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ABSTRACT
The workflow of this research is based on numerous hypotheses involving the usage
of pre-processing methods, wheat canopy segmentation methods, and whether the
existing models from the past research can be adapted to classify wheat crop water
stress. Hence, to construct an automation model for water stress detection, it was
found that pre-processing operations known as total variation with L1 data fidelity
term (TV-L1) denoising with a Primal-Dual algorithm and min-max contrast
stretching are most useful. For wheat canopy segmentation curve fit based K-means
algorithm (Cfit-kmeans) was also validated for the most accurate segmentation using
intersection over union metric. For automated water stress detection, rapid
prototyping of machine learning models revealed that there is a need only to explore
nine models. After extensive grid search-based hyper-parameter tuning of machine
learning algorithms and 10 K fold cross validation it was found that out of nine
different machine algorithms tested, the random forest algorithm has the highest
global diagnostic accuracy of 91.164% and is the most suitable for constructing water
stress detection models.
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INTRODUCTION
Wheat is one of the world’s most extensively consumed staple foods, accounting for
roughly a quarter of total consumption. India is referred to as the “powerhouse of
agriculture” worldwide because it has risen to the top of the worldwide milk, spice, and
pulse production rankings. Furthermore, it is the world’s second-largest wheat producer
after China (Dey, Dinesh & Rashmi, 2020). According to statistics released by the
Population Reference Bureau, the world’s population is expected to have expanded by
approximately 10 billion people by the end of 2050 (Population Reference Bureau, 2021),
boosting the demand for agricultural products. Food security and sovereignty are the
biggest challenges for many countries, especially in the wake of the circumstances
emerging from the Russia-Ukraine conflict and climate change (Ben Hassen & El Bilali,
2022). Advancements in the field of high-throughput plant phenotyping and machine
learning can help to overcome many of the challenges and streamline the process of
identifying and classifying various biotic and abiotic stresses (Komyshev et al., 2018).
Abiotic stress, such as drought, which is caused by a shortage of water, has been discovered
to cause a considerable drop in wheat production by interfering with wheat crops’
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metabolism, growth, and yield. Due to below-average precipitation, droughts cause water
shortages. El Niño occurrences and water abuse can produce droughts. Precipitation, soil
moisture, and streamflow indicate drought. Crop growth simulation, water balance, and
crop water stress index models (Landsat Soil Adjusted Vegetation Index (SAVI),
Normalized Difference Vegetation Index (NDVI), and Landsat Enhanced Vegetation
Index (EVI)) can identify wheat drought stress (DROUGHT IN NUMBERS 2022—
restoration for readiness & resilience, 2022). Precipitation, temperature, solar radiation, soil
moisture, evapotranspiration, and crop growth can be utilised to create and validate wheat
drought models. A drought detection model should have accuracy, sensitivity, specificity,
and missing data handling. Drought stress onset, duration, and severity vary by geography
and climate. Certain factors can help a model detect drought in wheat images, for example
leaf rolling, leaf senescence, leaf water potential, stomatal conductance and chlorophyll
content can distinguish stressed from non-stressed crops. However, using meteorological,
remote sensing, and soil moisture data can help to determine the crop’s water stress status.
Machine learning methods like Random Forest and Neural Networks can help find key
traits and classify crops as stressed or unstressed.

Rainfed crops, such as wheat, are particularly vulnerable to unpredictable variations in
the climate. Immediate efforts are required to address this issue before it worsens,
preferably through the development of appropriate early stress detection systems. The
timely detection of water stress in plants has become a matter of concern to avoid short-
term income and yield losses as well as long-term consequences for rainfed farmers, which
could lead to their abandonment of the agricultural profession. According to data from
DEWS (drought early warning systems), around 42 percent of Indian land has been
affected by drought as of January 1, 2019 (van Ginkel & Biradar, 2021; Sharafi et al., 2021).
The Drought in Numbers, 2022 report, which was presented on May 11 at the UNCCD’s
15th Conference of Parties (CoP15) (DROUGHT IN NUMBERS 2022—restoration for
readiness & resilience, 2022), provides some significant information about the current
drought situation and its effects on the Indian economy. Ever since the beginning of the
twenty-first century, the frequency and extent of droughts are growing at an alarming rate
all across the world. India comes under one of the severely drought-impacted countries, as
contains a large portion of the world’s drought-vulnerable regions. Drought affected nearly
two-thirds of the nation from 2020 to 2022. Due to frequent droughts, India’s Gross
Domestic Product (GDP) declined by 2% to 5% between 1998 and 2017 (DROUGHT IN
NUMBERS 2022—restoration for readiness & resilience, 2022). It is crucial to monitor and
analyse drought’s effects on wheat production because climate change is predicted to
worsen drought stress in many locations. To reduce drought stress on wheat production,
there is a need to breed drought-tolerant cultivars, use of precision irrigation, and improve
water management. Drought stress affects 20–30% of the global wheat acreage, limiting
productivity. Semi-arid and arid regions including the mediterranean, Middle East,
Central Asia, and parts of Africa and Australia experience drought stress. Wheat has the
largest water consumption throughout reproductive and grain-filling stages, making
drought stress more likely. Drought stress can reduce wheat yield by 10–50%, depending
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on severity, timing, and cultivar (DROUGHT IN NUMBERS 2022—restoration for
readiness & resilience, 2022).

Plants can respond to drought stress in a variety of ways, and the major goal of our
research is to understand each part of the wheat plant (Komatsu & Hossain, 2013)
concerning water stress to find the responses and changes in different phenomena of the
plant occurring due to stress using high throughput imaging technologies (Abhinandan
et al., 2018; Tounsi, Feki & Brini, 2019). A deeper understanding of this can be
accomplished by familiarising yourself with the full set of biological parameters that can be
monitored with the help of computer algorithms (Gupta, Kaur & Kaur, 2021; Schoppach
et al., 2016). Incorporating the latest phenomics and chlorophyll fluorescence
technological advances into plant research can aid in the understanding and modelling of
the various pressures that plants may encounter during their entire growth cycle. Both
biotic and abiotic stress can be quantified and monitored using these advancements (Sun
et al., 2020; Tucci et al., 2018). The study of re-emitted light emitted by a plant’s body is one
of the most efficient and straightforward methods of determining stress in plants. Light
energy falling on a plant is diffused in three ways that are all equally important: first,
photosynthesis, which is powered by light energy; second heat, which is released as a result
of the dissipation of light energy, and third is chlorophyll fluorescence, which is a re-
emission of light energy, all of which are equally vital (Sánchez-Moreiras et al., 2020).
Wheat crop images are irradiated with photosynthetically active radiation (PAR) between
400 and 700 nm before performing remittance analysis of PSII (Oxborough, 2004; Zhao
et al., 2012). The result of this process leads to the computation of chlorophyll
fluorescence, which is a non-intrusive indicator of photosynthetic activity within the plant.

Fluorescence analysis is one of the simplest methods to determine stress as it accounts
for 1–2 percent of total light energy and offers useful information on photosynthetic
activity and energy loss in the form of heat within the plant body. The digital examination
of the PSII photosystem can be performed using the fluorescence feature analysis of three-
set images (fdark: null image, fmin: image with minimum fluorescence, and fmax: image
with maximum fluorescence). The quantum efficiency of photosystem II can be calculated
using the formula fv (variable fluorescence)/fmin, where fv equals the difference between
fmax and fmin fluorescence values (Kalaji et al., 2017; Sid’ko et al., 2017). It refers to the
plant’s ability to adapt to stressful situations. Analysis of the fv/fm distribution patterns in
the plant can quickly reveal the primary stress sources in the plant (Gehan et al., 2017). The
development of machine learning models based on the properties extracted from plant
images for detecting stress is a difficult task. This is due to the fact that identifying the most
appropriate feature to map the ground truth requires a lot of domain knowledge, and at the
same time, mapping concepts of the agricultural processes into the imaging process is hard
(Mantovani, Brito & Mantuano, 2018; Moya et al., 2019). The next section explains the
various options that contemporary researchers are applying to overcome such challenges.

Survey methodology
A discussion on the latest research work done in the context of identifying water stress
using image processing methods is given in this section. Contemporary literature gives
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copious evidence that image-based analysis, which includes high throughput imaging
feature analysis of plants, can be accomplished by applying a variety of functions to the
pixels of the plant (Vadakkenveettil, 2012; Löfstedt et al., 2019). However, the image
processing domain is not without bottlenecks. To overcome the challenge of the
segmentation of plant body parts in plant images, Kienbaum et al. (2021) have used
multiple preprocessing operations. For example, a linear or polynomial thresholding
function may be applied to plant images to correctly identify shoot area, canopy
temperature, and vegetation indices, among other things. The non-linear function analysis
for extracting features from the images has been used in two ways: first, through the use of
geometric statistics. Geometric statistics help estimate the height, convex hull, and centre
of mass of the plant body parts. The geometric feature values of the plant that is suffering
from some stress will be different from the healthy body part of the plant. The second is, of
course, through the use of non-geometric descriptors, which can be used to perform biotic
and abiotic stress analysis (Dolferus et al., 2019; Oinam&Mehta, 2020). For example, plant
growth rate prediction, maturity, and yield prediction of wheat are the best indicators of
some stress. These metrics have been used to make the detection of stress more precise, as
it is quite challenging to have high precision agriculture equipment due to the role of
multiple environmental factors. The attempt of many researchers to solve the key
problems of stress detection is by conducting organ-level (leaf, stem, root, and canopy, etc.)
analysis (Chen et al., 2021). However, from contemporary literature, it can be observed that
there is not much agreement given on the kind of imaging features that suit best for the
machine learning models, for the detection of various kinds of stress.

Although the algorithms for segmentation and machine learning are able to directly
handle the input images, it has been noticed that the majority of image processing projects
require some form of pre-processing operation. This is the reason that image
preprocessing activities have an effect on the accuracy of subsequent algorithmic processes,
including machine learning and segmentation. Therefore, the preprocessing algorithms are
a necessary evil in the pipeline and scheme of things to design some kind of image
processing system. This is because they improve the reliability of the image processing
system in terms of their performance. The processes that make up preprocessing are
designed to eliminate difficulties associated with low saturation, uneven aspect ratio,
uneven brightness, and various sorts of noises (Li & Xu, 2019; Jin et al., 2018). It also helps
to overcome problems that may occur due to incorrect camera calibrations and the
presence of unwanted objects or artefacts in the image. These problems can be overcome
with the help of this technique. At the same time, it is possible to find that resize functions
that use interpolation techniques are used to improve and correct the aspect ratio of the
images (Zhang et al., 2022). Current research in this field provides abundant evidence of
the usage of several denoising methods such as median filter, non-local means filters (Wu
et al., 2018), gaussian filter, total variation filter (Caselles, Chambolle & Novaga, 2015;
Gupta, Kaur & Kaur, 2021; Bose et al., 2016; Fernandez-Gallego et al., 2020; Gupta, Kaur &
Kaur, 2022a; Hasan et al., 2018; Image Completion using Spiking Neural Networks, 2019;
Pineda et al., 2017; Lazarević et al., 2021; Osroosh, Khot & Peters, 2018; Trivedi, Shukla &
Pandey, 2022; Zeng & U, 2020; Zhi, Shi & Sun, 2016), and bilateral filters to remove the
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noise. In order to get rid of the shadows in the images, low-saturation areas, contrast
enhancement techniques like Min-max and contrast stretching are usually utilised as pre-
processing processes (Trivedi, Shukla & Pandey, 2022). Researchers have developed a
number of different auto correction algorithms in order to improve the images’ colour
balance and achieve uniformity in the illumination and brightness. This will allow for
greater control over how images are displayed.

Further, it can be observed from the current literature that Zeng & U (2020) have
improved linear and non-linear contrast enhancement methods to obtain better
segmentation results. Linear image improvement techniques including min-max
stretching, thresholding function, and percentile stretching use contrast stretching. And
nonlinear approaches like histogram equalisation, and gaussian stretch by analysing
various pipelines in combination with denoising and enhancement gave the best pre-
processing combination for wheat canopy images, which can greatly improve
segmentation accuracy. This can be done using TV L1 denoising with a primal dual
algorithms in combination with max contrast stretching enhancement procedures (Gupta,
Kaur & Kaur, 2022a). By comparing wheat canopy and ear temperatures, wheat ear
detection systems have been developed. Gupta, Kaur & Kaur (2021), Bose et al. (2016),
Hasan et al. (2018), Image Completion using Spiking Neural Networks (2019), Pineda et al.
(2017), Lazarević et al. (2021), Osroosh, Khot & Peters (2018) used the CLAHE method to
improve image local contrast isolate neighbouring ears. Colour threshold segmentation
was employed in HSV colour space to segregate canopy and ear high temperature
disparities. To enrich images, sliding windows and CLAHE contrast adjustment
techniques are used. Wheat ear counting images will have some noise due to the reflection
of wheat leaves in sunlight, camera instability, and the natural surroundings. The wheat ear
images needed to be enhanced and denoised using adaptive histogram equalisation and
median filtering.

The colour and vigour of the plant deteriorate as a result of wilting. This can be seen
visually and through the use of computer vision techniques (Gupta, Kaur & Kaur, 2021;
Osroosh, Khot & Peters, 2018). In order to well distinguish between healthy and stressed
plants classifiers such as support vector machine, artificial neural network has been trained
with a specific set of characteristics that can characterise the histograms generated at the
frequency of F520/F680, results of the analysis demonstrate the utility of multicolour
fluorescence for plant phenotyping (Pineda et al., 2017). Absolute reflectance
characteristics such as reflectance in red (RRed), green (RGreen), blue (RBlue), near-
infrared (RNIR), and far-red (RFarRed) have also been utilised. Lazarević et al. (2021) have
also employed hue (HUE), saturation (SAT), and value (VAL) as an alternative to visible
reflectance for colour analysis. HUE takes into account the red, green, and blue colours,
although it is displayed as a single channel with values ranging from 0 to 360 degrees. For
every colour the saturation (SAT) indicates its intensity (pale or intense colour), while the
value (VAL) indicates whether the colour is bright or dark. According to the results of
colour analysis, reflectance in red, green, and blue dramatically increased if there is an
extreme drought. Hence, drought significantly affect the colour reflectance by boosting the

Gupta et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1268 5/24

http://dx.doi.org/10.7717/peerj-cs.1268
https://peerj.com/computer-science/


intensities in RRed, RGreen, and RBlue bands substantially. HUE2D is another parameter
that has higher sensitivity to drought.

Where comprehensive domain expertise was not available, Hasan et al. (2018) used
region-based convolutional neural networks (R-CNN) for labelling different types of
stresses on the plant images. Since there are limited dataset resources for plant images in
the context of wheat. There is an urgent need to build systems that can annotate images
without the help of domain experts. Bose et al. (2016) and Image Completion using Spiking
Neural Networks (2019) trained a system that annotated the wheat dataset “SPIKE” to
predict grain yield. A collection of images was taken at various growth phases of wheat to
analyse spikes and estimate yield, with an average detection accuracy ranging from 88 to 94
percent for the various models. To reduce the genotype-phenotype gap, plant phenomics is
the most efficient approach that has been employed to date (Pasala & Pandey, 2020;
Gjuvsland et al., 2013). Ghosal et al. (2018), Gao et al. (2020) working in the field of wheat
phenomics employ deep plant phenomics platforms that are based on Convolution
Networks technology. These platforms can automate the process of phenotyping by
providing accurate and efficient phenotypic measurement. It can be further observed that
the use of CNN for abiotic and biotic stress detection in plants has been demonstrated to
be more effective than other current computer vision technologies, such as deep learning
(Zhou et al., 2021). To obtain efficient comparative results, Kamarudin, Ismail & Saidi
(2021) have run a competition among a variety of deep learning models in the context of
detection and classification. According to experimental findings, Google Net outperformed
Alex Net and Inception V3 in terms of accuracy and error rate, with an accuracy score of
98.3 percent and an error rate of less than 7.5 percent to classify plant stresses (Chandel
et al., 2020). Further, Santos et al. (2021) worked on optimising classifiers for water stress
detection in wheat crops, in which UAV aerial RGB images are segmented for vegetation
extraction using vegetation index thresholding.

Support vector machine (SVM) classifiers (Su et al., 2020) were trained using features
extracted from images, which was further optimised using a Bayesian optimizer to improve
the performance of the classifier (Elvanidi et al., 2017). It was found that when only
spectral intensities were used, the optimised classifier achieved an accuracy of 89.9 percent
with an F1 score of 87.7 percent, and from this outcome it was inferred that the accuracy
can be improved further by combining spectral intensity features with colour index
features. This ultimately led to an accuracy of 92.8 percent with an F1 score of 91.5 percent.
A supervised learning approach called a gradient boosting decision tree utilised fourteen
colour and texture features for efficient classification. The implemented method exhibited
a successful detection performance between control and water stress conditions in the
maize fields. According to the results of this article (Zhuang et al., 2017), the recognition
accuracy of three water treatments was 80.95% and the accuracy of water stress reached
90.39%. To determine the most accurate algorithm for identifying droughts, the
classification and prediction capacities of decision tree (DT), genetic programming (GP),
and gradient boosting decision tree (GBT) algorithms have been examined in both the
testing and training phases. It was observed that GP models with scaled sigmoid functions
at their roots are remarkably good at classifying and forecasting drought (Mehr, 2021).
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Sun et al. (2019) have also employed a time-series analysis of chlorophyll fluorescence
(ChlF) to analyse the ChlF fingerprints of salt overly sensitive (SOS) mutants under
drought stress. Sparse autoencoders (SAEs) neural network, a time-series deep learning
approach, was utilised to extract time-series ChF features, which were used in four
classification models including linear discriminant analysis (LDA), k-nearest neighbour
classifier (KNN), naïve Bayes (NB) and support vector machine (SVM). According on the
findings, the LDA classification model’s discrimination accuracy was found to be 95%.
According to the findings (Xia et al., 2022), the induction curve contains crucial
information about plant physiology. This can be justified by analysing the results obtained
from SVM classifier, can classify the severity of drought stress more accurately than the
KNN and Ensemble, with a classification accuracy of 86.7 percent for the induction curve
as input compared to 43.9 percent for Fv/Fm and 72.7 percent for induction
characteristics.

Photosynthesis-based kinetics analysis of photosynthetic traits, such as PSII quantum
yield (fv/fm), Fmin (minimum fluorescence), and Fmax (maximum fluorescence)
(Botyanszka et al., 2020), can capture the effects of climatic variation on the photosynthetic
activity of the plant. A valuable tool for understanding how damage develops and how
responses are organised in crops can be developed using the chlorophyll fluorescence
imaging approach. The chlorophyll fluorescence images are captured using CCD (camera)
(Xu et al., 2021). These cameras experience a variety of noises, including thermal, white,
dark current, reset, flicker, and amplification noise. The hardware circuitry and post-
processing algorithms of the camera handle almost all sorts of noise. However, it was found
that some random noise does enter the chlorophyll fluorescence images as a result of these
factors, and at the same time, the problems with illumination variations, camera
calibration errors, and various settings under which the images were obtained also
contribute to some proposition of noise in the images leading to reduced SNR ratio. Due to
this extraction of plant’s organ such as wheat canopy become a difficult task and additional
pre-processing operations are required which has been already implemented by the
(Gupta, Kaur & Kaur, 2022a).

MATERIALS AND METHODS
This section explains the materials and methods used for achieving the goals of this study.
The dataset of chlorophyll fluorescence images were obtained from a public repository
(Gupta, Kaur & Kaur, 2022c; Sandhu, 2019) and is of the Raj 3765 wheat variety. This
wheat variety is most predominantly sown in the NorthWestern Plain Zone (NWPZ). The
collection of 24 images per day are collected over 60 days (vegetative growth stage) for each
experiment (control and drought) is represented as 2,880 (1,440 Control and 1,440
drought) instances with the resolution of a 72-dot-per-inch RGB image collection. The
wheat plants were grown in pots in laboratory conditions and one set of pots was not given
water to induce water stress in the plants. The analysis contains a spatio-temporal
difference between the periods of Fmin (minimum fluorescence) and Fmax (maximum
fluorescence). The data gathering procedure involved the application of a visible light
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spectrum-based colour camera to capture images of the plant canopy from the top or plan
view.

Pre-processing and preliminary study
In the course of the intended experiments, it was found that contrast enhancement and
random noise removal are prerequisite requirements for chlorophyll fluorescence (CF)
images before they are fed to any segmentation algorithm to increase the segmentation
accuracy. Because the raw chlorophyll fluorescence wheat image is never smooth, it
consists of random graininess that is strong enough to conceal fine details. It has been
empirically demonstrated that the contrast stretching (min-max) method of contrast
enhancement when combined with the TV-L1 denoising with a Primal-Dual algorithm is
the most effective pre-processing technique for identifying the image region with the
highest level of photosynthetic activity (Gupta, Kaur & Kaur, 2022a). The Primal-Dual
algorithm removes image noise using total variation (TV) and L1 regularisation. TV
measures image fluctuation mathematically. It is useful for denoising images since it
preserves edges and details while reducing noise. L1 regularisation adds a penalty term to
an optimization problem to encourage modest absolute values. Because it preserves an
image’s sparsity (few non-zero values), it is used for denoising. Primal-Dual solves convex
optimization issues. It solves PDEs and other non-smooth problems well. Primal-Dual
TV-L1 denoising iterates. It starts with a denoised image estimate and iteratively updates it
by solving subproblems that minimise the TV and L1 regularisation terms. Stopping
criteria stop the algorithm (e.g., when the difference between two consecutive estimates is
below a certain threshold). It removes noise from grey-scale and colour photos while
preserving fine details and edges. It can be observed (see. Fig. 1) that six pipelines were
used to identify which pre-processing method would yield and support the wheat canopy
segmentation. The purpose of the methods was to overcome the problems of low contrast
and noise. Hence, denoising and contrast enhancement methods were put to test and it was
found that TV-L1 denoising with a Primal-Dual algorithm and min-max contrast
stretching is the best suited as they preserve the texture property of an image. Hence, the
pipeline II (see Figs. 1D–1F) was selected for further research workflow. The code and
image outputs data from this research work were deposited in a public repository (Gupta,
Kaur & Kaur, 2023) to enable future research work.

For the precise extraction of the region of interest (ROI), wheat canopy segmentation
experiments were conducted to evaluate seven segmentation strategies, viz., global static
thresholding, global automatic thresholding (Otsu), mean shift, edge detection operators,
k-means (based on four means), watershed, and the “Cfit K-means algorithm” (Gupta,
Kaur & Kaur, 2022b). The IOU (intersection over union) metric score has been used for
the validation of the segmentation of regions of interest (wheat canopy). From the results,
it has been observed that the Cfit K-means algorithm provides the highest IOU score of
95.75 with pre-processing and 59.8 without pre-processing, among the seven segmentation
algorithms implemented and investigated (Gupta, Kaur & Kaur, 2022a). The pre-
processed images prove to be fruitful in enhancing the segmentation accuracy by 36%,
segmentation results are validated using the IOU score (refer to Table 1), For the sake of
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Figure 1 Comparative Analysis of pre-processing methods workflow. (A) Noise removal technique
used: non-local means denoising. (B) Contrast enhancement technique used: contrast stretching (Min-
Max). (C) Output preprocessed image following pipeline 1. (D) Noise removal technique used: TV-L1
denoising with a Primal-Dual algorithm. (E) Contrast enhancement technique used: contrast stretching
(Min-Max). (F) Output preprocessed image following pipeline 2. (G) Noise removal technique used: non-
local means denoising. (H) Contrast enhancement technique used: CLAHE. (I) Output preprocessed image
following pipeline 3. (J) Noise removal technique used: TV-L1 denoising with a Primal-Dual algorithm.
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reproducibility and portability, data and code linked to the pre-processing pipeline and
segmentation are freely available (Gupta, Kaur & Kaur, 2022d). This will aid in the
creation of a dataset for the automated detection of water stress using machine-learning
algorithms and other techniques.

Further, initial experiments and tinkering in this context show that the use of
correlation-based gray-level co-occurrence matrix (CGLCM) and colour features (colour
proportion of pixels in each nine bands) is fairly suitable for this purpose. Therefore, this
research work aims to identify the most suitable workflow to accomplish the task of
classification. For better understanding (refer to Fig. 2). The next section explains the
implementation and the construction of the wheat water stress detector.

Table 1 Comparative analysis of CFitk-means algorithm with and without pre-processing.

Segmentation algorithm Sample size Average IoU score

25 50 75 100

CFitk-means (without pre-processing) 0.59 0.60 0.612 0.61 0.60

CFitk-means (with pre-processing) 0.96 0.95 0.96 0.97 0.966

Figure 2 Flow of the research. Full-size DOI: 10.7717/peerj-cs.1268/fig-2

Figure 1 (continued)
(K) Contrast enhancement technique used: CLAHE; (L) Output preprocessed image following pipeline 4.
(M) Noise removal technique used: non-local means denoising. (N) Contrast enhancement technique
used: histogram equalization. (O) Output preprocessed image following pipeline 5. (P) Noise removal
technique used: TV-L1 denoising with a Primal-Dual algorithm. (Q) Contrast enhancement technique
used: histogram equalisation. (R) Output preprocessed image following pipeline 6.

Full-size DOI: 10.7717/peerj-cs.1268/fig-1
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Feature extraction and selection
The raw image of chlorophyll fluorescence modality has been employed in this research as
a beginning point for creating the mentioned water stress automation model. The images
have been acquired at the particular wavelength and frequency when the excitation of the
chlorophyll fluorescence occurs and stops. Thus, wheat CF images’ pixel colours fluctuate
throughout. The dataset’s file structure shows that each PSII activity cycle has 24 images
per day for both drought and control for 60 days, starting with non-excitation and ending
with fluorescence excitation. The difference in the proportion of pixels of each colour band
gives a clear-cut signal about the health of the wheat plant. Hence, a total of five features:
chlorophyll fluorescence (PSII), texture/GLCM, morphological/shape features,
correlation-based features, and colour percentage of various nine bands (blue, green, red,
lightness, green-magenta, blue-yellow, hue, saturation and value) are extracted from plant
images and submitted to comparison analysis in order to construct an automatic ML-
based identification model. In the comparative study, all of these features were determined
utilising a backward elimination process for feature selection. The criteria for elimination
were based on the global diagnostic accuracy metric of the machine learning models. If a
subset of characteristics gave a global diagnostic accuracy greater than 80% (referred to as
baseline accuracy) during testing, that subset was considered for inclusion in the wheat
stress detection model for further investigations on its quality of performance.

The observations from these operations show that correlation-based GLCM and colour
proportion values of nine bands ((blue, green, red, lightness, green-magenta, blue-yellow,
hue, saturation, and value) as features) in combination provide the most reliable
information about changes that happen when the plant is under stress. So, this
combination has been selected and rest all features has been eliminated. The 23 GLCM
metrics (autocorrelation (autoc), contrast: (contr), correlation (corrm), correlation (corrp),
cluster prominence: (cprom), cluster shade (cshad), dissimilarity (dissi), energy (energ),
entropy (entro), homogeneity (homom), homogeneity (homop), maximum probability
(maxpr), sum of squares (sosvh), sum average (savgh), sum variance (svarh), sum entropy
(senth), difference variance (dvarh), difference entropy (denth), information measure of
correlation1 (inf1h), information measure of correlation2 (inf2h), inverse difference (INV)
is homom (homom), inverse difference normalised (INN) (indnc), inverse difference
moment normalised (idmnc)) are used to obtain constructive information regarding water
stress in the wheat plant. Texture/GLCM analysis indicates “change” due to water stress in
the wheat canopy. The current work draws its methodology in the context of GLCM
operations from the article. The Kendal formula has been utilized for computing
correlation among 23 GLCM features (see. Fig. 3).

Only correlation-based GLCM (CGLCM) feature selection yielded to over-fitted models
as almost all the attributes had some correlation with each other. However, CGLCM
combined with nine colour band features provided a better feature set. The morphological/
shape features or integral geometrical features such as (eccentricity, area, perimeter, and
convex hull) made no significant change in achieving accuracy above the baseline accuracy
of 80%. Hence, they were dropped from the list of features when correlation-based GLCM
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Figure 3 Kendall correlation analysis for 23 GLCM features. Full-size DOI: 10.7717/peerj-cs.1268/fig-3
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or CGLCM and colour features in combination were given as input to machine learning
models, this led to a substantial increase in the accuracy of the classification algorithms
(refer to Table 2). The performance was tested using nine classifiers, as demonstrated in
the next section.

RESULTS
Multiple machine learning methods for the automatic diagnosis of drought water stress
have been investigated. For every experiment the ratio of the training dataset was kept at
80% of the total dataset (2,880) and 20% dataset was used as testing dataset. However, it
must be noted that during the process of 10 K fold cross validation, the dataset was
randomly divided into k groups (in our example, k = 10) of nearly equal size. The first fold
is used as a validation set, while the following k-1 folds are used to fit the procedure.

A rapid prototyping python library lazy predict was deployed and 20 models of different
machine learning algorithms were generated. For further analysis, the top nine machine
learning algorithms, viz., logistic regression (LR), Linear Discriminant Analysis (LDA),
K-nearest neighbors (KNN), decision tree (DT), naïve Bayes (NB), random forest (RF),
support vector machine (SVM), extra trees (ETC), and Gradient Boosting (GBC), were
selected for further analysis.

The algorithms were tested for the single wheat variety “RAJ 3765”. However, due to a
small dataset issue, data augmentation was done to increase the size of the dataset 10 times
its original size. During data augmentation, we randomly augment the dataset by rotating
images at different angles and flipping images horizontally/vertically. The performance
analysis of the machine learning models indicates that the RF algorithm appears to be the
most accurate as per the statistics given in Table 2.

The results are validated using 10-fold cross-validation for all the algorithms and fine-
tuned using the grid search algorithm at all stages. From this, it can be concluded that the
pre-processing step plays the most predominant role in building the automatic detection
model. Dependency of the other steps, depending upon the correctness and quality of the
image achieved after this step. From Table 3, it can be observed that tree-based algorithms
are demonstrating a high level of performance. However, the diagnostic efficacy of the

Table 2 Comparative performance analysis of the machine learning algorithms.

S. no Algorithms AUC test AUC train Diff (Test-Train)

1 NB 0.74597268 0.74749576 −0.0015231

2 LDA 0.74467457 0.74880706 −0.0041325

3 LR 0.8053969 0.81098665 −0.0055898

4 SVM 0.81517629 0.87208612 −0.0569098

5 GBC 0.81517629 0.87208612 −0.0569098

6 KNN 0.72575046 0.81187261 −0.0861221

7 RF 0.91164728 1 −0.0883527

8 ETC 0.90773481 1 −0.0922652

9 DT 0.8723432 1 −0.1276568
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classifier in terms of water stress detection needs deeper analysis with the help of AUC
ROC curve analysis (see. Fig. 4). The curves drawn here are used to evaluate the
effectiveness of machine learning algorithms.

The AUC ROC is a visual approach for understanding the binary classifier’s diagnostic
capabilities (called global diagnostic accuracy). These curves are used to analyse the
effectiveness of the machine learning algorithms, which have numerous advantages. One
of these advantages is that it is more accurate to conclude which algorithm is reliable and
stable. There is no effect of scale on AUC. It is not concerned with the absolute values of
the forecasts themselves but rather with how well they are ranked. The AUC is not affected
by the threshold for classification. Regardless of the value of the classification threshold
that is selected, it aggregates the performance of the classifier across all the possible
thresholds and then evaluates the prediction accuracy of the model. Both the testing and
training datasets have the same distribution, and there is no covariate shift or drift in the
features, according to a brief investigation of the feature distribution that was performed
between the two datasets. It has been noted that altering the number of independent
variables allows us to obtain various interpretations of the same automation model hence,
all these models have been tested using a 10 K-fold validation process.

There is not a single case in which the AUC is close to zero in the testing phase from the
beginning and nor is there a categorical switch in the classes due to this fact. At the same
time, it can also be observed that there are no absolute results where positive class instances
were predicted with full accuracy in the final testing phase with the threshold of 0.80. This
is because there are no absolute results where positive class instances were predicted with
full accuracy and match.

When compared to the AUC values of the training phases, it can be seen that the values
of AUC drop significantly during the testing phases in almost every scenario. However, the

Table 3 Hyper parameters used in respective algorithms to fine tune the model’s performance.

S.
no

Algorithms Hyper parameters found by grid search method

1 NB # of Class = 2; # of attributes = # of feature rows; normalization = min_max; probability of each class = 0.5; variable smoothening =
1

2 LDA # of Class = 2; Solver = lsqr; tol = 1; shrinkage = auto

3 LR # of Class = 2; Penalty = L2; tol = 1; c = 0.98; solver = lbfgs; class_weight = balanced; multi_class = ovr; max_iterations = 100

4 SVM # of Class = 2; Kernel = poly; C = 4.5; gamma = 0.01

5 GBC # of Class = 2; Loss = log_loss; learning rate = 0.5; maximum_depth = 3; n_of estimators = 50; criterion = mse; samples_split = 2;
max_features = auto

6 KNN # of Class = 2; Algorithm = auto; n_neighbours = 5; leaf_size = 20; weights = uniform; metric = minkowski

7 RF # of Class = 2; Criterion = Gini; splitter = best; max_depth = 7; min_samples_split = 10; min_sample_leaf = 2; min_wt_fraction =
0; max_features = (no. of samples); class_weight = balance

8 ETC # of Class = 2; Criterion = Gini; splitter = best; max_depth = 5; min_samples_split = 10; min_sample_leaf = 1; min_wt_fraction =
0; max_features = (no. of samples); class_weight = balance

9 DT # of Class = 2; Criterion = Gini; splitter = best; max_depth = 3; min_samples_split = 10; min_sample_leaf = 1; min_wt_fraction =
0; max_features = (no. of samples); class_weight = balance
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Figure 4 AUC ROC curve analysis of nine machine learning algorithms. Full-size DOI: 10.7717/peerj-cs.1268/fig-4
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decline is greatest in the cases of the DT algorithm (−0.1276568) (see. Fig. 4G) and the ETC
algorithm (−0.09226519) (see. Fig. 4F) followed by RF algorithm (−0.0883527) (see
Fig. 4B). Because of this, it appears that three of these models have a significant risk of
producing results that are an excessive fit to the data. At that time, the distance between the
curves of the training and the testing was measured, and it was discovered that the distance
between the curves in graphs of four classifiers among nine tested classifiers (K Nearest
Neighbours (see. Fig. 4E), Extra trees (see. Fig. 4F), Random Forest (see. Fig. 4B), and
Decision Trees (see. Fig. 4G)) is slightly more than expected. If the gap is larger, it indicates
that there is a need to further improve the process of training, which may be done by either
adding more cases or optimising the parameters on which the algorithm is based. A larger
gap between the testing phase and the training phase could potentially be a symptom of too
many noisy features that prevent algorithms from learning from fresh examples. Because
these results are produced by hyper-parameter tuning that was carried out with the
assistance of the grid search method, further optimization of the algorithm was not
possible, and it was advisable to investigate additional methods such as data augmentation
and data fusion instead. It is important to notice that the data augmentation process has
already been utilised, and further hungriness of the learning algorithm cannot be permitted
because it may lead to results that are only cosmetic.

From the outcome of the ROC-AUC curve analysis, it was observed that algorithms that
have training and testing curves that overlap with each other include the logistic regression
(see. Fig. 4C), naïve Bayes (see. Fig. 4I), and linear discriminant algorithms (see. Fig 4D).
This indicates that the naïve Bayes algorithm has a minimal amount of training loss error
and the algorithm is capable enough to interpret the data patterns in both phases of the
process. From the table it can clearly be inferred that the smallest difference between the
values of testing and training phase belongs to the NB algorithm (−0.00152308) followed
by LDA and LR algorithms respectively (see. Table 2). The performance drop shown by
SVM and GBC (see. Fig. 4H) are almost similar and have difference values that are
intermediate (−0.0569098) (see. Table 2).

Because the AUC ROC graphs for decision trees, random forest, and extra-tree methods
are practically perfect during the training phase, but the values drop significantly during
the testing phase, this implies that almost every member of the tree-based family of
algorithms has some degree of variability in their performance. The gradient boosting
approach does not have a perfect AUC ROC curve in the training phase.

The true positive rate of the SVM initially climbs to 0.8 and then goes maximum to 0.87
in the training phase, but its value also lowers in the testing phase (see. Fig. 4A).
Nevertheless, it is important to note that the form of the curves in both phases is practically
identical. In the case of (LR, LDA, and KNN), the shape of the curves in both phases is
virtually identical.

The tree algorithms RF, ETC, and DT are able to give us a higher degree of accuracy and
are superior in terms of other performance measures such as AUC test-train accuracy,
precision, recall and F-score. RF is the tree method with the highest test accuracy and the
smallest gap (−0.0883527) (see. Table 2) between the training and testing curves. As a
result, it appears that this approach is the most appropriate one that should be used for
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determining whether or not there is water stress. In addition to this important aspect of the
RF method, you should take into account the fact that it can automatically manage
multicollinearity because it separates the variable into a tree structure before processing it.
As a result, there is a lower chance of the model being over-fit to the data.

DISCUSSION
The purpose of the research as a whole was to develop an automated system for detecting
water stress in RAJ 3765 wheat. In this study, we show that previous research has helped us
overcome obstacles such as the need to use invasive technologies to quantify the water
stress experienced by wheat crops. The workflow of this research is informed by a number
of hypotheses concerning the use of pre-processing methods, wheat canopy segmentation
methods, and whether the present models from prior work can be adapted for classifying
wheat crop water stress. These hypotheses concern the use of numerous methods
concerning the use of pre-processing methods.

The small volume of the dataset is the biggest barrier which is overcome using data
augmentation, which led to an improvement in the accuracy of water stress identification.
In raw wheat canopy CF images, random noise caused by thermal activity of photons and
insufficient saturation made it difficult to make out the wheat canopy boundaries.
Therefore, TV-L1 denoising using the Primal-Dual approach resulted in the greatest
improvement to the segmentation accuracy of the C fit k-means algorithm. The segment
pixels’ gradient difference from the edges is increased as the contrast is stretched. This
research was wrapped up with a contest featuring nine different machine learning models.
A nine-machine learning model competition concluded this research. The competition
and a comparative study sought to build the best machine model. Grid search and 10 K
fold cross validation helped build a trustworthy Random Forest water stress detection
automation model. This study will increase food supplies, saving lives. It will improve
agriculture and many livelihoods. This work will build an image processing method to
quantify drought stress on Indian wheat variety. It will then use classifiers to automate
drought stress detection, making crop stress status assessment fast and more accurate.

CONCLUSIONS
Multiple cases and hypotheses concerning the use of pre-processing methods, wheat
canopy segmentation methods, and whether the present models from prior work can be
adapted for categorising wheat crop water stress inform the workflow of this research.
Consequently, it was determined that the most effective pre-processing operations for
constructing an automation model for water stress detection are TV-L1 denoising with a
Primal-Dual algorithm and min-max contrast stretching. Using the IoU measure, the
curve fit K-means method was verified for the best accurate segmentation of the Wheat
canopy. For automated water stress monitoring, fast prototyping of machine learning
library suggested that just nine models need to be investigated. After thorough grid search-
based hyper-parameter tweaking of machine learning algorithms and 10 K fold cross
validation, it was determined that, out of the nine machine algorithms evaluated, the
random forest approach is the most suitable for building water stress detection models.
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The results of the tests indicate that a comprehensive assessment of nine machine
learning algorithms provided sufficient data to support the conclusion that the random
forest algorithm is the most suitable technique for water stress detection. Colour +
correlation-based GLCM parameters in conjunction with image processing have been
described for the first time in the literature for the identification of water stress. One of the
most significant concerns observed in the raw chlorophyll fluorescence wheat canopy
images was that they contained a certain amount of instrumentation-caused noise, and
many shots exhibited low saturation, making the edges of the wheat canopy difficult to
discern. Consequently, different noise approaches and contrast improvement methods
were applied to increase the overall image quality, and it was shown that the TV-L1
denoising with a Primal-Dual method is the most effective for improving the segmentation
accuracy of the Cfit k-means algorithm. This is done utilising the results of the contrast
stretching min-max method increasing the gradient difference between pixels within
segments and pixels on the segment’s edges.

KNN and gradient boosting were discovered to be the algorithms most susceptible to
incorrect classifications. As a result, more investigations were conducted. During the initial
phase of learning, the gap between the training and testing curves for four of the nine
analysed classifiers (K nearest neighbours, extra trees, random forest, and decision trees)
was slightly more than anticipated. If the discrepancy is bigger, training must be enhanced
by adding more examples or adjusting algorithm settings. An excessive number of noisy
characteristics may impede an algorithm’s ability to learn from fresh examples, resulting in
a wider gap between the testing and training phases. Since these outcomes are the result of
optimising grid search hyper-parameters, further optimization was not possible.

The data augmentation technique has already been implemented, and the algorithm’s
insatiable appetite may have aesthetic repercussions. The training and testing curves for
logistic regression, naïve Bayes, and linear discriminant algorithms overlap, as determined
by ROC-AUC analysis. This illustrates that the logistic regression technique has a small
training loss error and can identify data trends in both phases. Almost every tree-based
algorithm exhibits overfitting, since the AUC ROC graphs for DT, RF, and extra-trees
approaches are nearly flawless during training but significantly degrade while testing.
During the training phase of gradient boosting, the AUC ROC curve is imprecise. This
restriction is algorithmic in nature. During training, the true positive rate of the SVM
improves to 0.80 and 0.87 before declining. The shapes of both levels are nearly identical.
In both stages, the (LR, LDA, and KNN) curves are virtually identical. In the last stage of
SVM training, the decreases in values during training are accounted for, and TPR reaches a
maximum of 0.87, which is more than the testing maximum of 0.81. RF has the lowest gap
(−0.0883527) between the testing and training curves and highest accuracy. Therefore, the
random forest algorithm is most appropriate for detecting water stress as it is able to deal
with multicollinearity automatically by splitting variables into a tree for processing.
Consequently, underfitting and overfitting is less likely. The proposed study will enhance
agriculture and a variety of livelihoods. By using an image processing technique to measure
the impact of drought on Indian wheat variety. In order to quickly and accurately assess
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crop water stress status, it will then automate the identification of drought stress using
comparison between the classifiers.
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