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ABSTRACT
Visual inspection of the appearance defects on industrial products has always been a
research hotspot pursued by industry and academia. Due to the lack of samples in the
industrial defect dataset and the serious class imbalance, deep learning technology
cannot be directly applied to industrial defect visual inspection to meet the real
application needs. Transfer learning is a good choice to deal with insufficient
samples. However, cross-dataset bias is unavoidable during simple knowledge
transfer. We noticed that the appearance defects of industrial products are similar,
and most defects can be classified as stains or texture jumps, which provides a
research basis for building a universal and adaptive industrial defect detection model.
In this article, based on the idea of model-agnostic meta-learning (MAML), we
propose an adaptive industrial defect detection model through learning from
multiple known industrial defect datasets and then transfer it to the novel anomaly
detection tasks. In addition, the Siamese network is used to extract differential
features to minimize the influence of defect types on model generalization, and can
also highlight defect features and improve model detection performance. At the same
time, we add a coordinate attention mechanism to the model, which realizes the
feature enhancement of the region of interest in terms of two coordinate dimensions.
In the simulation experiments, we construct and publish a visual defect dataset of
injection molded bottle cups, termed BC defects, which can complement existing
industrial defect visual data benchmarks. Simulation results based on BC defects
dataset and other public datasets have demonstrated the effectiveness of the proposed
general visual detection model for industrial defects. The dataset and code are
available at https://github.com/zhg-SZPT/MeDetection.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Data Mining and Machine
Learning
Keywords Model-agnostic meta-learning, Industrial visual inspection, Convolutional neural
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INTRODUCTION
Industrial surface defect detection is intuitively important for industrial production, which
can not only help enterprises to improve product quality to meet the growing needs of
consumers, but also help enterprises to locate problems in a timely manner to reduce
production costs (Xiao et al., 2021). Only relying on human power to complete visual
inspection cannot guarantee efficient industrial production requirements. Human
subjective consciousness and long-term eye fatigue are prone to product misdetection and
missed detection (Bhatt et al., 2021). Using computer vision technology to solve the
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intelligent detection of appearance defects of industrial products has always been the goal
pursued by industry and academia.

Relying on traditional image processing technology to solve the problem of visual
inspection of industrial defects has a long research history, which can be divided into two
types of research methods (Carrasco et al., 2021). On the one hand, the specific feature
extractors are manually designed to extract pixel-wise and structure-wise image features,
which then are fed into the traditional classifier (KNN, SVM, BP etc.) for defect
identification (Xue-Wu et al., 2011). However, if the extracted features are not precise
enough, the judgments made by relying on them are bound to be inaccurate. Meanwhile, if
the extracted features are not fine enough and the dimensionality of the feature space is too
large, the complexity of the subsequent discriminative algorithm may be very high. On the
other hand, the feature difference between the sample to be tested and the normal template
is calculated by means of template matching, so as to determine whether there are defects
on the sample to be tested. However, the choice of template and the limitations of the
matching algorithm often affect model performance. In general, traditional industrial
image processing methods rely on manual design features, and the generalization ability is
poor. The relatively fixed feature extractors make the detection model more limited in
application.

In the context of big data, deep learning techniques represented by a convolutional
neural network (CNN) has achieved extensive development and progress in the field of
computer vision and pattern recognition. Using the learned features to replace the
handcrafted features, a CNN algorithm can map the pixel space features to high-layer
semantic representation based on a series of operations consisting of convolution and
pooling. There are already many deep neural network models of deep learning, like
AlexNet, VggNet, GoogLeNet, ResNet, etc. (Ma et al., 2021), which lays a solid foundation
for industrial visual inspection research. The application of CNN in industrial visual
inspection can refer to some review works (Chen et al., 2021, Qi, Yang & Zhong, 2020).

The tasks of visual detection of defects in industrial products have some unique
characteristics that lead us to fully consider these factors when designing CNN based
detection models:

� Industrial defect datasets present a serious sample non-equilibrium phenomenon. In the
production process of industrial products, the occurrence of defects is a small
probability event. Therefore, the number of sample classes is unbalanced. This
phenomenon can easily lead to model overfitting.

� Industrial defect detection belongs to the multi-objective and multi-scale detection tasks.
There are various types of defects and multi-scale differences between the same types.
From the computer vision perspective, such multi-objective and multi-scale detection
tasks require higher demand on the performance of the detection model.

� The occurrence of industrial defects has strong randomness. The type, location, size, and
severity of industrial defects cannot be predetermined, presenting great randomness,
and the collected samples are difficult to meet the marginal effect of the defect feature
data, which seriously affects the performance of the detection model.
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Considering the unbalanced phenomenon of industrial defect data distribution, it is
unrealistic and insufficient to solve the above problems by complicating the model or
deepening the number of network layers. There are many ways (Lin et al., 2017; Elkan,
2001; Fernández et al., 2018) to address data imbalance problems. Transfer learning is a
good choice to solve the problem of insufficient data or imbalanced data distribution. By
training the model on other large datasets and fine-tunning on the target detection task set,
the model performance can often be improved without too much data. Some works (Abu
et al., 2021; Liu et al., 2021) implement knowledge transfer for industrial defect detection
based on public datasets, such as ImageNet (Krizhevsky, Sutskever & Hinton, 2017), COCO
(Lin et al., 2014), etc. Additionally, there are some works arguing that it is more reasonable
to implement knowledge transfer based on similar industrial defect datasets (Zhao et al.,
2020; Ri-Xian, Ming-Hai & Xian-Bao, 2015; Wang & Xiao, 2021). There are huge
differences in the characteristics of different industrial defects. For example, black spots on
the surface of white products and white spots on the surface of black products belong to
two different detection tasks. This phenomenon is called as cross-dataset bias. Transfer
learning must effectively solve the cross-dataset bias problem in order to ensure the
effectiveness of target detection knowledge reuse. Even if the detection knowledge transfer
is realized between different industrial defect visual inspection tasks, due to the different
production process of industrial products, defect types and other factors, simple
knowledge transfer often not only fails to achieve effective initialization weight settings for
the detection model, but also misguides the optimization direction.

Generally, the types of appearance defects of industrial products can be roughly divided
into two categories, as shown in Fig. 1. Stain defects mainly refer to abnormal color jumps on
the surface of products, while texture defects generally aim at products with textured features
on the surface, which refer to the phenomena that have a destructive effect on the texture
performance of products. The similarity of industrial defects motivates us to think that,
whether is it possible to establish a unified network framework for industrial defect feature
extraction with strong application generalization based on known industrial defect datasets.
Such a feature extraction framework can learn the common features of industrial defects, at
least effectively for stain and texture defects, which is the main motivation of our work.

Figure 1 Two types of surface defects of industrial products. Images taken from Bergmann et al.
(2020a) (License: CC-BY-NC-SA 4.0). Full-size DOI: 10.7717/peerj-cs.1264/fig-1
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Transfer learning only considers the best results to be achieved on the current training
data, resulting to lead to negative knowledge transfer possibly. Meta-learning (Finn, Abbeel
& Levine, 2017) does not directly teach the model how to solve a given task but learning to
learn. For multiple tasks, the model under the meta-learning training strategy does not
pursue performance under a specific task, but is committed to extracting the common
characteristics of data distribution in different task sets, and its performance is balanced in
multiple task sets. Model-agnostic meta-learning (MAML) (Finn, Abbeel & Levine, 2017) is
a typical representative of meta-learning. For MAML training strategy, in a training cycle,
multiple task sets are fed into the model, which is updated with the error sum of the model
acting on these tasks. We believe that a general-purpose industrial defect feature extraction
model can be constructed by using the MAML-based training strategy on the public
industrial defect dataset, which is the main contribution of this article. To the best of our
knowledge, it is the first time to apply the MAML training strategy to the construction of
the visual inspection model for industrial defects.

MAML seeks common target features across multiple training datasets, which requires
similarities across tasks. Although we can attribute most industrial defects to stains or
texture defects, there are large differences between defects of the same type. In terms of
stain defects, white stains on black surfaces and black stains on white surfaces belong to
two distinct detection tasks. We hope that the model can pay attention to the feature
difference changes on the surface of industrial products, instead of determining whether
the products are good or not based on color change or other specific features. In the
proposed model, in order to further unify and highlight defect features, Siamese network
(Wu et al., 2019; Luan, Jing & Zuo, 2021) is used to reinforce feature differences. The
Siamese network is configured with dual-stream channels, in which the main channel is
used for feature extraction of defect-free samples, and the samples to be tested are fed into
the secondary channel as input. After the feature difference calculation, the Siamese
network can ensure that there is no response when normal samples are input to the
secondary channel, and when defective samples are set as input, the activation response is
realized.

In this article, a general and adaptive visual recognition model for appearance defects of
industrial products, termed MeDetection (Mete Detection), is proposed based on MAML
training strategy. MeDection model takes the Siamese network as input, followed by the
4Conv (Finn, Abbeel & Levine, 2017) backbone to achieve defect feature extraction. The
4Conv framework is commonly used in industrial visual inspection models as the
backbone for feature extraction (Sun et al., 2019). In order to improve the accuracy of the
MeDetection model for unified feature extraction of industrial defects, the coordinate
attention (CA) is embedded into the network to achieve feature enhancement at the
location of the defect. It is worth mentioning that MeDetection method mainly deals with
industrial defect recognition, and it can also obtain the location of defects with weakly
supervised localization algorithm (like Grad-CAM (Selvaraju et al., 2017) in this article). In
addition, in this article, a new visual dataset of industrial product defects is released. We
constructed a defect dataset of industrial injection-molded bottle caps by means of
collection, named BC defects dataset, which contains eight types of defects. The BC defects

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1264 4/23

http://dx.doi.org/10.7717/peerj-cs.1264
https://peerj.com/computer-science/


dataset contains 3,008 images and considers the case of multiple defects in the same
sample. BC defects dataset is a good complement to the current industrial defect visual
benchmarks. In summary, the contributions of this article are as follows:

1. Based on the MAML training strategy, a general and adaptive visual detection model,
named MeDetection, for industrial defects is constructed, which can achieve unified
feature extraction for industrial defects and facilitate knowledge transfer in new
industrial inspection tasks;

2. The Siamese network realizes the common feature extraction of the two-stream branch,
and the feature difference highlights the response of the defect in the feature space;

3. Coordinate attention is embedded into the MeDetection model, which further improves
the performance of industrial defect detection;

4. We publish a visual dataset of injection-molded bottle cap defects, named BC defects.
Moreover, the validity of the MeDetection model is verified by using the BC defects
dataset and other publicly available industrial defect datasets.

The structure of this article is as follows. Section 1 presents the related work. Section 2
introduces the defect detection model proposed in this article. Section 3 introduces the BC
defects dataset. Section 4 shows the simulation results and Section 5 is the conclusion.

RELATED WORK
Traditional visual detection methods
Traditional visual detection methods mainly relies on manually designed features to
complete defect recognition, which can be divided into two categories: the texture feature-
based methods and the color feature-based methods.

� The texture feature-based methods: The texture feature-based methods are mainly based
on the grayscale distribution of pixels and their spatial neighborhoods for anomaly
detection, which can be further classified into three categories: statistical methods, signal
processing methods, and model methods. For statistical methods (Song et al., 2015), the
main idea is to describe various statistical characteristics of the distribution of gray
values. Then detection is performed by artificially setting thresholds. The signal
processing methods (Tsai, Wu & Li, 2012) regard the image as a two-dimensional signal
and analyze the image from the perspective of signal filter design. The traditional
modeling method is to build detection models for specific tasks, and the common
detection methods are mainly MRF (Markov random field) models (Luthon, Popescu &
Caplier, 1994) and fractal models (Xu, 2015) etc.

� The color feature-based methods: Stain defects on the surface of industrial products can
cause color jumps. The color feature-based methods mainly uses color histograms
(Prasitmeeboon & Yau, 2019) to describe the proportion of different colors in an image
or color moments (Li, Quan & Wang, 2020) to describe the distribution of colors to
accomplish anomaly detection.
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Traditional defect detection methods are mainly designed for specific tasks, and the
model has poor generalization and flexibility. The feature extraction strategy based on
manual setting is unstable and cannot effectively deal with the complex industrial
production environment.

Deep learning detection methods
Deep learning applies the end-to-end training strategy to enable the model to learn the
defect features automatically, which can enhance the model’s generalization performance.
Deep learning based methods for industrial defect detection can be divided into two main
categories: supervised learning and semi-supervised or unsupervised learning.

� Supervised learning: Supervised industrial defect detection methods are mainly applied
to situations where the defect patterns are known. The most direct and simple way is to
apply CNN-based classification (Zhang, Gu & Zhang, 2021), detection (Li et al., 2021),
and segmentation (Long, Shelhamer & Darrell, 2015) models to industrial defect
detection tasks. The classification of the appearance quality of industrial products is the
simplest and most straightforward visual inspection task. However, for some special
applications, it is necessary to obtain the position information of industrial product
defects, even the contour information, to improve the production process.
Representative works can refer to Villa et al. (2018) and Jing et al. (2020).

� Semi-supervised or unsupervised: In practical industrial production, it is not easy to
obtain enough defect datasets. Even the occurrence of zero-sample unknown defects is
possible. The semi-supervised and unsupervised industrial defect detection methods
mainly applies to the situations with unknown defects. The unsupervised industrial
defect detection methods mainly rely on generative models, which believe that
generators built with known samples cannot produce satisfactory results for the
discriminator when encountering unknown defects. The most commonly applied
reconstruction methods are autoencoder (AE) (Alahmadi, Alkhraan & BinSaeedan,
2022) and generative adversarial network (GAN) (Arora & Soni, 2021). The semi-
supervised industrial defect detection methods, from a statistical point of view, consider
that the distribution of abnormal samples in the feature space is inconsistent with that of
normal samples. In high-dimensional space, or abstract feature space, unknown sample
detection can be achieved by setting the data distribution discriminator. Typical
methods can be referred in SPADE (Cohen & Hoshen, 2020), PADIM (Defard et al.,
2021).

Industrial defect detection models pursue application generalization and rapidity. The
strong adaptive feature extraction network for industrial defects is the key. To the best of
our knowledge, there is currently no research focusing on general-purpose feature
extraction models for industrial defects.

CNN and meta learning
With the increase in the amount of data and the improvement of computing power, deep
neural networks (DNNs) have shown strong performance in the field of machine learning.
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CNN is the most typical representative of DNNs, which can allow image-level input and
realize local feature extraction of images. Feature extraction based on convolution
operation is the most important component in CNN. In a specific layer of convolution
operation, the weight-shared convolution kernel traverses the entire image, and serves as a
feature extractor to highlight local target features. The training process of CNN model is
the process of determining parameters of convolution function, which is composed of the
trainable parameters w ¼ w1;w2; � � �;wLð Þ with random initialization. The trainable or
learning parameters can be discriminatively determined by sample data xi; yið Þ, for
i ¼ 1; 2; � � �; n, so that

P
n ‘ f xi;wð Þ; yið Þ ! min, where ‘ �ð Þ is the loss function.

Convolutional layer is an important part of CNN. The convolutional layer usually consists
of an input feature map, an output feature map, and a learnable convolutional kernel. The
input feature map is a three-dimensional structure with a shape of M � N � D, and
consists of D feature maps of sizeM � N . The shape of the output feature map is similar to
that of the input feature map, except that the size of each dimension may vary. Generally,
one can using the back-propagation way to calculate the optimization gradients of learning
parameters, and using a specific optimizer (e.g., Stochastic Gradient Descent or Adam) can
lead CNN network gradually converge and obtain the satisfied learning parameters.

Meta learning is a type of transfer learning that aims to learn a general feature extractor
from multiple datasets. Finn, Abbeel & Levine (2017) firstly proposed the ordinary MAML
algorithm in 2017, which has undergone a great deal of follow-up research. Antoniou,
Edwards & Storkey (2018) proposed MAML++, which improved MAML using an
annealing algorithm to improve the generalization performance, convergence speed and
computational power of MAML. Baik et al. (2021)made improvements to the loss function
of MAML and proposed the first learnable loss function MeTAL, which enhanced the
generalization ability of MAML. Zhou et al. (2021) theoretically derived an upper bound
on the error of MAML and pointed out that the improvement in generalization
performance for the target task is greater when the training task and the target task are
more similar. Raghu et al. (2019) experimentally found that the generalization ability of
MAML mainly comes from feature reuse, and proposed ANIL to substantially reduce the
computational effort while ensuring generalization.

The models with CNN structure generally belong to the task-driven training methods,
which seek to achieve satisfactory fitting accuracy under specific tasks. In contrast, the
input of MAML is multiple task sets, and the training of MAML based models requires the
balance of performance on multiple target tasks. MAML is the main training strategy of the
proposed MeDetection model in this article, and the trained feature extraction network has
a strong ability to extract general features for industrial defects.

MEDETECTION MODEL
The MeDetection model as shown in Fig. 2 focuses on building a general and adaptive
visual detection framework for industrial defects. In order to realize the effective
unification of industrial defect feature representation, we construct a feature difference
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extraction module based on Siamese network (SN). The MAML-based training strategy is
the key to the optimization of the MeDetection model, which takes different industrial
defect visual detection tasks as input, and tries to build a unified and generalized feature
extraction framework for different defect types. In order to better highlight the defect
features, the CA module is embedded in the recognition model, which can achieve
different attention responses to visual features from the row and column coordinate
dimensions.

Feature difference extraction module
It can be seen from Fig. 1 that the appearance defects of industrial products can be
regarded as feature differences on the normal appearance, which gives us a conclusion to
judge whether there are appearance defects on industrial products by detecting feature
differences (Zhang et al., 2023). In the MeDetection model proposed in this article, the
Siamese network serves the purpose of extracting difference features. Different from the
traditional CNN structure, the Siamese network consists of parallel two-stream branches.
As shown in Fig. 2, two branches input normal samples and test samples respectively,
where the test samples contain normal and defective data. The feature extraction weights
of the two branches are shared. The output of the Siamese network is obtained by the
difference features of the two branches, such that

xo ¼ abs Convh x1ð Þ � Convh x2ð Þð Þ (1)

where x1; x2 represent the dual stream inputs, xo is the feature difference output. Convh �ð Þ
represents the feature extractor with h as learning parameters, and abs �ð Þ obtains the
absolute values to ensure the non-negativity of the features.

Figure 2 MeDetection model. SN stands for Siamese network, which is applied to calculate the dif-
ference features. F stands for the feature difference extraction module. The 4conv network is set as the
main feature extraction backbone, while MAML based training strategy is applied to optimize
the detection model. The CA module embedded in the feature extraction backbone further strengthens
the defect features from the perspective of coordinate attention. Images taken from Bergmann et al.
(2020a) (License: CC-BY-NC-SA 4.0). Full-size DOI: 10.7717/peerj-cs.1264/fig-2
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Model training and optimization
Unlike task-driven pattern recognition models, the proposed MeDetection model is
trained on multiple industrial defect visual inspection tasks. The types of industrial defects
can be roughly divided into stains and texture defects, and the feature difference extraction
module further improves the consistency of defect expression. We hope that the
MeDetection model has generalized feature extraction capabilities and can adapt to
different types of industrial defect recognition tasks.

The MAML-based training strategy is applied in MeDetection model. MAML seeks to
achieve a balance of model performance on multiple task sets, that is, MAML does not seek
to achieve the optimal model on a specific task, but hopes that the model can achieve
comprehensive optimality on multiple task sets. The optimization function of MAML is as
follows:

L fhð Þ ¼
XN
i¼1

‘Tið fh0iÞ (2)

where L fhð Þ represents the loss function of the model fh with h as the learning parameter,
which is equal to the sum of the loss functions ð‘Tiðfh0iÞÞ of the model applied to all task sets

Ti; i ¼ 1; 2; � � �;N . h0i represents the task-specific weights generated by transferring the

learning parameter h to the ith task after fine-tuning operation. N is the number of tasks.
MAML consists of two loops: Inner loop and Outer loop. The optimal parameters for

each task are calculated iteratively in the inner loop, while the outer loop updates the
learning parameters for the entire model by computing the gradients relative to the
optimal parameters in each new task. The pseudocode is shown in Algorithm 1.We select a
variety of industrial products datasets to form the task sets pðTÞ. Specifically, pðTÞ

Algorithm 1 MAML

Require: Distribution over tasks p Tð Þ
Require: Step size of the hyperparameters a; b

1: Randomly initialize θ

2: while not done do

3: Sample batch of tasks Ti � p Tð Þ
4: for all Ti do

5: Sample K datapoints Di ¼ xðjÞ; yðjÞ
� �

6: Evaluate rh‘Ti fhð Þ using Di and ‘Ti in Eq. (3)

7: Compute adapted parameters using Eq. (4)

8: Sample datapoints D0i ¼ xðjÞ; yðjÞ
� �

from Ti

9: Compute ‘Tiðfh0iÞ in Eq. (3) using D0i

10: end for

11: Update θ using Eq. (5)

12: end while
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represents the probability distributions of all the training tasks (Finn, Abbeel & Levine,
2017). The learning rates of the inner loop and outer loop of MAML are set to a and b.
During model optimization, the inner loop is executed firstly, and followed by the outer
loop.

� Inner loop: We select K samples Di ¼ xðjÞ; yðjÞ
� �

from the task Ti. For classification task,
‘Ti is computed as follows:

‘TiðfhÞ ¼
X

xðjÞ;yðjÞ�Ti

yðjÞ log fhðxðjÞÞ þ ð1� yðjÞÞ logð1� fhðxðjÞÞÞ (3)

Then the updated gradients of model for the task Ti can be computed asrh‘Ti fhð Þ. The
learning parameters h0i for the task Ti based on model fh can be obtained as:

h0i ¼ h� arh‘Tið fhÞ (4)

where ‘Tiðfh0iÞ is calculated using the remaining samples D0i of the task Ti based on Eq. (3).

� Outer loop: During the outer loop, the model parameters h are updated using the
following equation:

h h�brh

X
Ti�p Tð Þ

‘Tið fh0iÞ (5)

Coordinate attention
The defect features extracted from the SN module may contain redundant information in
the fusion process, which is not conducive to the recognition of defects by the model. CA
(Hou, Zhou & Feng, 2021) constructs feature mapping from the horizontal and vertical
dimensions, and interacts the feature information among channels. Through automatically
re-weighting the features, CA module can highlight the defect features and eliminate the
redundant information. As shown in Fig. 3, for the inputX ¼ ½x1; x2; x3;…; xc� 2 RC�H�W ,
CA uses two pooling kernels with dimensions of ðH; 1Þ and ð1;WÞ to encode each channel
along the horizontal coordinate and the vertical coordinate respectively. The output of the
c-th channel at height h and width w can be expressed as

zhc hð Þ ¼ 1
W

P
0�i,W

xc h; ið Þ
zwc wð Þ ¼ 1

H

P
0�j,H

xc j;wð Þ

8><
>:

(6)

The above two transformations enables the model to capture long-distance
relationships in one direction while retaining spatial information in the other direction,
which can help the network to identify defects more accurately. Then, CA module maps zh
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and zw to the corresponding coordinate attention weights, and reweighting operations are
carried out.

The attention responses of CA module contain inter-channel information, horizontal
spatial information and vertical spatial information, which can help the network to obtain
the location information of defects more accurately and enhance the ability of feature
extraction.

EXPERIMENTAL RESULTS
Dataset
The MeDetection model is able to learn common representations of defect features from
multiple industrial defect tasks, and then implement knowledge transfer on new tasks.
Therefore, we need to first prepare a cluster of industrial defect visual inspection task sets.
In the experiments, DAGM (Wang et al., 2018) and MVTec (Bergmann et al., 2020a;
Wieler & Tobias Hahn, 2007) datasets are applied in the training of MeDetection model.
The MVTec dataset contains a total of 15 categories, five categories of which are texture-
based data, and contain regular patterns (blankets, grids) and random patterns (leather,
tiles, wood). The remaining 10 categories are object-based data, which contain objects with
a specific appearance (bottles, metal nuts), deformable objects (cables) or objects including
natural variation (hazelnut). Some of the acquired objects are in approximately aligned
position (toothbrushes, capsules, and pill), the others were randomly placed (metal nuts,

Figure 3 Visualization of “screw” dataset, where the samples are placed randomly. Images taken from
Bergmann et al. (2020a) (License: CC-BY-NC-SA 4.0). Full-size DOI: 10.7717/peerj-cs.1264/fig-3
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screws, and hazelnuts). The DAGM dataset contains 10 different types of fabric texture
defects. Each class consists of 1,000 defect-free images and 150 defective images saved in
grayscale eight-bit PNG format. The detailed information about the applied detect datasets
is shown in Table 1.

In addition, in the previous work (Zhang et al., 2023), we published a novel visual
dataset on appearance defects of industrial injection molding products, BC defects. There
are 3,008 samples in BC defects dataset, including 1,608 normal samples and 1,400 ones
with eight kinds of appearance defects.

Simulation details
The experiments run on a computer with NVIDIA DGX A100 SXM4 40G GPU. The
experimental framework is pytorch1.9.0 with cuda 11.2. The image size is set to 256� 256.
Adam with parameters b1 ¼ 0:5 and b2 ¼ 0:999 is used as the optimizer during training.
We set the batchsize as 64. The max epoch is set as 1,000, and we use the early-stopping
strategy to decide to stop the model training. The learning rates of inner and outer loops
are set as a ¼ 10�5 and b ¼ 10�3 respectively. Since the number of each industrial product
is not unique, we first divide each task dataset into a support set and a query set according
to 7:3, and then randomly select 64 images from the support set in the inner loop of

Table 1 Statistics of the selected defect datasets.

Tasks No. of normal samples No. of anomaly samples

Sidewalk 750 150

Carpet 308 89

Walls 750 150

Zipper 272 119

Transistors 273 40

Wood 266 60

Bridges 273 40

Hazelnut 431 70

Toothbrush 72 30

Bottles 229 63

Tiles 263 84

Cables 282 92

Leather 277 92

Capsule 242 109

Pill 293 141

Screws 361 119

Grid 285 57

Metal nuts 242 93

10 types of fabric 750 150

BC defects 710 268

Note:
The 10 types of fabrics are the fabric data of the DAGM dataset. Due to the similarity of the types, each type of fabrics is
not listed separately.
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MAML to train the model and then randomly select 20 images from the query set to
validate the model. After MAML training, MeDetection will be fine-tunned on the target
task with the initial learning rate as 0.0001. The advantage of the MeDetection model
proposed in this article is that it can be trained on multiple industrial defect data sets and
then transfer knowledge to unknown industrial defect recognition task. During training,
we remove one target task from the data sets and train the model with the remaining
industrial defect data sets. During the verification process, the trained MeDetection model
is fine-tuned for the target task based on the pretrained learning parameters. In order to
evaluate the model performance, we follow the metrics in Akcay, Atapour-Abarghouei &
Breckon (2018) and compute the area under receiver operator characteristics (AUROC),
which measures the area under the true positive rate as a function of the false positive rate.
The AUROC metric is not sensitive to any threshold or the percentage of anomalies in the
test set. In addition, other metrics, like Recall, Precision, F1 Score and the convergence
speed of model, are taken into consideration for evaluating the model in all aspects.

Comparison experiments
In order to show the performance of MeDetection model more clearly, some excellent
industrial defect detection algorithms are added to the comparative experiment.
GANomaly (Akcay, Atapour-Abarghouei & Breckon, 2018) belongs to the semi-supervised
defect detection via adversarial learning, which point out the unknown defect data lead to a
larger distance metric from the learned (known) data distribution at inference time. One-
NN (Nazare, de Mello & Ponti, 2018) represents the works that apply transfer learning
technology into industrial defect detection, and it analyzes the usage of different feature
normalization techniques on the pre-trained CNN models. DOCC (Ruff et al., 2021) is
short for deep one-class classification method, which aims to deal with the unbalanced
data distribution in industrial defect detection tasks. PatchSVDD (Yi & Yoon, 2020) is a
long-standing algorithm used for an anomaly detection, which can search for a data-
enclosing hypersphere in the kernel space, and compare the difference in data distribution
between normal and defective samples. U-Student (Bergmann et al., 2020b) belongs to a
powerful student–teacher framework for the challenging problem of unsupervised
anomaly detection and pixel-precise anomaly segmentation in high-resolution images,
where Student networks are trained to regress the output of a descriptive teacher network
that was pretrained on a large dataset of patches from natural images. Anomalies are
detected when the outputs of the student networks differ from that of the teacher network.

Table 2 shows the quantitative comparison results of AUROC metrics between the
proposed MeDetection model with other state-of-the-arts on industrial defect detection
tasks in MVTec (Bergmann et al., 2020b) datasets. The “Tasks” column represents the
target task set, which needs to be eliminated during model training. MeDetection model
gets the highest AUROC on six tasks (“carpet”, “leather”, “wood”, “capsule”, “pill” and
“zipper”), the second best AUROC on three tasks (“grid”, “bottle” and “hazelnut”).
Especially for the recognition task in “leather” dataset, MeDetection model gets 100%
accuracy. The last column of Table 2 shows the average AUROC value. The MeDetection
model achieves the best accuracy (94.0%), 1.5 percentage points higher than the
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U-Students model (Bergmann et al., 2020b), which achieves the second-best results in the
overall comparison. In addition, we also present the weighted average results at the last row
of Table 2, where the weights are determined according to the number of samples in the
datasets. The larger the number of samples, the greater the weight. Due to the differences
in the number of samples in the datasets involved in the simulation experiment, the results
obtained by weighted average are more convincing. The proposed MeDetection model
obtains the best performance with 91.8% weighted average recognition accuracy.

In addition, challenges are attached to the MeDetection model, and only 20 images in
each training task participate in model training. The simulation results are shown in the
last column of Table 2. The MeDetection model achieves suboptimal AUROC on three
tasks (“carpet”, “carpet” and “pill”), and the average AUROC is higher than GANomaly
(Akcay, Atapour-Abarghouei & Breckon, 2018) and 1-NN (Nazare, de Mello & Ponti, 2018)
methods. It is worth mentioning that, the MeDetction model exhibits relatively weak
recognition performance in the task of “screw”. The MeDetection model uses differential
features as input, which has high requirements for target location alignment in dual
channels. However, the orientation of the screws in the “screw” dataset are placed
randomly as shown in Fig. 3, making it easy to generate pseudo-features when calculating
differential features. Such deficiency is one of the future research directions of the
MeDetection model.

Table 2 The comparison results between MeDetection model and other state-of-the-arts for the
detection tasks of MVTec (Bergmann et al., 2020b) datasets in terms of AUROC.

Tasks GANomaly 1-NN DOCC PatchSVDD U-Student MeDetection (20-shot)

Carpet 69.9 81.1 90.6 92.9 95.3 99.9 96.8

Grid 70.8 55.7 52.4 94.6 98.7 95.3 80.8

Leather 84.2 90.3 78.3 90.9 93.4 100 98.2

Tile 79.4 96.9 96.5 97.8 95.8 95.6 91.9

Wood 83.4 93.4 91.6 96.5 95.5 97.3 89.4

Bottle 89.2 98.7 99.6 98.6 96.7 97.1 92.1

Cable 75.7 88.5 90.9 90.3 82.3 82.8 77.8

Capsule 73.2 71.1 91.0 76.7 92.8 95.1 90.8

Hazelnut 78.5 97.9 95.0 92.0 91.4 95.5 92.1

Metal nut 70.0 76.7 85.2 94.0 94.0 92.3 80.3

Pill 74.3 83.7 80.4 86.1 86.7 97.6 86.8

Toothbrush 65.3 67.0 96.4 100 87.4 87.9 71.9

Screw 74.6 67.0 86.5 81.3 83.6 75.5 60.5

Transistor 65.3 91.9 90.8 91.5 98.6 94.6 86.6

Zipper 74.5 88.6 92.4 97.9 95.8 99.9 91.1

Avg 76.2 83.9 87.9 92.1 92.5 94.0 85.6

Weighted avg 74.0 82.0 85.7 89.3 90.4 91.8 84.3

Note:
Best results are in bold, and second best underlined. The last column (20-shot) denotes only 20 images are applied to train
the model. An average score over all tasks is also reported at the last row (Avg). All results are presented in percentage.
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In general, MeDetection has two advantages over other models. MeDetection has the
highest accuracy and good detection capability for various industrial defects. MeDetection
can use a small number of samples to train the model, which reduces the training cost and
has a good detection accuracy at the same time.

Effectiveness of MAML
In order to verify the effectiveness of the MAML training training strategy in the proposed
MeDetection model, we make comparison of the recognition accuracy based on random
initialization of weights and MAML based weights transfer strategy. Table 3 shows the
simulation results. The “Tasks” column represents the dataset used for model testing, while
the remaining datasets are involved in the pre-training of MAML. The term of “random”

in the column of “Weights” means that the weights used in the training of the recognition
model are randomly initialized. Two absolute advantages for the MAML based training
strategy for industrial defect detection can be obtained. Based on the MAML pre-trained
weights, the training model has the relatively faster convergence rate. For the “fabric3”
dataset, with the help of MAML pre-trained weights, the model only needs 50 epochs to
converge, which is a quarter of the number of epochs of the model convergence under
random weights. It is worth noting that with randomly initialized weights, the model fails
to converge for the dataset of “capsule”. In addition, the MAML training strategy enables
the model to improve the recognition performance in all five indicators (ACC, Recall,

Table 3 Simulation results for the MAML based training strategy.

Tasks Weights Epoch Acc (%) Recall (%) Precision (%) F1 (%) AUROC (%) Avg (%)

Tiles Random 260 89.1 97.5 68.1 80.2 92.1 85.4

MAML 260 93.3 98.6 77.1 81.1 95.6 89.14

Carpet Random 260 92.3 96.1 76.4 84.4 93.6 88.56

MAML 200 92.4 99.9 78.1 88.2 99.9 91.7

Fabric1 Random 400 98.8 98.6 78.1 86.6 98.3 92.08

MAML 200 99.3 98.7 96.4 97.5 99.1 98.2

Fabric2 Random 230 99.1 98.4 95.1 96.7 98.1 97.48

MAML 150 99.8 98.6 97.8 98.1 98.2 98.5

Fabric3 Random 200 98.2 97.9 91.6 94.6 97.6 95.98

MAML 50 99.3 99.7 97.1 98.3 99.3 98.74

Fabric4 Random 210 99.2 99.1 99.2 99.1 99.1 99.14

MAML 180 99.8 99.3 99.3 99.3 99.2 99.38

BC defects Random 450 83.8 89.8 77.1 82.9 86.8 84.08

MAML 200 89.8 94.4 91.6 92.9 92.4 92.22

Sidewalk Random 300 81.2 92.3 46.9 62.9 86.9 74.04

MAML 300 88.3 93.4 56.4 73.2 91.2 80.5

Capsule Random – 86.7 76.7 80.1 78.3 84.1 81.18

MAML 450 95.2 93.9 91.1 92.5 95.1 93.56

Note:
The “random” means randomly initialized weights, “Epoch” represents minimum epoch value for smooth loss variation. The symbol “–” means the model cannot
converge. Avg is the average of ACC, Recall, F1 and AUROC.
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Precision, F1, AUROC). For the “BC defects” dataset, based on the MAML training
strategy, the convergence efficiency of the model is more than doubled (450 epochs! 200
epochs). Meanwhile, the recognition performance has also been greatly improved. For the
metrics of Precision, The MAML training strategy improves the recognition result by 18.8
percentage points. For the ACC, Recall, F1 and AUROC metrics, the recognition
performance improved by about five percentage points. In addition, similar to Table 2, the
weighted averages of AUROC scores are calculated in order to show the MeDetection
model performance comprehensively. The weighted average of AUROC score of the model
with randomly initialized weights is 94.7%, while the MeDetection model gets 97.6%
weighted average AUROC score. We put the average results of each indicator in the last
column of Table 3, which also demonstrates the performance of MeDetection model.

Figure 4 The relationship between recall rate and model training epochs. The blue line with triangle symbols shows the recall curve of each epoch
when the model is fine-tuned with the initialized weights obtained from MAML training, while the yellow line with circle symbols shows the results
for the model trained with random initialization weights. Full-size DOI: 10.7717/peerj-cs.1264/fig-4
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For industrial defect recognition tasks, we want to reduce the missed detection rate, that
is, to avoid the flow of problematic products to the market. The recall rate can clearly
evaluate the missed detection of the model. Figure 4 shows the curve of recall as a function
of model training epochs on nine detection tasks. Models based on MAML pretrained
weights not only converge faster, but also have higher recall than those trained with
random weights.

Overall, the proposed MeDetection model exhibits very advanced recognition
performance for industrial defect detection. The MAML based training strategy is the
corner stone of MeDetection model, which brings two advantages: MAML can accelerate
the convergence speed of the model well; MAML can improve the performance of the
model greatly.

Defect location
The Grad-CAM algorithm (Selvaraju et al., 2017) can be used in the classification model to
achieve target localization. For industrial defect detection tasks, obtaining the location
information of defects is very helpful to analyze the causes of defects. Figure 5 shows the
localization results of target defects, and the results of the model trained based on
randomly initialized weights partipicate the comparison. The model with randomly
initialized weights shows some deviations in the location of the defects, especially in the
datasets of “capsule”, “fabric1” and “screw”. Additionally, for the “sidewalk” dataset, the
attention response at defect locations of the model with randomly initialized weights are
divergent. In contrast, the model under the MAML training strategy has stronger focusing
ability on defect features and more accurate positioning accuracy.

CA effect
The CA module is embedded into the MeDetection model for further refinement of defect
features. However, whether the location and number of CA modules have an impact on
model performance is an important issue. Table 4 presents the simulation results, where
three embedding ways are involved in the comparative experiments. In order to fully

Figure 5 Visualization of defect location. The first row shows the original sample images with defects.
The second and third rows show the localization results of the defects caused by the MAML-based
training strategy and the random weight training strategy, respectively. Images taken from Bergmann
et al. (2020a) (License: CC-BY-NC-SA 4.0). Full-size DOI: 10.7717/peerj-cs.1264/fig-5
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demonstrate the effect of CA location on model performance, the Average (Avg) and
Variance (Var) statistical results are also presented in Table 4. We embed the CA module
in the low- or high-level of the feature extraction channel, and also take into account the
effect of both embedding. Embeddings ways show differences across all datasets. Generally,
when the model is embedded with CAmodules at low layers, it exhibits better performance
than when embedded at higher layers. The performance of the model is not stable when
CA modules are embedded in the low- or high-level of the feature extraction channel. For
the datasets of “fabric2” and “fabric4”, embedding multiple CA modules improves the
model performance. In addition, from the Average and Variance statistical results, we can
obtain the similar conclusion, that embedding the CA mudule at low lever can help the
model get the best performance with the maximum average accuracy and minimum
variance.

Table 4 Simulation results for CA modules.

Metrics Tiles Carpet Fabric1 Fabric2 Fabric3 Fabric4 Cap Sidewalk Avg Var

Low level 98.6 99.9 98.7 98.9 99.7 99.7 94.9 93.4 98.0 5.2

High level 98.6 99.8 98.7 98.5 99.7 99.2 94.3 93.4 97.8 5.4

Multiple 98.1 99.8 98.6 98.6 99.5 99.4 94.4 93.2 97.7 5.4

Note:
“Low level”means we put CA module after the first convolutional block of the 4Conv network, while “High level”means
the CA module is embedded after the forth convolutional block of the 4Conv network. “Multiple” indicates that the CA
modules are embedded in both the low layer and the high layer. The value of the histogram represents the average Recall
metrics.

Table 5 Ablation experiments

Tasks Model Acc (%) Recall (%) Precision (%) F1 (%) AUROC (%)

BC defects Ours 89.8 94.4 91.6 92.9 92.4

Ours-SN 78.7 86.5 57.3 68.9 86.2

Ours-CA 87.8 92.8 79.5 85.6 89.9

Ours-CA-SN 76.4 84.5 54.6 66.3 84.2

Fabric4 Ours 99.2 99.1 99.2 99.1 99.1

Ours-SN 81.1 96.6 46.4 62.6 92.4

Ours-CA 89.2 97.1 62.3 75.9 93.8

Ours-CA-SN 78.3 94.8 44.1 60.1 90.5

Tiles Ours 89.1 97.5 68.1 80.2 92.1

Ours-SN 79.6 78.7 52.4 62.9 76.5

Ours-CA 86.6 85.4 62.7 72.3 82.4

Ours-CA-SN 77.6 72.5 51.2 60.1 70.2

Sidewalk Ours 81.2 92.3 46.9 62.9 86.9

Ours-SN 77.1 83.4 41.7 55.6 82.6

Ours-CA 77.5 86.5 42.1 56.6 83.6

Ours-CA-SN 72.7 82.4 37.1 55.1 79.6
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Ablation experiment
Two feature refinement modules help the MeDetection model improve performance. The
SN module further strengthens the defect features while unifying the defect representation.
The CA module enhances the feature extraction ability of the model from the attention
perspective. The ablation experiment is carried out to verify the roles of the two modules,
and Table 5 shows the simulation results, where four datasets are taken into consideration.
Obviously, the addition of the two modules greatly improves the performance of the
MeDetection model. Specifically, after removing the SN module, the performance of the
MeDetection model drops the most. For recognition accuracy (ACC), the performance of
model without SN module drops by 18 percentage points for the dataset of “fabric4”.
Undoubtedly, the performance of the model degrades the most when both the SN and CA
modules are removed.

CONCLUSION
The MeDetection model proposed in this article focuses on the rapid and adaptive visual
recognition for industrial appearance defects. The biggest advantage of the MeDetection
model is that the MAML training strategy is applied to the optimization of the CNN based
visual detection model, so that the model can achieve satisfactory recognition performance
even under the premise of limited industrial defect data sets. Simulation results (Table 5)
show that our model achieves state-of-the-art performance with only 20 training epochs.
In addition, MeDetection model employs the feature difference extraction module with
Siamese network to convert industrial defects into feature differences, which realizes the
effective unification of different types of defect features. The embedding of the coordinate
attention module can make further refinement of defect features for the improvement of
MeDetection model performance. Meanwhile, a visual dataset for industrial injection
molded bottle cap defects, termed BC defects, is released. BC defects dataset could help to
improve the benchmarks for industrial defect vision datasets. Simulation results based on
BC defects dataset have verified the performance of the proposed MeDetection model.

An important research topic to further improve the performance of MeDetection model
exists. Figure 5 shows that MeDetection model demonstrates unsatisfactory performance
on “screw” samples in the MVTec dataset, because the samples in “screw” dataset place
randomly, and misaligned features lead to spurious features in the model input. It is the
main research direction in the future.
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