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ABSTRACT
Background. Analysis of the nutritional values and chemical composition of grain
products plays an essential role in determining the quality of the products. Near-
infrared spectroscopy has attracted the attention of researchers in recent years due to
its advantages in the analysis process. However, preprocessing and regressionmodels in
near-infrared spectroscopy are usually determined by trial and error. Combining newly
popular deep learning algorithms with near-infrared spectroscopy has brought a new
perspective to this area.
Methods. This article presents a new method that combines a one-dimensional
convolutional autoencoder with near-infrared spectroscopy to analyze the protein,
moisture, oil, and starch content of corn kernels. First, a one-dimensional convolutional
autoencoder model was created for three different spectra in the corn dataset. Thirty-
two latent variables were obtained for each spectrum, which is a low-dimensional
spectrum representation. Multiple linear regression models were built for each target
using the latent variables of obtained autoencoder models.
Results. R2, RMSE, and RMSPE were used to show the performance of the proposed
model. The created one-dimensional convolutional autoencodermodel achieved a high
reconstruction rate with a mean RMSPE value of 1.90% and 2.27% for calibration and
prediction sets, respectively. This way, a spectrum with 700 features was converted
to only 32 features. The created MLR models which use these features as input were
compared to partial least squares regression and principal component regression
combined with various preprocessing methods. Experimental results indicate that the
proposed method has superior performance, especially in MP5 and MP6 datasets.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Near-infrared spectroscopy, Chemometrics, Cereal analysis,
Convolutional autoencoder, Multiple linear regression

INTRODUCTION
Near-infrared spectroscopy (NIRS) has become a widely used method in recent years due
to its fast and low-cost analysis capability and non-destructive feature (Roggo et al., 2007;
Yi et al., 2017; Zhang et al., 2019). Although it is used in many different fields, the main
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application of NIRS is the food industry (Rajput et al., 2017). According to Chen, Lin &
Zhao (2021), NIRS is the most studied method for the non-destructive analysis of food
products. It is widely used to determine the quality parameters of grain products (Chen,
Tan & Lin, 2018; Cheng, Vella & Stasiewicz, 2019), to determine the freshness of fruits and
vegetables (Huang, Lu & Chen, 2018; Mishra et al., 2021; Yuan et al., 2020; Zhu & Tian,
2018), detection of insects in food products (Johnson, 2020; Santos et al., 2019), detection
of meat and chicken fraud (Krepper et al., 2018; López-Maestresalas et al., 2019; Mabood
et al., 2020), detection of adulteration on expensive products (De Girolamo et al., 2020;
Genis, Durna & Boyaci, 2021; Laborde et al., 2021; Rodionova et al., 2021; Yang et al., 2017),
analysis of dairy products (Mabood et al., 2017; Mohamed et al., 2021; Pereira et al., 2020;
Yang et al., 2020), and the analysis of beverages (Genisheva et al., 2018).

Near-infrared (NIR) spectra are obtained from portable, stationary, or in-line
spectrometers. These spectrometers essentially comprise one or more light sources, a
sensor, and other optical elements. Therefore, the NIR spectrum needs to be preprocessed
as it contains sensor, light, or converter-induced distortions (Mishra et al., 2020). Although
dozens of methods are used in the literature, the most commonly used preprocessing
methods can be said as mean scatter correction (MSC), standard normal variate (SNV),
Savitzky-Golay filter (SG), first and second derivative and mean centering (MC) (Çataltaş
& Tütüncü, 2021; Rinnan, Berg & Engelsen, 2009). However, the preprocessing method is
determined by trial and error since the usefulness of the preprocessing method varies
according to each spectrum. Therefore, choosing the most appropriate preprocessing
method is one of the crucial steps of NIRS and directly affects the accuracy of the system.
Although some efforts have been made to solve the preprocessing problem, satisfactory
results have not been reached yet (Helin et al., 2022).

In order to obtain meaningful information from the new spectrum obtained after
preprocessing, quantitative and qualitative analyzes are carried out using various regression
and machine learning methods. As quantitative analysis methods, partial least squares
regression (PLSR), principal component regression (PCR), and multiple linear regression
(MLR) methods are generally used, while partial least squares discriminant analysis (PLS-
DA) and linear discriminant analysis (LDA) are used for qualitative analysis (Popovic et al.,
2019; Roggo et al., 2007; Teye et al., 2020). These methods, also called chemometrics, are
used because they offer ease of application. This feature provides convenience, especially
in in-line systems with low-capacity processors. However, most calibration methods with
successful results in the literature are not user-friendly in laboratory systems as they
contain preprocessing methods which are special for spectra (Chen, Lin & Zhao, 2021). On
the other hand, chemometric methods cannot successfully reveal non-linear relationships
because they create a linear model between input and output variables. For this purpose,
kernel-based methods such as SVM and machine learning methods such as artificial neural
networks (ANN) and deep learning (DL) are increasingly used in NIRS.

The widespread use of machine learning algorithms has brought a different perspective
to spectrum data processing, as in all other fields. In particular, the extensive use of
computers with increasing computing power has intensified studies on ANNs and deep
learning methods (Chen et al., 2020). Deep learning is a popular method based on ANN
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and can extract high-level features using stacked network layers. Due to this feature, it
has an increasing use in the field of spectroscopy for noise reduction, feature extraction,
classification, and regression (Yang et al., 2022b). Acquarelli et al. (2017), Cui & Fearn
(2018), Kim et al. (2023) and Malek, Melgani & Bazi (2018) are some example studies that
used CNN for quantitative or qualitative analysis. Chemometrics has generalization
problems when used on a new instrument. Calibration transfer between different
instruments is a popular application of deep learning onNIRS to address this problem.Yang
et al. (2022a) has developed a deep learning model with three stacked convolutional layers
for calibration transfer. They used five instruments and two datasets (soybean and wheat)
to validate model performance. The comparison with the conventional standardization
method showed that critical features could be protected during calibration transfer between
different instruments. While they obtained comparable RMSE values with the soybean
dataset using CNN and PLSR (0.078 and 0.076), in the wheat dataset, CNN outperformed
the PLSR method (0.053 and 0.130). Mishra & Passos (2021) conducted a similar study
with the tablet dataset and olive dataset. They used two instruments: one for primary model
development and the other for calibration transfer. Fine-tuning was performed on fully
connected and convolutional layers of the model while protecting convolutional layers.
The RMSE value of 3.258, which is lower than that obtained with instrument 1 (3.513), was
obtained with instrument 2 using the calibration transfer method. Another deep learning
model was developed by Yang et al. (2022b) to reduce the impact of interseasonal variations
on spectral analysis. They used Cuiguan pear, Rohca pear and mango datasets to validate
the calibration transfer model and obtained RMSE values for each dataset that were at least
9.2%, 17.5%, and 11.6% lower than conventional methods. These studies have presented
promising results for device dependency, which is a critical problem in NIRS.

Autoencoders, a special type of deep learning, aim to obtain a valuable representation of
the input data while providing an output precisely like the given input data. Because of this
property, autoencoders are classified as unsupervised learning methods. Autoencoders
are often used for feature extraction, noise removal, or outliner detection. Stacked
autoencoder, sparse autoencoder, convolutional autoencoder, and variational autoencoder
are commonly used types of autoencoders (An et al., 2022). Le (2020) has proposed amodel
combining a stacked sparse autoencoder with affine transform—extreme learning machine
to detect the amylose content of rice and the moisture content of corn. He obtained the
correlation coefficient value in the prediction set of 0.999 for the moisture parameter and
0.927 for the amylose parameter, meaning that this model showed better performance than
the partial least squares regression and the extreme learning machine. Mu & Chen (2022)
have proposed a variational autoencoder-based transfer model to deal with unlabeled
spectrum problems in practical NIRS applications. They performed the test study using the
dataset they created in the simulation environment. They achieved a high R2 value of 0.9988
with their proposed autoencoder model, outperforming nine different methods compared.
Another application of the autoencoder was performed by Said, Wahba & Khalil (2022) to
analyze the fat content of cow milk and detect water adulteration. They obtained R2 values
between 0.914 and 0.966 for fat content prediction and 0.411–0.910 for water adulteration
detection.
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This study combines a one-dimensional convolutional autoencoder (1D-CAE) with
NIRS to provide a convenient method for qualitative analysis. First, unlike the other
studies, feature extraction was performed using a 1D-CAE model from the spectral data of
corn kernels. Then, the obtained features were utilized in MLR modeling to determine the
moisture, oil, protein, and starch parameters of corn kernels. The proposed method was
tested on three different spectra of corn kernels obtained from three devices. The proposed
method was compared with conventional chemometric methods and the literature.

MATERIALS & METHODS
Dataset description
In this study, the corn dataset, which is commonly used in the literature, was used to test the
validity of the proposed method. The corn dataset contains the spectra of 80 corn kernels
measured on three different devices. These devices are called M5 (FOSS NIRSystems 5000),
MP5 (FOSS NIRSystems 5000), and MP6 (FOSS NIRSystems 6000). The wavelength range
covered in the dataset is 1,100–2,498 nm at 2 nm intervals. In addition, the reference values
for moisture, oil, protein, and starch targets of each corn kernel are also included in the
dataset. The mean spectra for each device in the corn dataset are given in Fig. 1. The corn
dataset can be accessed from (https://eigenvector.com/resources/data-sets/).

Autoencoders
Autoencoders are generative and unsupervised neural network algorithms. In this learning
algorithm, the main goal is to get output values equal to input values. An autoencoder
framework consists of two main blocks: encoder and decoder. The encoder block
compresses input data into a low-dimensional representation called latent variables,
which contains valuable input data information. The decoder block takes these latent
variables as input and attempts to obtain the original data. An autoencoder framework also
includes a waypoint, called bottleneck, between the encoder and the decoder (Zhang, Liu
& Jin, 2020a). A simple diagram of an autoencoder is shown in Fig. 2.
For a given input data xi, i= 1,2,...,N , latent variables, hi, can be obtained as:

hi=ψ(wi ∗xi+b) (1)

where wi denotes coefficients, b denotes biases and ψ(x) denotes the activation function
of the encoder layer. After the encoding process, the decoding process starts with obtained
hi using (2):

yi=ψ
(
w̃i ∗hi+ b̃

)
(2)

here, w̃i and b̃ denote coefficients and biases of the decoder layer. In an ideal autoencoder,
xi and yi are expected to be equal. During the training phase, the created network model
tries to minimize the loss function, J (θ), by searching for optimal values for the weight
and bias parameters.

J (θ)=
1
N

N∑
i=1

(xi−yi)2. (3)
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Figure 1 Mean spectra of the corn dataset for each device.
Full-size DOI: 10.7717/peerjcs.1266/fig-1

1D convolutional autoencoders
Convolutional neural network (CNN) is a special form of neural networks that uses
convolution operation in layers. Previous works show that convolutional layers are more
successful than fully connected layers in retrieving high-level features (Kiranyaz et al.,
2021). Because of this, CNN has taken the field of artificial intelligence to an advanced level
by adding a different depth. Similarly, a convolution operation can be applied to layers of
the autoencoder network. Thus, a convolutional autoencoder can extract high-level features
that can be used for classification or regression. CNNs aremainly used for high-dimensional
data such as images; however, they can also be applied to low-dimensional data such as
signals or time series.

The mathematical convolution operation of two discrete signals in one dimension can
be defined as follows:

y[n] = x[n]∗h[n] =
∞∑

k=−∞

x [k]h[n−k]. (4)

Where x (i), y (i) and h(i) are input, output, and filter vectors, respectively.
For a given vector, x, and 1D filter, w , whose length is m, the convolution formula can

be reorganized as:

conv(x,w)k =
m∑
i=1

wi.xk+i−1. (5)

In the forward propagation step of the 1D CNN network, we can generalize formula (5)
for each neuron in each CNN layer.

x lk =ψ
(
conv

(
x l−1k ,w l−1

k
)
+blk

)
=ψ

( m∑
i=1

w l−1
k .x l−1k+i−1+b

l
k

)
. (6)
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Figure 2 A simple autoencoder model.
Full-size DOI: 10.7717/peerjcs.1266/fig-2

Here, blk is the bias of the k th neuron at layer l , x l−1k is the output of layer l−1, w l−1
k

is filter coefficients of the k th neuron at layer l−1, ψ(x) is the activation function of
the current layer. An activation function is used to ensure the nonlinearity of the system.
The selection of the activation function is one of the essential phases in creating a network
model. Sigmoid, hyperbolic tangent (tanh), and rectified linear activation function (ReLU)
are the most popular activation functions. Of these, the hyperbolic tangent is preferred
when the input and output are constrained to values between −1 and 1 (Patil & Kumar,
2021). The formula of the hyperbolic tangent activation function is given in Eq. (7).

ψ(x)=
ex−e−x

ex+e−x
. (7)
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Figure 3 An example application of one-dimensional max pooling.
Full-size DOI: 10.7717/peerjcs.1266/fig-3

A convolution layer is generally followed by a pooling layer. The pooling layer reduces
features without changing the number of channels. Pooling layers do not contain any
parameters, so no learning occurs in this layer. Max pooling and average pooling are the
most popular pooling algorithms. An example of the 1D-Max pooling used in this study is
given in Fig. 3.

A loss function needs to be utilized to evaluate the learning progress of the network.
Mean squared error is the most preferred loss function for regression tasks, and its formula
is given in Eq. (8).

J =
1
N

N∑
i=1

(
ŷi−yi

)2
. (8)

Here, ŷi is the predicted output, and yi is the target output of the network, which is
also equal to the input, xi. For backward propagation, gradients must be calculated and
propagated from the output layer to the input layer using the chain rule.

∂J
∂wk
=

N−m+1∑
i=1

∂J
∂x li

.
∂x li
∂wk

. (9)

In Eq. (9), ∂x
l
i

∂wk
term can be calculated as in Eqs. (10) and (11)

∂x li
∂w l

k
=
∂
(
ψ
(∑m

i=1w
l−1
k .x l−1k+i−1+b

l
k
))

∂w l
k

(10)

∂x li
∂w l

k
=ψ

′

(x l−1k+i−1). (11)
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Substituting Eqs. (11) into (9), the gradients needed to update the weights are obtained
as in Eq. (12).

∂J
∂wk
=

N−m+1∑
i=1

∂J
∂x li

.ψ
′ (
x l−1k+i−1

)
. (12)

Various optimization algorithms in the literature have been proposed to update weights
and biases, such as Stochastic Gradient Descent (SGD), RMSProp, Adam, and Adadelta.
Among these, the Adam optimizer was used in our study. The Adam optimizer is based
on adaptive moment estimation and combines Momentum and RMSProp (Kingma & Ba,
2014). To apply the Adam optimizer, firstly, the moving averages of the gradients and the
moving averages of the square gradients, mt and v t , needs to be calculated using formulas
Eqs. (13) and (14).

mt
=β1mt−1

+ (1−β1)
∂J
∂wk

(13)

v t =β2v t−1+ (1−β2)
∂J 2

∂w2
k
. (14)

Where, β1 and β2 are decay rate parameters. Using Eqs. (13) and (14), we can calculate
bias corrected mt and v t .

m̂t
=

mt

(1−β t
1)

(15)

v̂ t =
v t

(1−β t
2)
. (16)

Using Eq. (17), we can update weights and biases.

w(t )k =w(t−1)
k −η

m̂t
√
v̂ t+∈

. (17)

Here, η is named as the learning rate, another critical hyperparameter affecting the
learning speed of the network.

Proposed model
In Fig. 4, the proposed 1D-CAE model is shown. This model consists of two convolutional
layers, two pooling layers, and two dense (fully connected) layers in the encoder sub-model
and three convolutional layers, two upsampling layers, and one dense layer in the decoder
sub-model. The main reason for choosing two stacked convolutional layers in our model is
that some previous works show that two or three layers are sufficient for CNN-based NIRS
applications (Zhang et al., 2020b). Using random search, the optimal number of filters for
each convolutional layer in the encoder and decoder model was determined and given in
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Figure 4 Proposed one dimensional convolutional autoencoder model.
Full-size DOI: 10.7717/peerjcs.1266/fig-4

Table 1 Description of encoder sub-model of convolutional autoencoder architecture used in our
study.

No Type Number of
filters

Kernel/
Pool size

Stride Output
shape

Number of
parameters

1 Input – – – (700,1) 0
2 Conv1D 16 (5) 1 (700, 16) 96
3 Max Pooling – (2) 0 (350, 16) 0
4 Conv1D 32 (5) 1 (350, 32) 2,592
5 Max Pooling – (2) 0 (175, 32) 0
6 Flatten – – – (5600) 0
7 Dense – – – (64) 358,464
8 Dense – – – (32) 2,080

Tables 1 and 2. The hyperbolic tangent function was chosen to provide nonlinearity. The
filter weights were randomly initialized. Training of the autoencoder model was done using
randomly chosen samples. The reference values in the dataset were not used in this process
which is unsupervised learning. The backpropagation algorithm was used to update the
convolution filter weights. Although two, four, eight, 16, and 32 neurons were tried as
the number of latent variables, no remarkable success was achieved in models containing
fewer than 32 neurons, forcing us to select 32 neurons in our model. The optimization
of unsupervised learning was done using the ADAM optimizer (Kingma & Ba, 2014).
Selected values for learning rate, β1 and β2 were 0.001, 0.9, and 0.999, respectively. After
the unsupervised learning training process, 32 latent variables for each corn kernel were
exported for further analysis.
In the second part of the proposed model, multiple linear regression was employed to
establish linear relations between latent variables and reference outputs. For each reference
output, moisture, oil, protein, and starch, different MLR models were developed using the
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Table 2 Description of decoder sub-model of convolutional autoencoder architecture used in our
study.

No Type Number of
filters

Kernel/
Pool size

Stride Output
shape

Number of
parameters

1 Input – – – (32) 0
2 Dense – – – (5600) 184,800
3 Reshape – – – (175, 32) 0
4 Conv1D_Transpose 32 (3) 1 (175, 32) 3,104
5 Up-sampling – (2) 0 (350, 32) 0
6 Conv1D_Transpose 16 (3) 1 (350, 16) 1,552
7 Up-sampling – (2) 0 (700, 16) 0
8 Conv1D_Transpose 1 (3) 1 (700, 1) 49

Table 3 Statistics of the split dataset.

Target Calibration Prediction Total

Min Mean Std Min Mean Std Min Mean Std
Max Max Max

9.38 9.64 9.38
Moisture

10.99
10.23 0.38

10.94
10.23 0.37

10.99
10.23 0.38

3.09 3.11 3.09
Oil

3.82
3.50 0.17

3.83
3.51 0.20

3.83
3.50 0.18

7.65 7.79 7.65
Protein

9.69
8.67 0.50

9.71
8.67 0.49

9.71
8.67 0.50

62.88 62.83 62.83
Starch

66.47
64.68 0.81

65.81
64.73 0.83

66.47
64.70 0.82

Notes.
All values in the table are in percent.

same latent variables. In addition, all the processes mentioned above were performed for
three devices in the corn dataset to confirm that our results are device independent.

Dataset processing
In order to create a reliable model and tomake accurate comparisons with knownmethods,
the spectral data in the dataset were divided into two sets: one for calibration and one for
prediction by the random division method. This way, the same samples from different
devices were used for calibration and prediction. Of 80 samples, 60 were labeled as
the calibration set, and the remaining 20 were labeled as the prediction set. While the
calibration set was used to train the model, the prediction set was used to evaluate the
model’s performance. The reason for splitting the dataset into two subsets is that for small
datasets, the additional splitting can result in a smaller training set which can be subject to
overfitting (Ashtiani et al., 2021; Féré et al., 2020). Statistics of the split dataset are given in
Table 3.
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Hyperparameters
In machine learning, tuning the hyperparameters of a model is an essential step
that determines the performance of the model. In this work, the optimization of
hyperparameters was carried out using random search with a lookup table. This table
includes kernel size, the number of latent variables, and batch size. The lookup table
is given in Table S1. During training, the maximum number of epochs was set to 20.
Validation loss was tracked along the training of the model. When validation loss increased
for two consecutive epochs, the training of the network was stopped to avoid overfitting.

Test environment
In this article, autoencoder and regression models were implemented in Python (version
3.7.13) using Keras (version 2.9.0), which is a high-level neural networks library (Chollet,
2022) and scikit-learn (version 1.0.2) which provides regression models and model
evaluation tools (Lemaitre, 2021). All training and testing processes were performed
using a computer with Intel i7 10870H CPU, 16GB Ram, and Nvidia RTX 2070 GPU.

RESULTS
Performance evaluation criteria
The coefficient of determination (R2), root mean squared error (RMSE), and root mean
squared percentage error (RMSPE) indicators were used to test the evaluation of our
proposed model. R2 and RMSE indicators were used for overall model evaluation, while
RMSPEwas used to determine the performance of the autoencodermodel in reconstructing
the input spectrum. The formulas of R2, RMSE, and RMSPE are given in Eqs. (18), (19)
and (20) (Ashtiani, Salarikia & Golzarian, 2017; Chen et al., 2008;Miles, 2005).

R2
= 1−

∑N
i=1(yi− ŷi)

2∑N
i=1(yi−y i)2

(18)

RMSE=

√√√√ 1
N

N∑
i=1

(yi− ŷi)2 (19)

RMSPE= 100∗

√√√√ 1
N

N∑
i=1

(
yi− ŷi
yi

)2

. (20)

Here N is the sample size, yi, ŷi and y i are the actual output, the predicted output,
and the mean value of actual outputs, respectively. As one can understand from Eq.
(18), R2 indicator is the proportion of the dependent variable variation explained by the
independent variables and takes values between 0 and 1. RMSE, another indicator often
used in regression tasks, is equal to the standard deviation of the residuals. Similarly, RMSPE
gives the ratio of the error to the input spectrum in percent. Values closer to 0 are preferable
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Table 4 RMSPE results between the input and decoded spectra using the 1D convolutional autoen-
coder model.

Dataset
Model

M5 MP5 MP6

Min Mean± Std Min Mean± Std Min Mean± Std
Max Max Max

0.69 0.35 0.83
Calibration

8.59
2.62± 1.84

4.01
1.00± 0.73

5.86
2.09± 1.13

0.89 0.43 0.84
Prediction

10.70
3.31± 2.30

3.08
0.98± 0.61

5.76
2.53± 1.27

Notes.
All values in the table are in percent.

for RMSE and RMSPE. Althoughmost studies include the ratio of performance to deviation
(RPD) metric to show model quality, some articles argue that RPD is not different from
R2 (Minasny & McBratney, 2013). For this reason, we did not find it necessary to include
both metrics.

The 1D-CAE model was created separately for M5, MP5, and MP6 datasets in the first
experiment. In this stage, themain objective was to obtain a reliablemodel that reconstructs
the spectrum like the input spectrum and to obtain meaningful latent variables. The
RMSPE indicator was utilized to show the reconstruction performance of the model, and
the obtained results are given in Table 4. Besides, sample input and reconstructed spectra
for each dataset are shown in Fig. 5. The 1D-CAE model successfully reconstructed the
spectrum and obtained a mean RMSPE value of 1.90% for calibration and 2.27% for
prediction.

The most common regression methods used in NIR systems, PLSR and PCR, were used
as comparison methods. Another popular regression model, MLR, was not used because
the sample number is lower than the feature number, which is necessary for MLR models.
The latent variable and principal component parameters of the PLSR and PCR methods
were selected as the optimal value between 1 and 10. RMSE and 5-fold cross-validation were
used to find the optimal value for the latent variable and principal component parameters.
Together with the original spectrum, four different preprocessing methods were applied
to spectral data to increase the accuracy of these methods. Besides, the proposed method,
1D-CAE+MLR, was also applied to spectrum data. R2 and RMSE values were calculated
separately for each combination. The block diagram summarizing the whole process is
given in Fig. 6.

The M5 dataset is the first used for the test, and the obtained results are given in
Table 5. A careful examination of these results indicates that the proposed method exhibits
satisfactory performance compared to other methods, as evidenced by the minimum R2

values of 0.9560 and 0.9012 in the calibration and prediction sets, respectively. Furthermore,
the proposed method demonstrated superior performance when predicting oil and starch
content, as it yielded higher R2 values and lower RMSE values. However, when analyzing
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Figure 5 Input and reconstructed spectra. (A) M5-training, (B) M5-test, (C) MP5-training, (D) MP5-
test, (E) MP6-training, (F) MP6-test.

Full-size DOI: 10.7717/peerjcs.1266/fig-5

the prediction of moisture and protein content, it was found that the PLSR method yielded
higher R2 values and lower RMSE values.

The MP5 dataset was employed in another experiment, and the results are presented in
Table 6. The proposed method demonstrates superior performance, as evidenced by the
higher R2 values for all targets in the calibration set. Similar to theM5 dataset, the proposed
method outperforms conventional methods when predicting oil and starch content, as it
yields higher R2 values and lower RMSE values. However, when assessing the prediction of
moisture and protein content, it is observed that the PLSR method yields higher R2 values
and lower RMSE values. A notable difference is observed, particularly in the oil parameter,
with an increase of 20.9% in the R2 metric.

The MP6 dataset was utilized in the final experiment, and the test procedure was applied
in the same manner as in previous experiments. The obtained results are presented in
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Figure 6 Overall block diagram of the application and comparison steps for the proposed method.
Full-size DOI: 10.7717/peerjcs.1266/fig-6

Table 7. Although the R2 values were lower than those obtained in the M5 and MP5
datasets, the proposed method showed improved performance on all targets in the MP6
dataset, as evidenced by the higher R2 values and lower RMSE values. Additionally, when
analyzing the prediction of the oil and starch parameters, it was found that conventional
methods were unable to establish a viable model, as the R2 value was below 0.7.

DISCUSSION
As mentioned before, preprocessing is an inevitable stage of NIRS modeling techniques.
According to Tables 5, 6 and 7, four different preprocessing methods have yielded higher
scores on different metrics, confirming this hypothesis. However, the inherent trial
and error have led researchers to look for new preprocessing methods. Although some
innovative methods have been proposed, they have not been widely used (Helin et al., 2022;
Xu et al., 2022). But still, DL-based approaches give promising results. 1D-CAE and MLR
combination offers a new approach to this problem.

The R2 values obtained with the proposed method in each target parameter and dataset
were calculated as a percentage and illustrated in Fig. 7. The RMSE metric was not
considered in the evaluation since it provided results consistent with the R2 metric.

Upon a comprehensive evaluation of the results in Tables 5, 6 and 7, it was observed that
the proposed method yielded a 3.52% increase in the mean R2 metric in the calibration
set, compared to the highest R2 value obtained with conventional method combinations
in the moisture parameter. However, a slightly lower value of 0.14% was obtained in the
prediction set. The R2 values were calculated for the combinations generated using the
PLSR method, and the mean R2 value was determined and compared with the mean R2

value obtained with the proposed method. Results indicated that the proposed method
yielded a 10.9% and 12.16% improvement in R2 values for the calibration and prediction
sets, respectively, compared to the PLSR method combinations. The comparison was also
made with the PCR method for the prediction of moisture content. Results indicated that
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Table 5 Obtained results for the M5 dataset.

Target Preprocessing
method

Regressor LV R2 RMSE

PC Calibration Prediction Calibration Prediction

Original 10 0.9978 0.9957 0.0175 0.0245
MSC 6 0.8931 0.8104 0.1235 0.1645
SNV 6 0.8916 0.7961 0.1244 0.1706
SG 10 0.9978 0.9957 0.0175 0.0245
MC

PLSR

10 0.9982 0.9939 0.0160 0.0294
Original 9 0.9903 0.9833 0.0370 0.0487
MSC 8 0.8843 0.7741 0.1285 0.1796
SNV 8 0.8813 0.7503 0.1301 0.1888
SG 9 0.9903 0.983 0.0371 0.0487
MC

PCR

8 0.9910 0.9865 0.0358 0.0438

Moisture

1D CAE+MLR 0.9913 0.9716 0.0353 0.0628
Original 10 0.9254 0.7554 0.0480 0.0870
MSC 8 0.8680 0.7256 0.0639 0.0921
SNV 8 0.8674 0.7222 0.0640 0.0927
SG 10 0.9248 0.7548 0.0482 0.0871
MC

PLSR

10 0.9373 0.8220 0.0440 0.0742
Original 8 0.6856 0.4450 0.0986 0.1309
MSC 9 0.7949 0.6579 0.0796 0.1028
SNV 9 0.7931 0.6579 0.0800 0.1029
SG 8 0.6855 0.4455 0.0986 0.1310
MC

PCR

9 0.7970 0.6187 0.0792 0.1086

Oil

1D CAE+MLR 0.9733 0.9632 0.0272 0.0388
Original 10 0.9630 0.9172 0.0953 0.1425
MSC 10 0.9657 0.9408 0.0917 0.1204
SNV 10 0.9666 0.9410 0.0904 0.1203
SG 10 0.9628 0.9170 0.0955 0.1427
MC

PLSR

10 0.9729 0.9484 0.0815 0.1125
Original 9 0.8848 0.8038 0.1681 0.2194
MSC 8 0.9350 0.9092 0.1262 0.1492
SNV 8 0.9371 0.9118 0.1242 0.1471
SG 9 0.8847 0.803 0.1681 0.2195
MC

PCR

8 0.9092 0.8476 0.1492 0.1934

Protein

1D CAE+MLR 0.9731 0.9012 0.0816 0.1535
(continued on next page)
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Table 5 (continued)

Target Preprocessing
method

Regressor LV R2 RMSE

PC Calibration Prediction Calibration Prediction

Original 10 0.9525 0.8538 0.1777 0.3117
MSC 10 0.9517 0.8617 0.1792 0.3032
SNV 10 0.9521 0.8615 0.1783 0.3034
SG 10 0.9523 0.8539 0.1781 0.3116
MC

PLSR

10 0.9728 0.9304 0.1344 0.2150
Original 8 0.7341 0.3903 0.4205 0.6367
MSC 8 0.8919 0.7650 0.2681 0.3952
SNV 8 0.8887 0.7575 0.2720 0.4016
SG 8 0.7339 0.3900 0.4206 0.6369
MC

PCR

9 0.8858 0.7374 0.2755 0.4179

Starch

1D CAE+MLR 0.9560 0.9359 0.1703 0.2093

Notes.
The highest R2 value and the lowest RMSE value of each target were bolded to increase readability.
LV, The number of Latent Variables; PC, The number of Principal Components.

the proposed method yielded an improvement of 14.34% and 20.99% in R2 values for the
calibration and prediction sets, respectively when compared to PCR combinations.

The evaluationwas also performed for the oil parameter by utilizing the results from three
datasets. The proposed method was compared to the conventional method combinations
with the highest R2 value, the mean R2 value of PLSR combinations, and the mean
R2 value of PCR combinations. The results showed that the proposed method yielded
an improvement of 5.63% and 19.43% in R2 values for the calibration and prediction
sets, respectively when compared to the conventional method with the highest R2 value.
Additionally, the proposed method showed a 9.70% and 25.57% improvement in R2 values
for the calibration and prediction sets, respectively, when compared to the mean R2 values
of the PLSR combinations and 22.22% and 49.13% improvement in R2 values for the
calibration and prediction sets respectively when compared to the mean R2 values of the
PCR combinations.

In predicting the third target, protein content, the proposed method yielded a 1.43%
improvement in the calibration set compared to the conventional method combination
with the highest R2 value. Conversely, a 2.37% decline was noted in the prediction set.
Similarly, compared to the mean R2 value of the PLSR combinations, the proposed method
demonstrated a 2.03% enhancement in the calibration set and a 0.95% decline in the
prediction set. The proposed method revealed an 8.33% and 12.25% increase compared
to the mean R2 value of the PCR combinations in the calibration and prediction set,
respectively.

The proposed method for determining the starch content of corn samples was found
to be highly efficacious, as evidenced by its significant improvement in performance when
compared to PLSR and PCR combinations. Specifically, the proposed method exhibited an
improvement of 1.98%, 7.40%, 3.20%, 12.18%, 16.78%, and 63.16% to the conventional
method combination with the highest R2 value, the mean R2 value of PLSR combinations,
and the mean R2 value of PCR combinations, respectively.

Cataltas and Tutuncu (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1266 16/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1266


Table 6 Obtained results for the MP5 dataset.

Target Preprocessing
method

Regressor LV R2 RMSE

PC Calibration Prediction Calibration Prediction

Original 10 0.9243 0.8270 0.1039 0.1571
MSC 6 0.7772 0.6167 0.1783 0.2339
SNV 6 0.7735 0.6065 0.1798 0.2370
SG 10 0.9241 0.8270 0.1041 0.1571
MC

PLSR

6 0.9008 0.8276 0.1190 0.1569
Original 9 0.8493 0.6794 0.1467 0.2140
MSC 9 0.7723 0.6005 0.1803 0.2388
SNV 9 0.7687 0.5835 0.1817 0.2439
SG 9 0.8490 0.6793 0.1467 0.2140
MC

PCR

9 0.8988 0.7975 0.1201 0.1700

Moisture

1D CAE+MLR 0.9605 0.7851 0.0755 0.1725
Original 8 0.8142 0.6027 0.0758 0.1108
MSC 7 0.7948 0.6234 0.0796 0.1079
SNV 7 0.7951 0.6205 0.0796 0.1083
SG 8 0.8141 0.6028 0.0758 0.1108
MC

PLSR

10 0.8561 0.6177 0.0667 0.1087
Original 9 0.7893 0.5810 0.0807 0.1138
MSC 9 0.7846 0.6059 0.0816 0.1104
SNV 9 0.7842 0.6025 0.0817 0.1109
SG 9 0.7892 0.5808 0.0807 0.1139
MC

PCR

9 0.7637 0.509 0.0855 0.1231

Oil

1D CAE+MLR 0.9245 0.7537 0.0457 0.1002
Original 10 0.9485 0.8623 0.1123 0.1838
MSC 10 0.9483 0.8960 0.1126 0.1597
SNV 10 0.9481 0.8939 0.1128 0.1613
SG 10 0.9483 0.8620 0.1126 0.1840
MC

PLSR

10 0.9553 0.8787 0.1047 0.1725
Original 8 0.8688 0.7392 0.1794 0.2530
MSC 9 0.9034 0.7360 0.1539 0.2545
SNV 9 0.9035 0.7318 0.1538 0.2565
SG 8 0.8687 0.7391 0.1794 0.2530
MC

PCR

9 0.9188 0.8376 0.1411 0.1996

Protein

1D CAE+MLR 0.9811 0.8725 0.0684 0.1743
(continued on next page)
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Table 6 (continued)

Target Preprocessing
method

Regressor LV R2 RMSE

PC Calibration Prediction Calibration Prediction

Original 10 0.8936 0.7349 0.2659 0.4199
MSC 9 0.8908 0.7813 0.2694 0.3813
SNV 10 0.8930 0.7684 0.2667 0.3924
SG 10 0.8933 0.7352 0.2663 0.4196
MC

PLSR

9 0.8978 0.7363 0.2606 0.4187
Original 9 0.7363 0.3423 0.4188 0.6614
MSC 9 0.7880 0.4174 0.3754 0.6225
SNV 9 0.7839 0.4139 0.3790 0.6243
SG 9 0.7361 0.3419 0.4189 0.6616
MC

PCR

9 0.8566 0.6848 0.3087 0.4578

Starch

1D CAE+MLR 0.9622 0.7994 0.1578 0.3703

Notes.
The highest R2 value and the lowest RMSE value of each target were bolded to increase readability.
LV, The number of Latent Variables; PC, The number of Principal Components.

For the overall assessment, the proposed method yielded higher R2 values, especially
when predicting the oil and starch parameters for each dataset. The reference and predicted
output for each target and spectrum are given in Table S2. These data are visualized in
Fig. 8.

Table 8 presents a compilation and comparison of studies in the literature that utilize
the corn dataset with the proposed method. Bian et al. (2016) employed four different
PLSR-based methods for estimating protein parameters utilizing the MP6 dataset. These
methods were found to enhance the performance of the traditional PLSR method. Upon
comparing the four methods utilized in the study, it was observed that the proposed
1D-CAE+MLR method demonstrated superior results with higher R2 and lower RMSE
values. Yuanyuan & Zhibin (2018) have proposed four different models based on neural
networks and deep learning to estimate four parameters of the corn dataset. The dataset
used in this study was not specified. Upon examination of the graph provided in the study,
it is inferred that the MP5 dataset was used, and the comparison was made accordingly. It
was observed that the proposed method gave a higher R2 value in the protein and starch
parameters compared to themethods used in this study, while it gave a lower R2 value in the
moisture and oil parameters. Fatemi, Singh & Kamruzzaman (2022) developed wavelength
selection-based models to predict four parameters of corn seeds using the M5 dataset. They
identified a specific wavelength range for each parameter. When we compare our result
with this study, our method gives a higher R2 value for the oil parameter, but wavelength
selection-based models give a higher R2 value for the other three parameters. According
to these studies, it can be seen that competitive results are obtained with the proposed
method.

To confirm the statistical validity of the results obtained with the proposed method,
a t -test was performed. Based on the results of the t -test, it was determined that all of
the results obtained with the proposed method fell within the 99.9% confidence interval
(p-value < 0.001).
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Table 7 Obtained results for the MP6 dataset.

Target Preprocessing
method

Regressor LV R2 RMSE

PC Calibration Prediction Calibration Prediction

Original 8 0.8880 0.7568 0.1264 0.1863
MSC 5 0.7089 0.5165 0.2039 0.2628
SNV 5 0.7007 0.5081 0.2067 0.2650
SG 8 0.8879 0.7569 0.1265 0.1863
MC

PLSR

7 0.8771 0.7705 0.1324 0.1810
Original 8 0.7831 0.6226 0.1760 0.2321
MSC 9 0.7400 0.5225 0.1927 0.2611
SNV 9 0.7326 0.4963 0.1950 0.2682
SG 8 0.7831 0.6224 0.1760 0.2322
MC

PCR

7 0.8560 0.7500 0.1434 0.1889

Moisture

1D CAE+MLR 0.9530 0.8254 0.0824 0.1555
Original 9 0.8274 0.6236 0.0730 0.1079
MSC 10 0.8448 0.6647 0.0693 0.1018
SNV 10 0.8441 0.6487 0.0694 0.1042
SG 9 0.8272 0.6234 0.0731 0.1079
MC

PLSR

10 0.8656 0.6819 0.0644 0.0992
Original 9 0.7910 0.5541 0.0804 0.1174
MSC 7 0.7597 0.5984 0.0862 0.1114
SNV 7 0.7571 0.5900 0.0866 0.1126
SG 9 0.7910 0.5539 0.0804 0.1175
MC

PCR

8 0.7259 0.5108 0.0920 0.1230

Oil

1D CAE+MLR 0.9096 0.8199 0.0500 0.0857
Original 10 0.9502 0.8863 0.1104 0.1670
MSC 10 0.9446 0.8950 0.1165 0.1605
SNV 10 0.9442 0.8934 0.1169 0.1617
SG 10 0.9502 0.8858 0.1105 0.1673
MC

PLSR

10 0.9532 0.8820 0.1071 0.1701
Original 9 0.8737 0.7658 0.1760 0.2397
MSC 9 0.9095 0.7765 0.1490 0.2342
SNV 9 0.9099 0.7784 0.1487 0.2331
SG 9 0.8737 0.7662 0.1760 0.2395
MC

PCR

9 0.9088 0.7884 0.1495 0.2279

Protein

1D CAE+MLR 0.9681 0.8995 0.0889 0.1548
(continued on next page)
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Table 7 (continued)

Target Preprocessing
method

Regressor LV R2 RMSE

PC Calibration Prediction Calibration Prediction

Original 10 0.8957 0.6287 0.2633 0.4969
MSC 8 0.8731 0.6616 0.2904 0.4744
SNV 8 0.8679 0.6644 0.2964 0.4724
SG 10 0.8956 0.6272 0.2635 0.4979
MC

PLSR

9 0.8815 0.6697 0.2807 0.4686
Original 9 0.7775 0.4936 0.3846 0.5803
MSC 9 0.8312 0.5568 0.3350 0.5429
SNV 9 0.8258 0.5528 0.3403 0.5453
SG 9 0.7777 0.4944 0.3844 0.5798
MC

PCR

9 0.8284 0.4976 0.3378 0.5780

Starch

1D CAE+MLR 0.9002 0.7988 0.2563 0.3709

Notes.
The highest R2 value and the lowest RMSE value of each target were bolded to increase readability.
LV, The number of Latent Variables; PC, The number of Principal Components.

Another highlight of this study is that although there are no significant changes in the
obtained spectra due to themeasurement of the same sample with different instruments, the
success of conventional chemometric methods decreases significantly. This shows that the
success of chemometric methods is spectrum dependent, as is the case with preprocessing
methods.

Deep learning models require a larger quantity of samples for training compared to
traditional neural networks to construct an accurate model. Failure to do so results in
underfitting, where the model is unable to capture the underlying pattern of the data. As
the generation of NIR datasets and their corresponding reference values is a laborious
process, such datasets often have a limited number of samples, as in the corn dataset. This
situation represents the limitations of the proposed method as well as other DL models.

CONCLUSIONS
A one-dimensional convolutional autoencoder-based NIRmodeling technique is proposed
to assess the quality parameters of corn kernels. With 1D-CAE, the need for preprocessing
the spectrum, which is the common point of chemometric methods, is eliminated. The
proposed method was tested on three different spectra obtained from different devices
in the corn dataset, showing that our results are device independent. The results indicate
that our method has superior performance over common preprocessing and chemometric
method combinations according to R2 and RMSE metrics, especially in oil and starch
parameters. Our method provides a reliable model that ensures fast and precise analysis in
near-infrared spectroscopy. Future investigations should focus on applying the proposed
method to calibration transfer.
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Table 8 The comparison of the studies using the corn dataset.

Reference Method M5 dataset MP5 dataset MP6 dataset

Moisture Oil Protein Starch Moisture Oil Protein Starch Moisture Oil Protein Starch

PLS – – – – – – – – – – 0.8815 –

MCUEV-PLS – – – – – – – – – – 0.8870 –

RT-PLS – – – – – – – – – – 0.8913 –
Bian et al. (2016)a

VS-PLS – – – – – – – – – – 0.8932 –

ECNN – – – – 0.9471 0.8079 0.8172 0.7278 – – – –

CNN – – – – 0.9339 0.7545 0.8082 0.6988 – – – –

BP-ANN – – – – 0.8813 0.6109 0.7848 0.6552 – – – –
Yuanyuan & Zhibin (2018)b

PLS – – – – 0.9143 0.7052 0.7391 0.6932 – – – –

Fatemi, Singh & Kamruzzaman (2022) WS-MLR 0.9999 0.88 0.99 0.96 – – – – – – – –

Proposed method 0.9716 0.9631 0.9012 0.9359 0.7851 0.7537 0.8725 0.7994 0.8254 0.8199 0.8995 0.7988

Notes.
aThe results obtained in this study were reported according to the R (correlation coefficient) metric, and these values have been converted to the R2 metric to ensure compliance.
bIn the study, the used dataset was not specified, and this table was prepared considering that the used dataset was MP5, according to the graph given in the study.
Abbreviations: MCUEV-PLS, Monte Carlo uninformative variable elimination-partial linear regression; RT-PLS, Randomization test-partial linear regression; VS-BPLS, Variable space boosting-
partial linear regression; ECNN, Ensemble convolutional neural networks; CNN, Convolutional neural networks; BP-ANN, Backpropagation—Artificial Neural Networks; WS-MLR, Wavelength
Selection—Multiple Linear Regression.
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Figure 7 Comparison of the proposed method with conventional methods according to the R2 met-
ric. Reference value (green line) corresponds (A) Conventional method combination with the highest R2

value, (B) the mean R2 value of PLSR combinations, (C) the mean R2 value of PCR combinations.
Full-size DOI: 10.7717/peerjcs.1266/fig-7
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Figure 8 Actual and predicted outputs using the proposed method for each target. (A) Moisture (cal-
ibration), (B) moisture (prediction), (C) oil (calibration), (D) oil (prediction), (E) protein (calibration),
(F) protein (prediction), (G) starch (calibration) and (H) starch (prediction).

Full-size DOI: 10.7717/peerjcs.1266/fig-8
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