If the interleaved version of the algorithm is used (e.g. in early tree levels)

this step is unnecessary. Each feature value with its updated node position is sorted such

Figure 8 Decision tree: four new leaves.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 29/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


that each node bucket resides in contiguous memory. This is achieved using a segmented

key/value radix sort. Each feature represents a segment, the sort key is the node position

and the feature value/instance ID tuple is the value. We use the segmented radix sort

function from the CUB library. It delegates the sorting of each feature segment to a

separate thread block. Note that radix sorting is stable so the original sorted order of the

feature values will be preserved within contiguous node buckets, after sorting with

node position as the key.

EVALUATION
The performance and accuracy of the GPU tree construction algorithm for XGBoost is

evaluated on several large datasets and two different hardware configurations and also

compared to CPU-based XGBoost on a 24 core Intel processor. The hardware

Table 14 Per feature value array.

f0 f1

Node id 1 2 2 1 1 2 2

Instance id 0 2 1 3 0 1 2

Feature value 0.75 0.5 0.9 2.7 4.1 3.6 3.9

Table 15 Node ID map.

Instance id 0 1 2 3

Node id 1 2 2 1

Table 16 Updated missing direction.

Instance id 0 1 2 3

Node id 4 5 5 4

Table 17 Node ID map: update based on feature value.

Instance id 0 1 2 3

Node id 3 5 6 4

f0 f1

Node id 1 2 2 1 1 2 2

Instance id 0 2 1 3 1 1 2

Feature value 0.75 0.5 0.9 2.7 4.1 3.6 3.9

Table 18 Per feature value array: updated.

f0 f1

Node id 3 6 5 4 3 5 6

Instance id 0 2 1 3 0 1 2

Feature value 0.75 0.5 0.9 2.7 4.1 3.6 3.9

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 30/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


configurations are described in Table 19. On configuration #1, where there is limited

device memory, a subset of rows from each dataset is taken in order to fit within device

memory.

The datasets are described in Table 20 and parameters used for each dataset are shown

in Table 21. For the YLTR dataset we use the supplied training/test split. For the Higgs

dataset we randomly select 5,00,000 instances for the test set, as in Chen & Guestrin

(2016). For the Bosch dataset we randomly sample 10% of the instances for the test set and

use the rest for the training set.

We use 500 boosting iterations for all datasets unless otherwise specified. This is a

common real world setting that provides sufficiently long run-times for benchmarking.

We set � (the learning rate) to 0.1 as the XGBoost default of 0.3 is too high for the

number of boosting iterations. For the YLTR and Bosch datasets we use the default tree

depth of six because both of these datasets tend to generate small trees. The Higgs

dataset results in larger trees so we can set max depth to 12, allowing us to test

performance for large trees. Both the Higgs and Bosch datasets are binary classification

problems so we use the binary:logistic objective function for XGBoost. Both Higgs and

Bosch also exhibit highly imbalanced class distributions, so the AUC (area under the

Table 19 Hardware configurations.

Configuration CPU GHz Cores CPU arch.

#1 Intel i5-4590 3.30 4 Haswell

#2 Intel i7-6700K 4.00 4 Skylake

#3 2� Intel Xeon E5-2695 v2 2.40 24 Ivy Bridge

Configuration GPU GPU memory (GB) GPU arch.

#1 GTX970 4 Maxwell

#2 Titan X 12 Pascal

#3 – – –

Table 20 Datasets.

Dataset Training instances Test instances Features

YLTRa 473,134 165,660 700

Higgsb 10,500,000 500,000 28

Boschc 1,065,373 118,374 968

Notes:
a https://webscope.sandbox.yahoo.com/catalog.php?datatype=c.
b https://archive.ics.uci.edu/ml/datasets/HIGGS.
c https://www.kaggle.com/c/bosch-production-line-performance/data.

Table 21 Parameters.

Dataset Objective eval_metric max_depth Eta Boosting iterations

YLTR rank:ndcg ndcg@10 6 0.1 500

Higgs binary:logistic auc 12 0.1 500

Bosch binary:logistic auc 6 0.1 500

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 31/37

https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://www.kaggle.com/c/bosch-production-line-performance/data
http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


ROC curve) evaluation metric is appropriate. For the YLTR dataset we use the rank:ndcg

objective and ndcg@10 evaluation metric to be consistent with the evaluation from

Chen & Guestrin (2016). All other XGBoost parameters are left as the default values.

Accuracy
In Table 22, we show the accuracy of the GPU algorithm compared to the CPU version.

We test on configuration #1 so use a subset of the training set to fit the data within device

memory but use the full test set for accuracy evaluation.

There is only minor variation in accuracy between the two algorithms. Both algorithms

are equivalent for the Higgs dataset, the CPU algorithm is marginally more accurate

for the YLTR dataset and the GPU algorithm is marginally more accurate on the Bosch

dataset. In Table 23, we also show the accuracy without using the interleaved version of

the GPU algorithm. Variations in accuracy are attributable to the interleaved version

of the algorithm not choosing splits at the halfway point between two training examples,

instead choosing the split value as the right most training example minus some constant.

Differences also occur due to floating point precision as discussed in ‘Floating point

precision.’

Speed
Tables 24 and 25 show the relative speedup of the GPU algorithm compared to the CPU

algorithm over 500 boosting iterations. For configuration #1 with lower end desktop

hardware, speed ups of between 4.09� and 6.62� are achieved. On configuration #2

with higher end desktop hardware but the same number of cores, speed ups of between

3.16� and 5.57� are achieved. The GTX 970 used in configuration #1 must sample

the datasets as they do not fit entirely in device memory. The Titan X used in

configuration #2 is able to fit all three datasets entirely into memory.

Figure 9 shows the performance of the GPU algorithm across varying problem sizes

using configuration #1. The experiment is performed on subsets of the Bosch dataset

using 20 boosting iterations. The GPU algorithm’s time increases linearly with respect to

the number of input rows. It is approximately equal to the CPU algorithm at 10,000

Table 22 Accuracy benchmarks.

Dataset Subset Metric CPU accuracy GPU accuracy

YLTR 0.75 ndcg@10 0.7784 0.7768

Higgs 0.25 auc 0.8426 0.8426

Bosch 0.35 auc 0.6833 0.6905

Table 23 Accuracy benchmarks—sorting version only.

Dataset Subset Metric GPU accuracy (sorting version only)

YLTR 0.75 ndcg@10 0.7776

Higgs 0.25 auc 0.8428

Bosch 0.35 auc 0.6849

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 32/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


rows and always faster thereafter for this dataset. This gives an idea of the minimum batch

size at which the GPU algorithm begins to be effective.

In Fig. 10, we show the performance of the Titan X from configuration #2 against

configuration #3 (a high-end 24 core server) on the Yahoo dataset with 500 boosting

iterations and varying numbers of threads. Each data point shows the average time of

eight runs. Error bars are too small to be visible at this scale. The Titan X outperforms the

24 core machine by approximately 1.2�, even if the number of threads for the 24 core

machine is chosen optimally.

Interleaved algorithm performance
In Table 26 and Fig. 11, we show the effect of changing the threshold at which the

algorithm switches between the interleaved version of the algorithm and the sorting

version of the algorithm. Timings are from 100 boosting iterations on a 35% subset of the

Bosch dataset using configuration #1. Using the interleaved version of the algorithm

shows benefits all the way up to the fifth level with a 1.14� speed increase as compared to

just using the sorting algorithm. After this depth temporary storage is insufficient to keep

Table 24 Configuration #1 speed benchmarks.

Dataset Subset CPU time (s) GPU time (s) Speedup

YLTR 0.75 1,577 376 4.19

Higgs 0.25 7,961 1,201 6.62

Bosch 0.35 1,019 249 4.09

Table 25 Configuration #2 speed benchmarks.

Dataset Subset CPU time (s) GPU time (s) Speedup

YLTR 1.0 877 277 3.16

Higgs 1.0 14,504 3,052 4.75

Bosch 1.0 3,294 591 5.57

Figure 9 Bosch: time vs problem size.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 33/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


using the interleaved approach. Note that for the first level the interleaved algorithm

and the sorting algorithm are equivalent as there is only one node bucket.

Surprisingly the interleaved algorithm is still faster than the sorting algorithm at level 5

despite the fact that the multiscan and multireduce operations must sequentially

iterate over 25 = 32 nodes at each step. This shows that executing instructions on elements

Figure 10 Yahoo LTR: n-threads vs time.

Table 26 Bosch dataset: interleaved levels.

Levels GPU time (s) Accuracy Speedup

0 85.96 0.7045 1.0

1 85.59 0.7102 1.0

2 82.32 0.7047 1.04

3 79.97 0.7066 1.07

4 76.38 0.7094 1.13

5 75.21 0.7046 1.14

Figure 11 Bosch: interleaved algorithm threshold.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 34/37

http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


held in registers or shared memory carries a very low cost relative to uncoalesced

re-ordering of elements in device memory, as is performed when radix sorting.

Memory consumption
We show the device memory consumption in Table 27 for all three benchmark datasets.

Each dataset can be fit entirely within the 12 GB device memory of a Titan X card. In

Table 28, we show the memory consumption of the original CPU algorithm for

comparison. Host memory consumption was evaluated using the valgrind massif

(http://valgrind.org/docs/manual/msmanual.html) heap profiler tool. Device memory

usage was recorded programmatically using custom memory allocators. The device

memory requirements are approximately twice that of the original CPU algorithm. This is

because the CPU algorithm is able to process data in place, whereas the GPU algorithm

requires sorting functions that are not in place and must maintain separate buffers for

input and output.

CONCLUSION
A highly practical GPU-accelerated tree construction algorithm is devised and evaluated

within the XGBoost library. The algorithm is built on top of efficient parallel primitives

and switches between two modes of operation depending on tree depth. The ‘interleaved’

mode of operation shows that multiscan and multireduce operations with a limited

number of buckets can be used to avoid expensive sorting operations at tree depths below

six, resulting in speed increases of 1.14� for the GPU implementation.

The GPU algorithm provides speedups of between 3� and 6� over multicore CPUs on

desktop machines and a speed up of 1.2� over 2� Xeon CPUs with 24 cores. We see

significant speedups for all parameters and datasets above a certain size, while providing an

algorithm that is feature complete and able to handle sparse data. Potential drawbacks of the

algorithm are that the entire input matrix must fit in device memory and device memory

consumption is approximately twice that of the host memory used by the CPU algorithm.

Despite this, we show that the algorithm is memory efficient enough to process the

entire Higgs dataset containing 10 million instances and 28 features on a single 12 GB card.

Table 27 Memory: GPU algorithm.

Dataset Device memory (GB)

YLTR 4.03

Higgs 11.32

Bosch 8.28

Table 28 Memory: CPU algorithm.

Dataset Host memory (GB)

YLTR 1.80

Higgs 6.55

Bosch 3.28

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 35/37

http://valgrind.org/docs/manual/msmanual.html
http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Our algorithm provides a practical means for XGBoost users processing large data sets

to significantly reduce processing times, showing that gradient boosting tasks are a

good candidate for GPU-acceleration and are therefore no longer solely the domain of

multicore CPUs.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by a Marsden Grant from the Royal Society of New Zealand

(UOW1502). The funders had no role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Marsden Grant from the Royal Society of New Zealand: UOW1502.

Competing Interests
Eibe Frank is an Academic Editor for PeerJ.

Author Contributions
� Rory Mitchell conceived and designed the experiments, performed the experiments,

analysed the data, wrote the paper, prepared figures and/or tables, performed the

computation work and reviewed drafts of the paper.

� Eibe Frank conceived and designed the experiments, wrote the paper and reviewed

drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Github: https://github.com/dmlc/xgboost/tree/master/plugin/updater_gpu

REFERENCES
Baxter S. 2013. Modern GPU—performance. Available at https://moderngpu.github.io/

performance.html (accessed 14 June 2016).

Blelloch GE. 1990. Prefix sums and their applications. Technical report CMU-CS-90-190,

School of Computer Science, Carnegie Mellon University.

Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. In: Proceedings of the 22Nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

New York: ACM, 785–794.

Chiu C-C, Luo G-H, Yuan S-M. 2011. A decision tree using CUDA GPUs. In: Proceedings of the

13th International Conference on Information Integration and Web-based Applications and

Services. New York: ACM, 399–402.

Coates A, Huval B, Wang T, Wu D, Catanzaro B, Andrew N. 2013. Deep learning with

COTS HPC systems. In: Proceedings of The 30th International Conference on Machine Learning,

jmlr.org, 1337–1345.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 36/37

https://github.com/dmlc/xgboost/tree/master/plugin/updater_gpu
https://moderngpu.github.io/performance.html
https://moderngpu.github.io/performance.html
http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/


Eilers M. 2014. Multireduce and multiscan on modern GPUs. Master’s thesis, Department of

Computer Science, University of Copenhagen.

Friedman J, Hastie T, Tibshirani R. 2001. The elements of statistical learning. In: Springer Series

in Statistics. Vol. 1. Berlin: Springer, 337–387.

Grahn H, Lavesson N, Lapajne MH, Slat D. 2011. CudaRF: a CUDA-based implementation of

random forests. In: Proceedings of the 9th IEEE/ACS International Conference on Computer

Systems and Applications, IEEE Computer Society, 95–101.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. 2009. The WEKA data

mining software: an update. ACM SIGKDD Explorations Newsletter 11(1):10–18

DOI 10.1145/1656274.1656278.

Harris M. 2007. Optimizing parallel reduction in CUDA. Available at http://developer.download.

nvidia.com/assets/cuda/files/reduction.pdf (accessed 31 March 2017).

Harris M. 2013. How to access global memory efficiently in CUDA C/C++ kernels. Available at

http://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/

(accessed 24 November 2016).

Harris M, Sengupta S, Owens JD. 2007. Parallel prefix sum (scan) with CUDA. GPU Gems

3(39):851–876.

Higham NJ. 1993. The accuracy of floating point summation. SIAM Journal on Scientific

Computing 14(4):783–799 DOI 10.1137/0914050.

Hillis WD, Steele GL Jr. 1986. Data parallel algorithms. Communications of the ACM

29(12):1170–1183 DOI 10.1007/978-1-4612-1220-1_11.

Hoberock J, Bell N. 2017. Thrust: a parallel template library. Available at https://thrust.github.io/.

Lo W-T, Chang Y-S, Sheu R-K, Chiu C-C, Yuan S-M. 2014. CUDT: a CUDA based decision tree

algorithm. Scientific World Journal 2014:1–12 DOI 10.1155/2014/745640.

Matloff N. 2011. Programming on parallel machines. Available at http://heather.cs.ucdavis.edu/

~matloff/158/PLN/ParProcBook.pdf.

Merrill D, Grimshaw A. 2011. High performance and scalable radix sorting: a case study of

implementing dynamic parallelism for GPU computing. Parallel Processing Letters

21(2):245–272 DOI 10.1142/s0129626411000187.

Merrill D, NVIDIA-Labs. 2016. CUDAUnBound (CUB) library. Available at http://nvlabs.github.

io/cub/.

Nasridinov A, Lee Y, Park Y-H. 2014. Decision tree construction on GPU: ubiquitous parallel

computing approach. Computing 96(5):403–413 DOI 10.1007/s00607-013-0343-z.

Nvidia. 2016. Block scan algorithms. Available at http://nvlabs.github.io/cub/namespacecub.

html#abec44bba36037c547e7e84906d0d23ab (accessed 30 December 2016).

Nvidia. 2017. CUDA C programming guide. Available at http://docs.nvidia.com/cuda/index.html.

Quinlan JR. 2014. C4.5: Programs for Machine Learning. San Francisco: Elsevier.

Sharp T. 2008. Implementing decision trees and forests on a GPU. In: Proceedings of the 10th

European Conference on Computer Vision. Berlin: Springer, 595–608.

Strnad D, Nerat A. 2016. Parallel construction of classification trees on a GPU. Concurrency and

Computation: Practice and Experience 28(5):1417–1436 DOI 10.1002/cpe.3660.

Mitchell and Frank (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.127 37/37

http://dx.doi.org/10.1145/1656274.1656278
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
http://dx.doi.org/10.1137/0914050
http://dx.doi.org/10.1007/978-1-4612-1220-1_11
https://thrust.github.io/
http://dx.doi.org/10.1155/2014/745640
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf
http://dx.doi.org/10.1142/s0129626411000187
http://nvlabs.github.io/cub/
http://nvlabs.github.io/cub/
http://dx.doi.org/10.1007/s00607-013-0343-z
http://nvlabs.github.io/cub/namespacecub.html#abec44bba36037c547e7e84906d0d23ab
http://nvlabs.github.io/cub/namespacecub.html#abec44bba36037c547e7e84906d0d23ab
http://docs.nvidia.com/cuda/index.html
http://dx.doi.org/10.1002/cpe.3660
http://dx.doi.org/10.7717/peerj-cs.127
https://peerj.com/computer-science/

	Accelerating the XGBoost algorithm using GPU computing
	Introduction
	Background and Related Work
	Parallel Tree Construction
	Evaluation
	Conclusion
	References


