
Real-time pneumonia prediction using
pipelined spark and high-performance
computing
Aswathy Ravikumar and Harini Sriraman

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai,
Tamil Nadu, India

ABSTRACT
Background: Pneumonia is a respiratory disease caused by bacteria; it affects many
people, particularly in impoverished countries where pollution, unclean living
standards, overpopulation, and insufficient medical infrastructures are prevalent. To
guarantee curative therapy and boost survival chances, it is vital to detect pneumonia
soon enough. Imaging using chest X-rays is the most common way of detecting
pneumonia. However, analyzing chest X-rays is a complex process vulnerable to
subjective variation. Moreover, the data available is growing exponentially, and it will
take hours and days to train the model to predict pneumonia. Timely prediction is
significant to guarantee a better cure and treatment. Existing work provided by
different authors needs more precision, and the computation time for predicting
pneumonia is also much longer. Therefore, there is a requirement for early
forecasting. Using X-ray picture samples, the system must have a continuous and
unsupervised learning system for early diagnosis.
Methods: In this article, the training time of the model is accelerated using the
distributed data-parallel approach and the computational power of high-performance
computing devices. This research aims to diagnose pneumonia using X-ray pictures
with more precision, greater speed, and fewer processing resources. Distributed deep
learning techniques are gaining popularity owing to the rising need for computational
resources for deep learning models with several parameters. In contrast to conventional
trainingmethods, data-parallel training enables several compute nodes to trainmassive
deep-learning models to improve training efficiency concurrently. Deploying the
model in Spark solves the scalability and acceleration. Spark’s distributed processing
capability reads data from multiple nodes, and the results demonstrate that training
time can be drastically reduced by utilizing these techniques, which is a significant
necessity when dealing with large datasets.
Results: The proposed model makes the prediction 1.5 times faster than the
traditional CNN model used for pneumonia prediction. The model also achieved an
accuracy of 98.72%. The speed-up varying from 1.2 to 1.5 was obtained in the
synchronous and asynchronous parallel model. The speed-up is reduced in the
parallel asynchronous model due to the presence of straggler nodes.

Subjects Bioinformatics, Computer Vision, Data Mining and Machine Learning, Distributed and
Parallel Computing, Neural Networks
Keywords Parameter server, Convolutional neural network, Spark, Data parallel model, Prediction
model, Pneumonia, Distributed deep learning, High performance computing

How to cite this article Ravikumar A, Sriraman H. 2023. Real-time pneumonia prediction using pipelined spark and high-performance
computing. PeerJ Comput. Sci. 9:e1258 DOI 10.7717/peerj-cs.1258

Submitted 19 October 2022
Accepted 27 January 2023
Published 9 March 2023

Corresponding author
Harini Sriraman, harini.s@vit.ac.in

Academic editor
Davide Chicco

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.1258

Copyright
2023 Ravikumar and Sriraman

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1258
mailto:harini.�s@�vit.�ac.�in
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1258
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
All organizations, from tech titans to startups, store user data and, in some circumstances,
purchase data from other businesses. Every business and industry stores data for many
goals, including future research, marketing, and consumer manipulation. Nonetheless, this
massive volume of data is meaningless unless we create the required tools to extract
relevant information from it. According to experts, the quantity of data will continue to
rise exponentially shortly. Implementing different Deep Learning algorithms on massive
data may be easier with Big Data tools, especially when dealing with very complicated
medical datasets. To satisfy this demand, we use an accelerated discovery of pneumonia,
and following administration of the appropriate treatment may aid significantly in
preventing patients’ conditions from deteriorating, which may eventually result in
mortality (Alharbi & Hosni Mahmoud, 2022). Several technologies, such as genetics and
imaging, have emerged in recent decades to provide detailed healthcare information. Chest
X-ray images are the preferred method for diagnosing pneumonia; nevertheless, these
visuals are not always clear and are occasionally misclassified as benign irregularities or
even other illnesses by specialist practitioners, resulting in the administration of the
incorrect medication and a subsequent worsening of the medical illness. Therefore, it is
necessary to develop an intelligent and automated model to aid physicians with the
diagnosis of different varieties of pneumonia using chest X-ray data.

Deep learning, sometimes called deep structured learning, is a subset of sophisticated
machine learning methods. It is built on algorithms that use mathematical operations and
are inspired mainly by artificial neural networks (Aydin & Guldamlasioglu, 2017). The
dramatic improvement in prediction performance in the past century was aided partly by
developments in neural network training technologies, which have enabled the training of
bigger models on more enormous datasets than ever. While modern GPUs and custom
accelerators have significantly accelerated the training of neural networks, training
development progresses to hamper the predictive efficiency and application breadth of
these technologies. Accelerating neural network training techniques has the potential to
have a substantial influence on a broad range of essential application areas. Faster training
may result in considerable improvements in model quality by allowing professionals to
learn more data (Anil et al., 2020) and reducing the time required for iterations, allowing
researchers to explore novel ideas and setups more rapidly. Quick training also enables the
deployment of neural networks in situations where models must be updated frequently,
such as when new training data is added or discarded (Jin et al., 2022). In deep learning,
CNN (convolutional neural network) collects features from pictures and manages the
complete feature engineering process. Data parallel models are needed to predict diseases
and illnesses since the data is growing exponentially and requires timely faster results
(Das, Roy & Mishra, 2022). Not only has the volume of data exploded in recent years, but
the nature and format of that information have also shifted dramatically. Most of this
necessitates the establishment of an effective and beneficial platform for Big Data
processing. Large-scale massive data collection is described as data of a terabyte or more in
size that cannot be processed or stored using conventional computer methods (Baby &

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 2/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

Ravikumar, 2014; Woolf, 2017). As deep learning has grown in popularity, numerous
architectures for integrating multi-core GPU systems into distributed systems have
emerged, including Yahoo’s TensorFlow on Spark, Databricks’ Deep Learning Pipeline for
Apache Spark, Intel’s BigDL/Analytics Zoo, Skymind’s DL4J, and Elephas’ Distributed
Deep Learning with Keras & Spark. Hadoop and Spark are generally used to analyze and
forecast large amounts of data.

Spark excels at converting large datasets and applying built-in machine learning
algorithms through Spark MLlib; it does not enable the creation of bespoke algorithms
using deep learning frameworks such as Google’s TensorFlow and, in particular, its handy
Keras (https://keras.io/) API. Elephas was the first open-source framework to provide
Keras-on-Spark distributed training. Later, libraries like Yahoo’s TensorFlow on Spark,
which does not adhere to the Keras API design guidelines, were developed. Other popular
distributed deep learning frameworks have arisen in recent years, such as the robust
Horovod (Sergeev & Del Balso, 2018), which previously lacked Spark support. BigDL (Dai
et al., 2019) is another framework worth highlighting, mainly when used with Intel’s
Analytics Zoo. Elephas is tightly coupled to several of Spark’s essential abstraction layers.
Besides integrating Spark’s resilient distributed datasets (RDDs), Elephas supports MLlib
models, Spark machine learning estimators, ensemble modeling, and distributed inference.

A DL model that has been trained with more extensive and varied data would be more
reliable and resilient. However, in some real-world applications, such as healthcare
applications, the data gathered by a single hospital is often restricted, and the bulk of
enormous and diversified data is frequently divided among numerous companies. As a
result, it drives researchers to perform DL in a distributed manner, in which the data user
would want to construct DL models utilizing data dispersed among several data owners
(Han et al., 2022). Nevertheless, the data providers would only be cautious and willing to
engage in the data user’s distributed deep learning if the data user’s protocol addresses the
data owners’ significant worries over protecting their data. It has been shown, for instance,
that private information may be inferred during the learning experience (Nasr, Shokri &
Houmansadr, 2019) and that the membership of training data can be determined using the
trained model (Ali et al., 2022). Therefore, it is essential to create an efficient distributed
deep learning method that protects the privacy of medical data analysis in real-time.

This research aims to diagnose pneumonia using X-ray pictures with more precision,
incredible speed, and fewer processing resources. The associated publications
concentrating on diagnosing pneumonia using X-rays employed models with several
convolutional and great depths. A few works attained perfect precision, but their
calculations demand a great deal of processing power and time. The primary contribution
made by this study is the development of accelerated deep learning for identifying
pneumonia utilizing chest X-ray pictures with balanced effectiveness in terms of reliability
and scalability and the provision of a low-cost tool for healthcare and radiology
professionals. The following goals have been met:

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 3/23

https://keras.io/
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

� Using the CNN algorithm to diagnose pneumonia using chest X-ray pictures as a feature
extraction and classification method.

� Acceleration of the model using the master-slave data parallel model in Spark.

� Acceleration using both synchronous and asynchronous models in the parameter server.

� Utilizing the computational power of HPC.

The manuscript is organized as an introduction in which the need for the study, the
background, and the main objectives are highlighted. The following section gives an
overview of the related works in Pneumonia detection using X-ray images. Next, the
materials and method section is given, which explains the dataset, the proposed data-
parallel model, and the main modules in the model. The following section gives the
implementation details of the proposed method, experimental environment, and
algorithms. The result analysis and the comparison with the existing models are given in
the next section. Following it, the principal findings and discussions are given, and the last
section gives the conclusion and future scope.

RELATED WORKS
Mishra, Kang & Woo (2020) showed a descriptive and predictive analysis of Big Data on
Cloud Computing by constructing recommendation models utilizing a conventional
method. Using typical sequential classification algorithms, Patel (2017) assessed Amazon
product reviews as excellent or negative. In Carneiro et al. (2018) used the Spark platform
only for descriptive analysis. For neural network training, the trend in hardware
development is toward higher data parallelism. Specialized systems based on GPUs or
custom ASICs coupled with high-performance connection technologies provide
unprecedented data parallelism with undetermined costs and benefits. If data parallelism
can dramatically speed calculations beyond the limits of current systems, we should
construct much more extensive systems. According to research conducted by OpenAI, the
number of operations required for AI systems, which are currently measured in petaflops,
has been growing exponentially and doubling every 3.4 months since 2012. This surpasses
the computing increases that single computers can achieve, even under the most optimistic
interpretation of Moore’s law. There is an obvious need for systems that scale computing
clusters. InDas, Roy &Mishra (2022), parallel CNN with stacked features was used for foot
ulcer classification, but in this work, only the three convolutional block is parallelized. The
dataset is fed into a single node; multiple nodes are not used for classification. In (Guan et
al., 2022a, 2022b; Guan & Loew, 2017), the parallel attention augmented block is
introduced in the CNN model for a more effective prediction of Alzheimer’s disease. This
work also concerns improving the CNN model rather than the time taken for the model
training or computational efficiency.

In Carneiro et al. (2018) evaluated the performance of deep learning applications on
Google Colab, Distributed Hardware, and Mainstream Workstations, finding that Colab’s
performance was equivalent to that of specialist hardware. Gupta & Addala (2019) studied
two serverless variations, one with a mapper and the other with both mappers and
reducers. They observed that the execution time of the machine is sublinear concerning the

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 4/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

number of invoked reducers. Combining Jupyter notebooks with Spark (Tianshi & Wei,
2016) created a scalable large-scale data mining framework. Also, using Dockers to create a
scalable environment for data processing operations (Martín-Santana et al., 2019). The
authors also successfully implemented long-short term memory networks using Spark.
Zhang, Choromanska & LeCun (2015), Chen et al. (2022) implemented LSTM on a cluster
of nine workstations and discovered that Cluster-Based LSTM performed better than
traditional LSTM in terms of root mean square error. In Aydin & Guldamlasioglu (2017)
constructed LSTM on Spark using the distributed computing frameworks Keras and
Elephas, and the resulting model was deemed reliable. Using a cluster of seven computers
to deploy LSTM and GRU into three hidden layers for energy load forecasting, Kumar
et al. (2018) discovered that GRU outperformed LSTM. Additionally, it was revealed that
clusters minimize training time by a factor of six. A detailed analysis of the implementation
of the CNN model in TPU and GPU is done on different benchmark applications
(Ravikumar et al., 2022). The hardware accelerators efficiently process many machine
learning algorithms in a single-node, multimode, and cloud environments (Harini &
Ravikumar, 2021; Harini, Ravikumar & Garg, 2021; Harini, Ravikumar & Keshwani,
2022).

Medical segmentation and classifications are widely implemented in deep learning
models (Robin, John & Ravikumar, 2021; John, Ravikumar & Abraham, 2021). Many
academics have utilized deep learning to accurately diagnose lung infections and illnesses
using chest X-rays throughout the last decade. Stephen et al. (2019) built a CNN approach
from scratch to gather characteristics from chest X-ray pictures to achieve high classifier
performance and utilized it to determine how likely a patient has pneumonia, unlike earlier
research that relied on manual features.

Recently, the TL approach has gained much popularity, primarily because it makes
CNNmodels more efficient, less expensive, and less dependent on inputs. In addition, they
were able to categorize chest X-ray pictures accurately. According to the findings of this
study, pneumonia can be identified using deep CNNs. They employ systematic techniques
as a component of our data categorization strategy to minimize computing expenses
Cheplygina, de Bruijne & Pluim (2019). Transfer learning methods on ImageNet with four
pre-trained CNN architectures were employed to identify pneumonia. To categorize chest
radiography pictures, they used three distinct classification methods. Several recently
published works address this issue by attempting to identify pneumonia using deep CNN
algorithms with less convolutional layers, as it is in Chen et al. (2022), Mahmoudi et al.
(2022). To understand CNN architecture, they employed a region of interest that only
contained the lungs instead of the complete picture. However, these methods still need to
be improved in identifying pneumonia with a high degree of accuracy. Zhang et al. (2021),
the authors recognized pneumonia symptoms with an efficiency greater than 96% using
transfer learning models.

MATERIALS AND METHODS
The proposed model mainly involves the data parallel parameter server model with a
parallel stochastic gradient descent algorithm for the neural network update. The proposed

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 5/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

model is shown in Fig. 1. The significant steps involve the data preprocessing, distributed
computing model, and fine-tuning of the neural network hyperparameters, as shown in
Fig. 2. This section begins with a discussion of the datasets used for the research, followed
by a description of the proposed pneumonia detection technique.

Figure 1 shows the proposed model for accelerated pneumonia prediction. In this
model, the data is distributed among the worker nodes, and the model replica is taken at
each node. There is a central parameter server model for the model synchronization. The
weight update and synchronization take at the parameter server nodes. The Wt+1
represents the weight for the next iteration of the deep learning model. It is updated in the
parameter server model with the W(weights) received from each worker node, rf xð Þ
represents the optimization function and λ is the learning rate.

Figure 1 Proposed data parallel parameter server model.
Full-size DOI: 10.7717/peerj-cs.1258/fig-1

Figure 2 Steps in proposed model. Full-size DOI: 10.7717/peerj-cs.1258/fig-2

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 6/23

http://dx.doi.org/10.7717/peerj-cs.1258/fig-1
http://dx.doi.org/10.7717/peerj-cs.1258/fig-2
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

Dataset
The dataset (“Chest X-Ray Images (Pneumonia)”, Mooney, 2018) contains 5,863 X-ray
images with class labels ‘Pneumonia’ and ‘Normal’. Chest X-ray pictures (anterior-
posterior) were chosen retrospectively from pediatric patients aged 1 to 5 years at
Guangzhou Women and Children’s Medical Center in Guangzhou. This study focuses on
bacterial pneumonia. Bacterial pneumonia is a lung infection that is caused by specific
bacteria. Streptococcus is the most prevalent cause. However, other bacteria can also be
responsible. At a younger age and in generally good condition, these bacteria can exist in
the esophagus without creating any problems. However, if the body’s defenses are
compromised for whatever reason, the germs can enter the lungs. When this occurs, the air
sacs of the lungs become infected and swollen. As a result, they fill with fluid, which leads
to pneumonia.

Before training, data preparation is often done to filter, cleanse, and enrich the dataset.
Since the pneumonia dataset has already been purged by removing duplicates and low-
quality photos, we merely use data augmentation at this step. Data augmentation is the
process of creating new data from current data via the use of specific techniques. Popular
data enhancement techniques include scaling, horizontal and vertical picture flipping,
zooming, cropping, and image rotation. Since this work aims to diagnose X-ray pictures,
cropping, vertical flip, and magnification are inappropriate. Therefore, we solely employ
scaling, horizontal flipping, and rotation.

Data parallelism
Data parallelism is a straightforward and extensively used approach for expediting the
training of neural networks. Parallelism in data processing refers to distributing training
instances over many processors to compute gradient modifications and then aggregating
these locally calculated updates. Data parallelism is model-independent and applicable to
any neural network design that decomposes the training objective into a sum over training
examples. By contrast, the maximum level of model parallelism (distribution of attributes
and processing over many processors for much the same training examples) is model-
dependent. While data parallelism may be easier to construct, large-scale systems should
incorporate all available parallelism. In parallel data techniques, each executor receives a
copy of the whole model, parallelizing gradient descent processing by splitting data into
smaller chunks. After receiving a gradient from each executor, a parameter server
integrates the findings of each subset and synchronizes the model parameters amongst the
executors. This may be accomplished synchronously or asynchronously. On the other
hand, asynchronous (Anil et al., 2020) approaches outperform synchronous methods in
homogenous settings where nodes share the exact hardware specifications and connect
over a trustworthy network of communication. To begin, executors do not wait for others
to commit before beginning the following data processing batch. Second, the asynchronous
technique is more resilient to node failure. Even if one node fails, the other nodes will
continue to train their data partitions and get fresh updates from the parameter server.
Synchronous data parallelism is a training paradigm in which training stages are done

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 7/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

sequentially and synchronously. During the training run time, a succession of locking
mechanisms allows identification.

Parameter server
The architecture of a parameter server consists of parameter server nodes and worker
nodes (Li et al., 2013). The clients are responsible for learning the parameters based on the
data they receive and updating the hyperparameters based on their learning outcomes,
whereas the PS stores the changed parameters and handles synchronization. The Single
Parameter Server technique is the most fundamental parameter server-based strategy, with
each node functioning as a client and a single worker responsible for working and syncing
the parameters. This approach employs a single node as both the PS and worker and all
other nodes as worker-only nodes. In other words, just one node is employed to store and
synchronize the gradient necessary for training to continue. In distributed training, there is
a cluster of employees, and so far, we have seen that each worker does just one job, namely
training. However, we may give each worker a distinct function, such that some serve as
parameter servers and the remainder as training workers. The parameter servers are all in
charge of storing the model’s parameters and updating the model’s global state. Whereas
the training workers execute the actual training loop and generate gradients and losses
from the data provided, the training workers conduct the training loop. The procedure is
as follows:

Replicate the model across all the worker nodes, with each worker using a portion of
training data.

Each worker in training retrieves parameters from parameter servers.
Each worker executes a training loop and transmits the gradients to all parameter

servers, which subsequently update the model’s parameter. The main drawbacks of the PS
model are:

One downside is that, at any moment, only one of the employees is utilizing the most
recent version of the model, while the others use an outdated version.

If just one worker is used as a parameter server, this could create a bottleneck for large
clusters and a single point of failure. Nevertheless, the bottleneck issue may be mitigated by
installing numerous parallel servers.

Parallel stochastic gradient descent algorithm
SGD is an optimization approach often used in deep learning to determine the model
parameters that correspond to the best fit between expected and actual outputs. Mini-batch
SGD is synchronous due to the aggregate after each run over the data, which serves as the
locking mechanism. A distributed adaption of mini-batch SGD, in which each system node
computes on a single mini-batch, is likewise a synchronous technique, as explained in
Algorithm 1. A master node, also known as a parameter server, collects the weights that
each worker calculates based on its data partition. After each run over the data, the
parameter server must aggregate the weights before going to the next iteration. Some
workers take longer than others; synchronization becomes a severe training barrier.
Careful attention is required to reduce the likelihood of this sort of bottleneck. Moreover,

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 8/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

this method necessitates parameter adjustments for each mini-batch iteration. In a cluster
computer, this causes substantial communication costs.

The SGD algorithm is given in Algorithm 1, where the model parameters ð and learning
rate λ are initialized in the forward pass of the neural network model. Then, the steps are
repeated until the iterations are specified, and initially, the gradient value is set to zero.
Then, it is calculated during the backpropagation of the neural network to calculate the
loss. Based on the loss calculated, the new model parameters are updated, and this process
continues until the loss becomes negligible (approaches zero).

Parallel SGD is an implementation of the Data-Parallel technique. This optimizer
employs two distinct computer types (or nodes): a parameter server node and a client
node, and works based on Algorithm 2. In the parallel SGD, the algorithm is executed
parallel in multiple nodes and the gradient is calculated in the nodes for different batch
sizes finally the aggregation is performed for the calculation of updated model parameters.

EXPERIMENTAL DETAILS
The proposed model is implemented in Elephas spark using the parameter server data
parallel model using a novel CNN model using the Stochastic Gradient Descent algorithm.
Google Colab-Collaboratory is Google’s platform, which provides a Jupyter notebook for
machine learning and deep learning applications. In addition, Colab provides the virtual
machine platforms CPU, GPU, and TPU (Google Colab, 2022). Elephas distributed deep
learning is implemented by Keras and Spark using the Elephas library (Elephas, 2022).

Algorithm 1 SGD.

Initialize the learning rate λ and initial model parameters θ

Repeat till the end of epochs:

Select a sample from the training dataset

Initialize gradient as 0

For i = 1 to m

Calculate the gradient using equation g = g + ∇θ Loss f(x,y)

At the end of the loop i

Update model parameter using equation θ = θ – λ g, with the new gradient calculated

End For loop

Algorithm 2 Parallel SGD.

For each iteration, parallel execute the following steps

Perform SGD on each compute node

End For

Aggregate the gradient calculated from all nodes

Broadcast the new model parameters.

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 9/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

Spark
The Spark framework (“Overview—Spark 3.3.0 Documentation”, Apache Spark, 2022) has
been created at the University of Berkeley’s AMP lab since 2009 and is presently
maintained by Databricks. This approach overcomes MapReduce’s shortcomings by
providing a resilient distributed datasets (RDD) abstraction that performs operations in
memory. Spark transforms processes’ action sequences into efficient tasks performed on
the Spark engine. Spark provides a functional programming API for manipulating
distributed resilient datasets (RDDs). RDDs are objects spread over several computer
nodes and may be modified concurrently. Spark Core is a computational engine that
manages application scheduling, distribution, and monitoring. It comprises many
computing jobs distributed among executor nodes on a compute node/cluster. Spark’s
scheduler will execute the tasks across the whole cluster.

Spark reduces data loading recurrence by caching data in memory, which is critical in
complicated operations. Big Data systems can store and compute vast datasets larger than
Gigabytes for data engineering, analysis, and even deep learning. For example, the dataset
grows from 16 Gigabytes to 200 Terabytes of data. The commercialization of digital
technology led to an exponential rise in the volume and variety of data collected and
processed across multiple fields. As a result, individual devices’ processing and storage
capacities continue to deteriorate. Thus, information and task parallelization approaches
are increasingly being used to boost the effectiveness among the most demanding
applications by distributing the data and analytical workloads over a cluster of processing
nodes. MapReduce, a method developed by Google, is one of the most advanced parallel
processing frameworks for cloud data centers (Maitrey & Jha, 2015). MapReduce is a
software middleware for distributed computing and a programming language that allows
applications to be rebuilt concurrently using the map () and reduce () techniques.
MapReduce has had a great deal of success with batch processing.

Elephas
The Keras (“Keras: the Python deep learning API”, Keras, 2022) in Spark has the package
Elephas (“GitHub—maxpumperla/elephas: Distributed Deep learning with Keras &
Spark”, Elephas, 2022) for the distributed implementation of deep learning algorithms. In
Elephas, distributed modeling using the prototyping strategy is employed. Elephas aims to
maintain Keras’s simplicity and utility, enabling the rapid development of distributed
models that can be executed on enormous amounts of information. Furthermore, Elephas
builds a class of data-parallel techniques on top of Keras using Spark’s RDDs and data
frames. Spark’s ability to parallelize data processing in a durable manner using RDDs
connects well with data parallelism since a Spark job parallelizes data processing over
several computers. In practice, it is straightforward: a Keras model is set up on the Spark
driver and then handed to a worker in its entirety, along with a portion of the data to train
on. Each worker then trains the model independently and transmits the gradients back to
the driver, updating the “master model” in the data-parallel manner mentioned above.

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 10/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

Indeed, Elephas is not limited to training but also helps with distributed data parallelism
for the Keras model, distributed optimization of the Keras model’s hyperparameters, and
distributed ensemble model training through hyperparameter optimization.

Model creation using Keras and Elephas follows the following steps:

� Establish a Pyspark environment

� Define and assemble the Keras model

� Create an RDD from the dataset.

� Initialize an instance of elephas.spark model.

� Using spark-submit to submit the script

CNN: convolution neural networks
CNN is a large FNN inspired by the human visual cortex’s structure (Kang et al., 2014).
Because the deep structure of the CNN facilitates hierarchical learning, however, the CNN
models must acquire a large quantity of data. Consequently, multiple CNNmodels are run
in clusters rather than on a single computer, as they need significant computing to achieve
the required prediction accuracy. CNN generally consists of three layers: convolutional,
pooling, and fully connected. The convolutional layer performs a dot product on two
matrices, one containing the set of learnable parameters referred to as a kernel and the
other containing the limited region of the receptive field. Generates a two-dimensional
representation of the picture called an activation map containing information. As with
ordinary FCNN, neurons in this layer ultimately connect to all neurons in the previous and
following layers. Pooling is a technique for lowering the size of a feature map by employing
statistical results such as the mean or maximum to combine the data inside. A basic
pooling layer aggregates the correct output of the previous layer’s rectangular single region
of neurons. To train deep convolutional networks, an objective function quantifies the
error between the network’s output and the desired output. The SGD algorithm is used to
solve the optimization problem (Zhang, Choromanska & LeCun, 2015). The novel CNN
model used is given in Fig. 3.

Distributed modelling
Elephas, which is built on the Keras platform, makes use of data-parallel methods using
RDDs. Initially, the Keras deep learning models are serialized and distributed across the
cluster’s workers, followed by the data and learning parameters. During the training phase,
the worker nodes deserialize the model, which is trained on a block of data whose gradients
are sent to the driver. The master node’s model is changed via an optimizer that receives
gradients synchronously or asynchronously. Finally, the distributed processing of the CNN
model is done using Algorithm 3. In this, there is a master node that acts as the parameter
server model and the worker nodes which have a copy of the model and process in parallel.

Result and analysis
The CNN model was deployed using Keras and Elephas libraries in a distributed manner
with Apache Spark’s ability. In this work, an epoch is set as 30. Categorical cross entropy

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 11/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

was used as a loss function, and the SGD technique with learning parameter 0.1 Elephas
leverages data-parallel algorithms employing RDDs. Firstly, the fully convolutional Keras
model is serialized and transmitted to workers of the cluster accompanied by data and
learning parameters. In the training phase, the worker nodes deserialize the model trained
on a data block whose gradients are returned to the controller node. The model at the
master node is updated using an optimizer that receives gradients synchronously or
asynchronously. The model was executed using normal execution and a parallel
distributed model using elephas in synchronous and asynchronous modes. The model
parameters are given in Table 1.

In data parallelization, the same model is used for all devices, but the model is trained on
distinct training instances in each device. Each machine will calculate the discrepancies
among its predictions for the training set and label outputs individually. Because each

Figure 3 Novel CNN. Full-size DOI: 10.7717/peerj-cs.1258/fig-3

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 12/23

http://dx.doi.org/10.7717/peerj-cs.1258/fig-3
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

device learns on a separate set of samples, it computes a different set of model updates.
However, the method relies on combining the data of all processors for each successive
iteration, just as it would on a computer node. As a result, each device must communicate
its modifications to all the models on all the other devices. Stochastic gradient descent
(SGD) is an iterative technique for determining optimum values. It entails numerous
training rounds, with each round’s outcomes being integrated into the models in
anticipation of another phase. Synchronous training involves training each device’s local
model using various information segments from a data mini-batch. They then send to all
devices their locally determined gradients. The model is updated only once all devices have
correctly calculated and sent their gradients. After updating the model, it will be sent to all
nodes with splits from the next mini-batch. That is, devices are trained on non-overlapping
mini-batch splits. Training may come to a halt if a straggler is present. Asynchronous
training requires no device to wait for model updates from another device. Instead, the
devices may operate autonomously and exchange their findings as peers, or they can
interact through one or even more central servers referred to as parameter servers. Each

Algorithm 3 Distributed modelling of proposed model.

At Master Node:

Create a Spark session and Start the Parameter Server

Load Dataset and CNN model

Distribute data to worker nodes

Create a model replica in each worker node

Begin Main

Updated parameter = CALL Worker_node ()

Acquire Write Lock on Master node

Call Worker Node (updated parameters)

Shutdown parameter server and evaluate the master model

End Main

Procedure Worker_Node ()

Broadcast parameters

Start model training

Return updated parameters

End worker node

At Worker Nodes:

Load the dataset distributed from the master node

Load the CNN model replica

Receive parameters from the master node

Start training with the received parameter

Update the parameters and send them to a master node after training

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 13/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

device in the peer architecture executes a loop that collects input, computes gradients,
communicates them to all other devices (directly or indirectly), and changes the model to
the newest version. These servers aggregate and collect gradients. Synchronous training
involves the parameter server computing the most recent version of the model and
returning it to the devices, as shown in Fig. 4. Asynchronous training sends gradients to
devices that calculate the new model locally. The cycle is repeated in both designs until
training is complete, as shown in Fig. 5.

In Fig. 6, three worker machines get the most recent global weight W from the
parameter server and update the local weights w1, w2, and w3. Machine 2 is still working,
while machines 1 and 3 have completed their computations. The parameter server can
begin aggregating and computing global weight once it has received updated weights from
all nodes. Waiting time on worker computers is the primary disadvantage of synchronous
data parallelism.

Workers may get global weights from the parameter server as soon as it completes an
iteration without waiting for all other workers to complete their iterations. There are many
benefits to asynchronous computing. First, we are maximizing the computational power of
worker machines with minimal waiting time; second, the partly updated and somewhat
out-of-date weight may increase the randomness of training.

However, the asynchronous pattern may also result in slow convergence and poor
modeling stability owing to out-of-date parameters. Specifically, the operating iterations
for each Computer vary greatly. In reality, system efficiency and algorithm completion
must be balanced.

The training time of each model was analyzed on the GPU execution, showing that
parallel synchronous execution is faster than serial execution. In the synchronous parallel
execution, the training time is reduced by converting the data set into the RDD form and
running on the spark model. The three execution modes gave the same accuracy of
97.770% for batch size 16 and the training time, as shown in Fig. 7.

Table 1 Model parameters.

Parameters Data

Input data size 50, 50, 1

Model batch size 16,32

Learning rate 0.1

Epochs 30

Optimization SGD

Loss Categorical cross-entropy

Training dataset 3,542

Testing dataset 393

No of classes 2

Steps per epoch 221

Spark specification Version–v3.1.3
Master–local [8]
App name–Elephas

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 14/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

The training time of each model was analyzed on the TPU execution, showing that
parallel synchronous and asynchronous execution is faster than serial execution. In the
synchronous parallel execution, the training time is reduced by converting the data set into

Figure 4 Synchronous data parallel model. Full-size DOI: 10.7717/peerj-cs.1258/fig-4

Figure 5 Asynchronous data parallel model. Full-size DOI: 10.7717/peerj-cs.1258/fig-5

Figure 6 Synchronous data parallel model data transfer.
Full-size DOI: 10.7717/peerj-cs.1258/fig-6

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 15/23

http://dx.doi.org/10.7717/peerj-cs.1258/fig-4
http://dx.doi.org/10.7717/peerj-cs.1258/fig-5
http://dx.doi.org/10.7717/peerj-cs.1258/fig-6
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

the RDD form and running on the spark model. The three modes of execution gave the
same accuracy of 98.72% for batch size 16 and the training time, as shown in Fig. 8. The
work was repeated for different batch sizes 16 and 32, and the detailed analysis for GPU
and TPU is shown in Figs. 9 and 10.

The speed-up is calculated for the parallel synchronous and asynchronous execution in
GPU using Eq. (1) and as shown in Table 2.

Speed up ¼ time taken for serial execution=time taken in parallel execution (1)

The speed-up obtained in parallel asynchronous execution is less due to the presence of
straggler nodes.

Figure 7 GPU-based training time. Full-size DOI: 10.7717/peerj-cs.1258/fig-7

Figure 8 TPU-based training time. Full-size DOI: 10.7717/peerj-cs.1258/fig-8

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 16/23

http://dx.doi.org/10.7717/peerj-cs.1258/fig-7
http://dx.doi.org/10.7717/peerj-cs.1258/fig-8
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

The proposed model is compared with the current state of art models given in Table 3.
The existing models with the parallel technique are compared with the proposed model,
and it is found the model has better accuracy and is faster. In Ibrokhimov & Kang (2022),
transfer learning in VGG19 and Resnet 50 is used along with parallelism to attain an
accuracy of 96.9% on the Nvidia Titan X Pascal 12 GB GPU. The average classification

Figure 9 GPU-based training time for batch sizes 16 and 32.
Full-size DOI: 10.7717/peerj-cs.1258/fig-9

Figure 10 TPU-based training time for batch sizes 16 and 32.
Full-size DOI: 10.7717/peerj-cs.1258/fig-10

Table 2 Speed up.

Execution method Speed up

Synchronous parallel in GPU 1.5

Asynchronous parallel in GPU 0.6

Synchronous parallel in TPU 1.28

Asynchronous parallel in TPU 1.17

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 17/23

http://dx.doi.org/10.7717/peerj-cs.1258/fig-9
http://dx.doi.org/10.7717/peerj-cs.1258/fig-10
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

accuracy was the only metric used in this study. The work should have discussed the
speed-up or resource utilization part. In Moujahid et al. (2020) used transfer learning and
parallelism to attain an accuracy of 96.81%.

DISCUSSION
While doing this work, the primary assumption is that there are no straggler nodes in the
experimental setup. With high loads, the system regularly suffers transitory congestion
incidents, which causes parameter updates among workers to be delayed. As a result,
training convergence degrades as worker nodes behind congested connections struggle to
adjust model parameters promptly, postponing all workers. Stragglers lead to prolonged
waiting and can cause deadlock in the system (Ravikumar, 2021).

The main limitation is the lack of medical data, which is the primary cause that limits
the model’s scalability. Another problem is that there need to be benchmark results for
Pneumonia detection.

The model was executed in GPU and TPU for all three modes, and a detailed analysis
was done. The key findings are

� Parallel synchronous: At each time step in the synchronous scenario, all copies average
their gradients (minibatch). This approach to parallelism places a premium on HPC and
the underlying hardware. There is no stale gradient problem in this, but stragglers will
occur. Here there is no need for a small step size which was needed in the serial
execution of the SGD algorithm. There is low prevention of machine failure. The
straggler problem can be mitigated by neglecting the slow worker nodes, using backup
workers, etc. In synchronous SGD, the larger batch sizes perform better and utilize the
best parallelism techniques. The synchronous model works better and is simple. The
learning rates can be increased for faster training without compromising performance.

� Parallel asynchronous: The benefit of asynchronous training is that copies may work
independently of one another without waiting for others to complete calculating their
gradients. This is also where the difficulty lies; There is no assurance that while one
duplicate is calculating the gradients for a set of parameters, another still needs to

Table 3 Proposed model compared with the existing methods.

Model Accuracy Remarks Reference

VGG16 based 96.81% Transfer learning parallelism employed Moujahid et al. (2020)

VGG19 based 96.58% Transfer learning parallelism employed Moujahid et al. (2020)

NasNet mobile based 83.37% Transfer learning parallelism employed Moujahid et al. (2020)

ResNet152V2 based 96.35% Transfer learning parallelism employed Moujahid et al. (2020)

Inception, ResNetV2 94.87% Transfer learning parallelism employed Moujahid et al. (2020)

VGG19 and ResNet50 96.6% Transfer learning
parallelism employed

Ibrokhimov & Kang (2022)

Novel CNN model 98.72% Novel CNN model designed for the specific problem
Data parallel model

Proposed model

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 18/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

modify the global variables. The global parameters would be updated using stale
gradients and calculated using obsolete parameter versions. There is a case of occurrence
of a stale gradient problem. The asynchronous execution can be more effective by slowly
increasing the worker nodes in the initial epochs. It works well if low learning rates are
used in the initial epochs.

� The model can be used for practical real-time analysis of X-ray images at distributed
edge devices. Because of the confidential nature of the data, however, this might raise
significant privacy issues. Thus patients would just be unwilling to participate. The
proposed distributed framework uses distributed deep learning architecture that
protects privacy using local differential security and knowledge extraction. Data
centralization is optional due to distributed training from federated sources. Distributed
methods iteratively study different databases, exchanging research issues and replies
across databases instead of sharing the data. In those other terms, one may learn from
independent and segregated datasets with patient data never leaving specific clinical
institutions. Distributed learning has the potential to ease the use of large amounts of
medical data, especially for multinational consortiums.

CONCLUSIONS AND FUTURE WORK
The findings indicate that the suggested data parallel deep learning model may be utilized
to aid healthcare practitioners in identifying pneumonia patients. Even though the
suggested approach for diagnosing pneumonia using X-ray images has shown excellent
performance, there remains an opportunity for further development. In this model, Spark,
an efficient tool for distributed training of the CNN model, is employed due to its support
of the wide variety of processing methods with the fault-tolerant way of data sharing
among the distributed iterations during the athematic operations. This work’s execution
was done in the GPU and TPU platforms for all three execution modes. Utilizing
distributed deep learning capabilities may not be as complex as it may seem and may result
in a significant performance boost. We obtained an average of 98.72% classification
accuracy, which is higher when compared to the existing state of art models. The speed-up
varying from 1.2 to 1.5 was obtained in the synchronous and asynchronous parallel model.
The speed-up is reduced in the parallel asynchronous model due to the presence of
straggler nodes. The straggler mitigation strategies must be developed to obtain the ideal
speed up.

In the future, the ensemble model using existing pre-trained algorithms can be
distributed to obtain better results. The model can be scaled to the cloud for multiple nodes
and can be used for exa-computing in the future. Moreover, this study uses parallel
computing to accelerate the training process by distributing data amongst worker nodes.
To further speed training in the future, combined data-distributed and model-distributed
computation technologies should be employed. New specialized network topologies
(explicitly built for X-ray pictures) should be investigated in the future.

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 19/23

http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Aswathy Ravikumar conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Harini Sriraman conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in Zenodo: Aswathy. (2022). aswathyravi2290/Elephas: Elephas for
Xray detection (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.7466309.

The data is available at Kaggle:
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia.

REFERENCES
Alharbi AH, Hosni Mahmoud HA. 2022. Pneumonia transfer learning deep learning model from

segmented X-rays. Healthcare 10(6):987 DOI 10.3390/healthcare10060987.

Ali M, Naeem F, Tariq M, KaddoumG. 2022. Federated learning for privacy preservation in smart
healthcare systems: a comprehensive survey. IEEE Journal of Biomedical and Health Informatics
27(2):778–789 DOI 10.1109/JBHI.2022.3181823.

Anil R, Pereyra G, Passos A, Ormandi R, Dahl GE, Hinton GE. 2020. Large-scale distributed
neural network training through online distillation. ArVix preprint
DOI 10.48550/arXiv.1804.03235.

Apache Spark. 2022. Overview—Spark 3.3.0 documentation. Available at https://spark.apache.org/
docs/latest/ (accessed 24 June 2022).

Aydin O, Guldamlasioglu S. 2017. Using LSTM networks to predict engine condition on large
scale data processing framework. 2017 4th International Conference on Electrical and Electronic
Engineering (ICEEE), 281–285 DOI 10.1109/iceee2.2017.7935834.

Baby K, Ravikumar A. 2014. Big data: an ultimate solution in health care. International Journal of
Computer Applications 975:8887.

Carneiro T, Medeiros Da NóBrega RV, Nepomuceno T, Bian G-B, De Albuquerque VHC, Filho
PPR. 2018. Performance analysis of google colaboratory as a tool for accelerating deep learning
applications. IEEE Access 6:61677–61685 DOI 10.1109/ACCESS.2018.2874767.

Chen PY, Zhang XH, Wu JX, Pai CC, Hsu JC, Lin CH, Pai NS. 2022. Automatic breast tumor
screening of mammographic images with optimal convolutional neural network. Applied
Sciences 12(8):4079 DOI 10.3390/app12084079.

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 20/23

https://doi.org/10.5281/zenodo.7466309
https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
http://dx.doi.org/10.3390/healthcare10060987
http://dx.doi.org/10.1109/JBHI.2022.3181823
http://dx.doi.org/10.48550/arXiv.1804.03235
https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/
http://dx.doi.org/10.1109/iceee2.2017.7935834
http://dx.doi.org/10.1109/ACCESS.2018.2874767
http://dx.doi.org/10.3390/app12084079
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

Cheplygina V, de Bruijne M, Pluim JPW. 2019. Not-so-supervised: a survey of semi-supervised,
multi-instance, and transfer learning in medical image analysis. Medical Image Analysis
54(1):280–296 DOI 10.1016/j.media.2019.03.009.

Dai J, Wang Y, Qiu X, Ding D, Zhang Y, Wang Y, Jia X, Zhang C, Wan Y, Li Z, Wang J, Huang
S, Wu Z, Wang Y, Yang Y, She B, Shi D, Lu Q, Huang K, Song G. 2019. BigDL: a distributed
deep learning framework for big data. In: Proceedings of the ACM Symposium on Cloud
Computing. 50–60.

Das SK, Roy P, Mishra AK. 2022.DFU_SPNet: a stacked parallel convolution layers based CNN to
improve Diabetic Foot Ulcer classification. ICT Express 8(2):271–275
DOI 10.1016/j.icte.2021.08.022.

Elephas. 2022. GitHub—maxpumperla/elephas: distributed deep learning with Keras & Spark.
Available at https://github.com/maxpumperla/elephas (accessed 24 June 2022).

Google Colab. 2022. Welcome to colaboratory. Available at https://colab.research.google.com/
(accessed 24 June 2022).

Guan Q, Chen Y, Wei Z, Heidari AA, Hu H, Yang X-H, Zheng J, Zhou Q, Chen H, Chen F.
2022a. Medical image augmentation for lesion detection using a texture-constrained
multichannel progressive GAN. Computers in Biology and Medicine 145:105444
DOI 10.1016/j.compbiomed.2022.105444.

Guan H, Wang C, Cheng J, Jing J, Liu T. 2022b. A parallel attention-augmented bilinear network
for early magnetic resonance imaging-based diagnosis of Alzheimer’s disease. Human Brain
Mapping 43:760–772 DOI 10.1002/hbm.25685.

Guan S, Loew M. 2017. Breast Cancer Detection Using Transfer Learning in Convolutional Neural
Networks. In: 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). Washington,
DC: IEEE, 1–8 DOI 10.1109/AIPR.2017.8457948.

Gupta P, Addala S. 2019. Experimental evaluation of serverless functions. 7. Available at https://
g31pranjal.github.io/assets/serverless-report.pdf.

Han G, Zhang T, Zhang Y, Xu G, Sun J, Cao J. 2022. Verifiable and privacy preserving federated
learning without fully trusted centers. Journal of Ambient Intelligence and Humanized
Computing 13(3):1431–1441 DOI 10.1007/s12652-020-02664-x.

Harini S, Ravikumar A. 2021. Vulnerability analysis of FPGA through side-channel attacks in
cloud. In: Ranganathan G, Chen J, Rocha Á, eds. Inventive Communication and Computational
Technologies. Singapore: Springer Singapore, 597–606.

Harini S, Ravikumar A, Garg D. 2021. VeNNus: an artificial intelligence accelerator based on
RISC-V architecture. In: Chaki N, Pejas J, Devarakonda N, Rao Kovvur RM, eds. Proceedings of
International Conference on Computational Intelligence and Data Engineering. Lecture Notes on
Data Engineering and Communications Technologies. Singapore: Springer, 287–300.

Harini S, Ravikumar A, Keshwani N. 2022.Malware prediction analysis using AI techniques with
the effective preprocessing and dimensionality reduction. In: Raj JS, Kamel K, Lafata P, eds.
Innovative Data Communication Technologies and Application. Singapore: Springer Nature
Singapore, 153–169.

Ibrokhimov B, Kang JY. 2022. Deep learning model for COVID-19-infected pneumonia diagnosis
using chest radiography images. BioMedInformatics 2(4):654–670
DOI 10.3390/biomedinformatics2040043.

Jin N, Yang F, Mo Y, Zeng Y, Zhou X, Yan K, Ma X. 2022. Highly accurate energy consumption
forecasting model based on parallel LSTM neural networks. Advanced Engineering Informatics
51(1):101442 DOI 10.1016/j.aei.2021.101442.

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 21/23

http://dx.doi.org/10.1016/j.media.2019.03.009
http://dx.doi.org/10.1016/j.icte.2021.08.022
https://github.com/maxpumperla/elephas
https://colab.research.google.com/
http://dx.doi.org/10.1016/j.compbiomed.2022.105444
http://dx.doi.org/10.1002/hbm.25685
http://dx.doi.org/10.1109/AIPR.2017.8457948
https://g31pranjal.github.io/assets/serverless-report.pdf
https://g31pranjal.github.io/assets/serverless-report.pdf
http://dx.doi.org/10.1007/s12652-020-02664-x
http://dx.doi.org/10.3390/biomedinformatics2040043
http://dx.doi.org/10.1016/j.aei.2021.101442
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

John J, Ravikumar A, Abraham B. 2021. Prostate cancer prediction from multiple pretrained
computer vision model. Health and Technology 11(5):1003–1011
DOI 10.1007/s12553-021-00586-y.

Kang L, Kumar J, Ye P, Li Y, Doermann D. 2014. Convolutional neural networks for document
image classification. In: 2014 22nd International Conference on Pattern Recognition. Stockholm,
Sweden: IEEE, 3168–3172.

Keras. 2022. Keras: The Python deep learning API. Available at https://keras.io/ (accessed 24 June
2022).

Kumar S, Hussain L, Banarjee S, Reza M. 2018. Energy load forecasting using deep learning
approach-LSTM and GRU in spark cluster. In: 2018 Fifth International Conference on Emerging
Applications of Information Technology (EAIT). 1–4.

Li M, Zhou L, Yang Z, Li A, Xia F, Andersen DG, Smola A. 2013. Parameter server for distributed
machine learning. 10. Available at http://www.cs.cmu.edu/~muli/file/ps.pdf.

Mahmoudi R, Benameur N, Mabrouk R, Mohammed MA, Garcia-Zapirain B, Bedoui MH.
2022. A deep learning-based diagnosis system for COVID-19 detection and pneumonia
screening using CT imaging. Applied Sciences 12(10):4825 DOI 10.3390/app12104825.

Maitrey S, Jha CK. 2015. MapReduce: simplified data analysis of big data. Procedia Computer
Science 57(5):563–571 DOI 10.1016/j.procs.2015.07.392.

Martín-Santana S, Pérez-González CJ, Colebrook M, Roda-García JL, González-Yanes P. 2019.
Deploying a scalable data science environment using docker. In: García Márquez FP, Lev B, eds.
Data Science and Digital Business. Cham: Springer International Publishing, 121–146.

Mishra M, Kang M, Woo J. 2020. Leveraging big data for spark deep learning to predict rating.
Journal of Internet Computing and Services 21:33–39 DOI 10.7472/JKSII.2020.21.6.33.

Mooney P. 2018. Chest X-Ray Images (Pneumonia). Available at https://kaggle.com/
paultimothymooney/chest-xray-pneumonia.

Moujahid H, Cherradi B, el Gannour O, Bahatti L, Terrada O, Hamida S. 2020. Convolutional
neural network based classification of patients with pneumonia using X-ray lung images.
Advances in Science, Technology and Engineering Systems Journal 5(5):167–175
DOI 10.25046/aj050522.

Nasr M, Shokri R, Houmansadr A. 2019. Comprehensive privacy analysis of deep learning:
passive and active white-box inference attacks against centralized and federated learning. In:
2019 IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE Computer Society, 739–
753.

Patel B. 2017. Predicting Amazon product reviews’ ratings. Available at https://towardsdatascience.
com/predicting-sentiment-of-amazon-product-reviews-6370f466fa73 (accessed 24 June 2022).

Ravikumar A. 2021. Non-relational multi-level caching for mitigation of staleness & stragglers in
distributed deep learning. In: Proceedings of the 22nd International Middleware Conference:
Doctoral Symposium. Québec City Canada: ACM, 15–16.

Ravikumar A, Sriraman H, Saketh PMS, Lokesh S, Karanam A. 2022. Effect of neural network
structure in accelerating performance and accuracy of a convolutional neural network with
GPU/TPU for image analytics. PeerJ Computer Science 8:e909 DOI 10.7717/peerj-cs.909.

Robin M, John J, Ravikumar A. 2021. Breast tumor segmentation using U-NET. In: 2021 5th
International Conference on Computing Methodologies and Communication (ICCMC). 1164–
1167.

Sergeev A, Del Balso M. 2018. Horovod: fast and easy distributed deep learning in TensorFlow.
Available at https://arxiv.org/pdf/1802.05799.pdf.

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 22/23

http://dx.doi.org/10.1007/s12553-021-00586-y
https://keras.io/
http://www.cs.cmu.edu/~muli/file/ps.pdf
http://dx.doi.org/10.3390/app12104825
http://dx.doi.org/10.1016/j.procs.2015.07.392
http://dx.doi.org/10.7472/JKSII.2020.21.6.33
https://kaggle.com/paultimothymooney/chest-xray-pneumonia
https://kaggle.com/paultimothymooney/chest-xray-pneumonia
http://dx.doi.org/10.25046/aj050522
https://towardsdatascience.com/predicting-sentiment-of-amazon-product-reviews-6370f466fa73
https://towardsdatascience.com/predicting-sentiment-of-amazon-product-reviews-6370f466fa73
http://dx.doi.org/10.7717/peerj-cs.909
https://arxiv.org/pdf/1802.05799.pdf
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

Stephen O, Sain M, Maduh UJ, Jeong DU. 2019. An efficient deep learning approach to
pneumonia classification in healthcare. Journal of Healthcare Engineering 2019(107):e4180949
DOI 10.1155/2019/4180949.

Tianshi C, Wei J. 2016. Scalable and cooperative big data mining platform design for smart grid.
In: 2016 China International Conference on Electricity Distribution (CICED). 1–5.

Woolf M. 2017. Playing with 80 Million Amazon product review ratings using apache spark.
Available at https://minimaxir.com/2017/01/amazon-spark/ (accessed 24 June 2022).

Zhang S, Choromanska AE, LeCun Y. 2015. Deep learning with elastic averaging SGD. In:
Advances in Neural Information Processing Systems. Curran Associates, Inc.

Zhang W, Pogorelsky B, Loveland M, Wolf T. 2021. Classification of COVID-19 X-ray images
using a combination of deep and handcrafted features. Available at https://arxiv.org/pdf/2101.
07866.pdf.

Ravikumar and Sriraman (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1258 23/23

http://dx.doi.org/10.1155/2019/4180949
https://minimaxir.com/2017/01/amazon-spark/
https://arxiv.org/pdf/2101.07866.pdf
https://arxiv.org/pdf/2101.07866.pdf
http://dx.doi.org/10.7717/peerj-cs.1258
https://peerj.com/computer-science/

	Real-time pneumonia prediction using pipelined spark and high-performance computing
	Introduction
	Related works
	Materials and Methods
	Experimental details
	Discussion
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

