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Deep learning methods proved to be effective for multiple diagnostic tasks in medicine
and have been performing significantly better in comparison to other traditional machine
learning methods. However, the black-box nature of the deep neural networks has
restricted their use in real-world applications, especially in healthcare. Therefore, the area
of explainability of the machine learning models, which focuses on providing of the
comprehensible explanations of model outputs, may influence the possibility of adoption of
such models in clinical use. There are various studies reviewing the explainability
approaches in multiple domains. This paper provides a review of the current approaches
and applications of explainable deep learning for a specific area of medical data analysis -
medical video processing tasks. The paper introduces the field of explainable AI and
summarizes the most important requirements on explainability in the medical application.
Then, we provide an overview of existing methods, evaluation metrics and focus more on
those that can be applied on the analytical tasks involving processing of the video data in
medical domain. Finally we identify some of the open research issues in the analysed area.
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ABSTRACT9

Deep learning methods have proven to be effective for multiple diagnostic tasks in medicine and have

been performing significantly better in comparison to other traditional machine learning methods. However,

the black-box nature of deep neural networks has restricted their use in real-world applications, especially

in healthcare. Therefore, explainability of the machine learning models, which focuses on providing of the

comprehensible explanations of model outputs, may affect the possibility of adoption of such models in

clinical use. There are various studies reviewing approaches to explainability in multiple domains. This

paper provides a review of the current approaches and applications of explainable deep learning for a

specific area of medical data analysis - medical video processing tasks. The paper introduces the field of

explainable AI and summarizes the most important requirements for explainability in medical applications.

Subsequently, we provide an overview of existing methods, evaluation metrics and focus more on those

that can be applied to analytical tasks involving the processing of video data in the medical domain.

Finally we identify some of the open research issues in the analysed area.
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INTRODUCTION22

Recent Artificial Intelligence (AI) systems that are based on machine learning algorithms excel in23

many fields. AI can outperform humans in visual tasks or strategic games, but it is also becoming an24

indispensable part of our everyday lives, such as online services that analyze our shopping carts or25

systems that allow us to make decisions based on data. AI systems based on black-box models are used26

in many areas today. These systems used in smartphone applications or online services do not have key27

requirements for model explainability but focus mainly on model accuracy and cost. If such a model28

fails and, e.g., does not recognize the person logging into the system or the translation system makes29

a grammatical error in translation, it usually does not have major consequences. The requirements for30

transparency and trust in these applications are low. However, these requirements play an important role31

in applications critical to human safety. They can even be decisive when deploying such a system if the32

consequences of an AI decision can be life-threatening, e.g., in autonomous vehicles or in the medical33

domain. Therefore, explainability is more important, especially in these areas, and promotes increased34

transparency of the model and trust in the deployed AI-based system. In order to understand how an35

AI model makes predictions, we need to know how it works and based on what evidence it makes the36

decisions. Explainable Artificial Intelligence (XAI) methods provide tools that can help to address these37

issues. In addition, there are legislative requirements for clarity and transparency in the processing of38

personal data as well as medical data.39

This paper aims to provide an overview based on current challenges and issues in the explainability of40

AI methods used in video classification in the medical field. The paper is divided into four sections. In41

the first one, we summarize the rationale behind the field researched and intended audience. Then we42

summarize how we conducted the literature review. We introduce the explainability and interpretability of43

the AI aspect and the current requirements of explainability in the medical field including the metrics44

used for evaluation of XAI methods. The following section is dedicated to the particular XAI methods45

used to explain the decisions of the models in image and video processing tasks and explains selected46
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XAI methods in more detail. The next section focuses more on the XAI methods used for deep learning47

video processing from different domains and suggests applying similar principles to video processing in48

healthcare.49

RATIONALE AND INTENDED AUDIENCE50

In the medical environment, feature extraction from ultrasonography (USG), magnetic resonance imaging,51

computed tomography, X-ray, and other imaging modalities still heavily relies on radiologists’ expertise.52

However, machine learning algorithms (ML) and deep learning models have been introduced over the past53

decades to aid this process; they often aid decision-making. Traditional ML approaches first extract hand-54

crafted features followed by application of classifiers such as Support Vector Machine, Decision Trees,55

Naive Bayes classifiers or K-Nearest Neighbours. However, these methods incorporate the shortcomings56

of hand-crafted features. They are not invariant to occlusion, illumination, morphological variation,57

rotation etc.58

The interpretability and explainability of analytical models are becoming increasingly important,59

especially in the context of applications in the medical domain that strongly require credibility of deployed60

models. The problem becomes more complex when processing 2D image sequences or video sequences.61

The explainable techniques consider temporal and spatial information together and do not distinguish62

what role movement plays in decision-making with such data.63

The article is intended to support academic and industry researchers working on deep learning in64

medical video analysis and the explainability of generated models. We expect our results to inspire the65

researchers to explore new methods improving explainability in close cooperation with relevant experts.66

Also, we expect practitioners to see the potential and benefits of deep learning models and will contribute67

their knowledge and experience to the final quality of models.68

SEARCH METHODOLOGY69

The methodology used for the purpose of conducting this survey consisted of searching for information70

from general to more specific. We divided this procedure into four steps. In the first step, we focused71

on a general overview of the XAI area, its basic concepts, legislative requirements, and current trends72

in medicine. We mainly relied on articles providing an overview of XAI, which provided us with basic73

information about XAI and directed us to various aspects of XAI and legislative documents. In the second74

step, we focused on articles that use XAI methods in medicine. We looked for information on what75

requirements are essential for AI in medicine and its explanations. We focused mainly on research articles76

that used XAI methods to explain models in the field of medicine and health care. At the same time, we77

identified the problems related to the insufficient evaluation of the quality of XAI outputs. In the third78

step, we took a closer look at the metrics and possibilities for evaluating the quality of XAI methods79

and XAI methods that are used in processing image data in medicine in particular. Due to the scope of80

the article, we only describe selected XAI methods in the article. In the fourth step, we focused on the81

specific problem of using XAI methods in the processing of video data from the field of medicine.82

In the entire search process (in all mentioned steps), we used Google Scholar to retrieve the relevant83

studies, as well as references from other survey papers. We used multiple queries consisting of keywords84

selected as relevant for a particular steps. The nature of our survey required to collect the articles not only85

from a specific area of XAI methods for deep learning-based video processing, but also related papers86

from medical imaging applications, as mentioned in the previous paragraph.87

First, we collected the studies related to the basic aspects of XAI in the medical domain. We focused88

on collection of requirements and basic concepts applied in this domain. We used very common keywords89

(”XAI” and ”healthcare” or ”medical domain”) to retrieve the documents. Then, in the second step,90

we collected the studies dedicated to particular XAI techniques applied in medical domain. Here we91

used a combination of keywords related to XAI, domain and methods. In a similar fashion we collected92

the studies describing the metrics related to XAI methods in medical domain. In the last step, studies93

about deep learning applied to video data in medicine were retrieved using following search procedure.94

The queries consisted of: (1) deep learning of any type (deep learning in general, CNN, LSTM or other95

architectures); (2) video data; (3) explainability or interpretability related keywords (or abbreviations).96

The retrieved publications were screened by two reviewers, who performed relevance-based selection97

to select the studies considered to be eligible for the scope of this survey. During the selection process,98
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Figure 1. Survey methodology.

we did not consider abstracts or in-progress reports; we removed duplicates (e.g., papers from multiple99

sources). In all particular areas, we considered only studies from the medical domain, did not consider100

the methods and metrics not used in this domain and finally we focused on those dedicated to evaluation101

of one or multiple deep learning models for video processing in the medical domain and any aspect of102

explainability or interpretability. The investigated studies could demonstrate the available options for the103

video analytical tasks using deep learning methods in the medical domain. The overall process of the104

survey methodology is depicted on Fig.1. In total, this resulted in the retrieval of 87 articles, including105

books, papers, review articles, and journal and conference articles.106

EXPLAINABILITY AND INTERPRETABILITY107

Interpretability and explainability are often used in the literature as synonyms, but many authors distinguish108

them. The term understanding is sometimes used as a synonym for interpretation and explanation in109

the context of XAI (Das and Rad, 2020). In this context, the term ”understanding” usually means a110

functional understanding of the model instead of an algorithmic understanding of the model at a low level.111

Understanding tries to describe the outward behavior of a black-box model without trying to clarify its112

internal behavior.113

In (Montavon et al., 2018) the authors distinguish between interpretation, which they define as the114

mapping of an abstract concept to a domain that can be perceived and understood by a human expert, and115

explanation, which they define as a set of interpretable features that contributed to the example of decision116

making. In (Edwards and Veale, 2017) Edwards and Veale divided the explanations into model-centric,117

and object-centric, which basically correspond to the definitions of interpretability and explainability from118

(Montavon et al., 2018). Similar tasks are explained in (Doshi-Velez and Kim, 2017) as global and local119

interpretability. These terms will be explained later on in the section XAI Methods.120

European Union (EU) legislation and the General Data Protection Regulations (GDPR), which deal121

with the processing of personal data, mention only the term explainability. Comprehensibility (Lecue,122

2020) is used in the literature as a synonym for interpretability. In (Lipton, 2018) transparency is used as123

a synonym for the interpretability of the model, which is in a sense with understanding the logic of how124

the model works.125

Beaudouin et al. (Beaudouin et al., 2020) explain the concept of explainability as ”explain” with the126

suffix ”-ability”. Explainability becomes the ability to be explained. In the following chapters, we will127

therefore use the term explainability in this sense, covering alternatively interpretability (model-centric)128

and explainability (object-centric or local).129
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Explainability as part of next-generation AI systems130

The concept of explainability is increasingly found as one of the main requirements for AI systems in131

documentation. This may be as part of the requirements for the application domain, such as banking,132

healthcare, or they may be part of legislative regulations that are gradually coming along with the133

development of AI systems. The ethical aspect should be equally important, and they deal with the direct134

but also indirect impact of AI decisions on people’s lives.135

Fjeld and Naggy (Healey, 2020) in their study analyzed 36 important documents about AI requirements136

from various fields, such as organizations or government documents or recommendations for AI, and137

based on these documents, defined 8 key principles of contemporary AI, including the terms explainability138

and transparency under one of these principles:139

• Privacy. AI systems should respect individuals’ right to privacy, both in the use of data in140

technological systems and in the provision of data to decision-making agencies.141

• Accountability. It is important that responsibility for the impacts of AI systems be properly defined142

and that remedial action is provided.143

• Safety and security. AI systems must be secure and operate as designed. They also need to be144

secured and resilient against abuse by unauthorized parties.145

• Transparency and explainability. AI systems should be designed and implemented to allow super-146

vision as well as interpretation of activities in comprehensible output and to provide information on147

where, how, and when these systems are used. This principle is the response to challenges such as148

transparency, explainability, open source data and algorithms, or right to information.149

• Fairness and non-discrimination. The principles of justice and non-discrimination require that AI150

systems should be designed and used to maximize fairness and minimize bias.151

• Human control of technology. This principle requires that important decisions remain under human152

control all the time.153

• Professional responsibility. This principle addresses the responsibilities and the role of individuals154

in the process of developing and deploying AI systems and calls for professionalism and integrity155

in ensuring communication with stakeholders on the long-term effects of these systems.156

• Promotion of human values. The principles of human values state that the goals pursued by AI and157

how they are pursued should correspond with our values and generally support human well-being.158

In addition to these key principles, which should become part of modern AI systems, many scientists,159

lawyers, and psychologists are currently dealing with ethical issues related to AI. Especially because with160

the increasing possibilities that AI offers us, new problems or questions arise, especially in applications161

that have a major impact on human lives. For example, how do we ensure that AI is fair and free from162

racial or gender prejudice? Who will be responsible if life is threatened due to an AI’s decision? How to163

ensure that AI is fair and transparent? When can the AI decide by itself and when is it necessary to retain164

the supervision of a responsible person?165

Recent initiatives in this area have also confirmed the importance of these problems. In the EU, the AI166

Expert Group has produced document the Ethics Guidelines for Trustworthy AI (High-Level Independent167

Group on Artificial Intelligence (AI HLEG), 2019), which provides guidelines for the development of168

trusted AI based on the principles of fundamental human rights that apply throughout the EU. The result169

is a kind of framework that defines four ethical principles:170

1. Respect for human autonomy - A person has the right to supervise the system and to intervene in171

the AI process at any time.172

2. Prevention of harm - This principle aims to prevent AI systems from harming a person, whether173

physically or mentally.174

3. Fairness - The aim is to prevent discrimination or bias in AI.175
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4. Explainability - AI systems and their decisions should be explained in a way that is understandable176

to the stakeholders involved. Humans should know when they are using an AI system and must be177

informed about its capabilities and limitations.178

Also, commercial companies engaged in research in AI applications are interested in creating systems179

that are ethical, fair, and transparent. For example, Google has released a document with its own principles180

that they want to follow when creating AI systems (Pichai, 2018).181

China has similarly built on these ideas and, through the China Academy of Information and Communi-182

cations Technology (CAICT), has issued a white paper on trustworthy AI (China Academy of Information183

and Communications Technology JD Explore Academy, 2021) - this is particularly noteworthy as it is in184

line with other major regulators in other countries.185

From this point of view, transparency is an essential part of the creation and deployment of AI systems186

in the real environment and should be included in the design of the AI system. Of course, there are187

exceptions in this area as well, applications in which explainability does not play such an important role,188

especially business applications that focus on model accuracy and the potential profit and for which time189

devoted to a deeper understanding of models would be cost-inefficient.190

However, in safety-critical environments such as autonomous vehicles, industry, or healthcare, ex-191

plainable methods are essential and required when deploying AI to help human decisions.192

XAI in Healthcare193

In the healthcare field, AI can be very beneficial. There are already practical deployments of AI, e.g.,194

to help doctors to identify the heart failure problems (Choi et al., 2016), lung problems after thoracic195

surgery (Jaščur et al., 2021) or automatic detection of COVID-19 from lung ultrasound (Born et al., 2020).196

However, the full potential of AI systems is limited by the inability of the majority of algorithms to explain197

their results and decisions to human experts. This is a huge problem, especially in the medical field, where198

doctors need to understand why AI has made a decision and how it came to that decision. Transparent199

algorithms could reasonably increase the confidence of medical experts in future AI systems (Ahmad200

et al., 2018). Therefore, research aimed at creating XAI systems for medical applications requires the201

development of new methods for machine learning and human-computer interaction. There is a certain202

tension between the accuracy and explainability of machine learning methods. The most powerful models203

(especially deep learning (DL) or ensembles) are often least transparent, and methods that provide clear204

and comprehensible explanations known as interpretable models (e.g., decision trees) are less accurate205

(Bologna and Hayashi, 2017).206

In the healthcare domain, the motivation for using XAI methods is evident. In many cases, both207

end-users and the critical nature of the predictions require some transparency, either for user involvement208

or for patients’ safety. XAI methods contribute significantly to transparency. However, sometimes an209

explanation of machine learning predictions is not enough. It is important to think about how the end-user210

interprets the results, how they are incorporated into the work process, or how they are used in other ways.211

Healthcare experts are often overwhelmed by the influx of patients, the influx of data about these patients,212

and the related tasks that are required of them, such as entering data into the system, analyzing available213

electronic health records, providing health care. Therefore, if AI systems and their explanations are not214

presented in the right way, it will not help healthcare experts, but on the contrary, it takes extra work.215

Hence, these systems should be created specifically tailored to the domain, and the perspective of the user216

who will work with them (Ahmad et al., 2018).217

AI is often associated with the idea that artificial intelligence should replace the decisions of health218

professionals. However, it is not obligatory to create systems in this way. Conversely, AI can be beneficial219

in important decisions that doctors must make, especially if the reasons for AI decisions or predictions220

are properly explained.221

Requirements of AI systems in the medical field222

The field of medicine places specific requirements on all computer systems because it requires these223

systems to be safe, reliable, secure, certified, or audited. In addition, the systems must work together and224

be fault-tolerant. A system error can cause a power outage or the administration of the wrong medication,225

resulting in the worst case in the death of a patient. It is, therefore, necessary that responsibility for the226

proper functioning of all systems is defined. This responsibility lies with the system administrators or227

certification authorities.228
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In the healthcare field, research focuses on the needs and specific requirements for security, trust, or229

accountability. AI’s ethical or regulatory aspects in healthcare are also increasingly becoming a concern230

in this area. These concerns include, for example, model bias, lack of transparency, privacy concerns231

related to sensitive data used to train models, or liability issues. Although these concerns are often a topic232

of discussion, there are very few practical recommendations or examples.233

A recent publication (Reddy et al., 2020) provides a Governance model for AI in Healthcare (GMAIH)234

that covers the introduction and implementation of AI models in health care. This model includes recent235

requirements from the United States Food and Drug Administration (FDA) (Administration and Drug,236

2016) institute about requirements for AI systems. GMAIH model outlines methods and practices for237

these four categories:238

• Fairness - there should be data governance panels to oversee the collection and use of data. AI239

models should be designed to ensure procedural and distributive fairness.240

• Transparency - includes transparency in decision-making on AI models and support for patient and241

physician autonomy.242

• Credibility - education of physicians and patients in AI should be applied to enhance it. The243

integration of AI systems should include fully informed consent from patients to the use of AI and244

appropriate and authorized patient data.245

• Accountability - means regulation and responsibility in the approval, implementation, and deploy-246

ment phase of AI applications in healthcare.247

Legislative requirements for AI systems in healthcare can vary from one part of the world to an-248

other. New AI systems and devices are subject to FDA approval in the US. In the EU, unlike the US,249

medical devices are not approved by a centralized agency. Medical devices are divided into risk classes250

(Muehlematter et al., 2021), with the lowest risk class 1 being the device manufacturer’s responsibility.251

Medical devices in the high-risk classes (IIa, IIb, and III) are dealt with by private ’notified bodies’ - i.e.,252

organizations that have been accredited to carry out conformity assessment and issue the Conformité253

Européenne (CE) mark.254

The FDA has only recently published (US Food and Drug Administration (FDA), 2021) the agency’s255

first action plan for software as a medical device (SaMD) based on artificial intelligence/machine learning256

(AI/ML). This action plan describes a multi-pronged approach to advance the agency’s oversight of257

AI/ML-based medical software. We can expect the EU will follow the US in improving oversight of258

AI/ML control of healthcare systems in the near future.259

Desiderata of XAI models260

In the literature on explainability, we often come across the term ”desiderata” which we could translate as261

necessary requirements for XAI methods. These requirements represent aspects or properties that are262

expected and required from a method capable of explaining AI models. These requirements also vary in263

the literature or are intended for specific types of methods, e.g., Desiderata for gradient methods (Das and264

Rad, 2020) or Desiderata for interpretable model (Guidotti et al., 2018).265

General requirements to be met by XAI models also include fidelity, or honesty (Ribeiro et al., 2016)266

(Plumb et al., 2018). Other requirements include robustness or stability, which measures whether similar267

input instances generate similar conclusions (Alvarez-Melis and Jaakkola, 2018) as well as interpretability268

or comprehensibility (Narayanan et al., 2018), which means measures how difficult is for a person to269

understand the results from a given XAI model. Other requirements that were defined in (Robnik-Šikonja270

and Bohanec, 2018) for XAI methods are Expressive Power, Translucency, Portability, and Algorithmic271

Complexity. For individual explainability, authors defined other necessary properties such as accuracy,272

fidelity, consistency, comprehensibility, certainty, degree of importance, novelty, and representativeness.273

However, these desiderata depend on the specific application or environment in which the models274

will be deployed. The authors of the article on the Deployment of Explainable Models (Bhatt et al.,275

2020) argue that these requirements should be designed only based on the selected application and276

environment. It should be based on the following three points: 1. Identify stakeholders; 2. Involve each of277

the stakeholders; 3. Understand the reasons for an explanation.278
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Desideratum Description Stakeholder Occurence

acceptance Improve acceptance of systems Deployer, Regulator (Reddy et al., 2020) (Panigutti et al., 2020)

accountability Provide appropriate means to deter-

mine who is accountable

Regulator (Reddy et al., 2020) (Panigutti et al., 2020) (US Food and Drug

Administration (FDA), 2021) (Ahmad et al., 2018) (Dave et al.,

2020) (Tjoa and Guan, 2019)

(Pawar et al., 2020b) (Larasati and DeLiddo, 2020)

accuracy Assess and increase a system’s pre-

dictive accuracy

Developer (Reddy et al., 2020) (Ahmad et al., 2018) (Dave et al., 2020)

(Tjoa and Guan, 2019) (Khedkar et al., 2019) (Holzinger et al.,

2017)

(Singh et al., 2020) (Pawar et al., 2020a) (Brunese et al., 2020)

(Alshazly et al., 2021) (Wei et al., 2020)

autonomy Enable humans to retain their auton-

omy when interacting

User (Reddy et al., 2020) (Holzinger et al., 2017) (Singh et al., 2020)

with a system

confidence Make humans confident when using

a system

User (Reddy et al., 2020) (Larasati and DeLiddo, 2020) (Holzinger

et al., 2017) (Singh et al., 2020)

controllability Retain (complete) human control

concerning a system

User -

debugability Identify and fix errors and bugs Developer (Ahmad et al., 2018) (Dave et al., 2020) (Khedkar et al., 2019)

(Holzinger et al., 2017) (Brunese et al., 2020)

education Learn how to use a system and sys-

tem’s peculiarities

User (Reddy et al., 2020)

effectiveness Assess and increase a system’s ef-

fectiveness;

Developer, User (Reddy et al., 2020) (US Food and Drug Administration (FDA),

2021) (Holzinger et al., 2017) (Brunese et al., 2020) (Alshazly

et al., 2021)

work effectively with a system

fairness Assess and increase a system’s (ac-

tual) fairness

Affected, Regulator (Reddy et al., 2020) (Panigutti et al., 2020) (Ahmad et al., 2018)

(Dave et al., 2020) (Holzinger et al., 2017)

informed consent Enable humans to give their in-

formed consent

Affected, Regulator (Reddy et al., 2020) (Wei et al., 2020)

concerning a system’s decisions

legal compliance Assess and increase the legal com-

pliance of a system

Deployer -

ethics Assess and increase a system’s com-

pliance with moral

Affected, Regulator (Reddy et al., 2020) (Holzinger et al., 2017) (Tjoa and Guan,

2019) (Singh et al., 2020)

and ethical standards

performance Assess and increase the performance

of a system

Developer (Reddy et al., 2020) (Panigutti et al., 2020) (US Food and Drug

Administration (FDA), 2021) (Ahmad et al., 2018) (Dave et al.,

2020) (Khedkar et al., 2019)

(Singh et al., 2020) (Pawar et al., 2020a) (Brunese et al., 2020)

privacy Assess and increase a system’s pri-

vacy practices

User (Reddy et al., 2020) (Ahmad et al., 2018) (Holzinger et al.,

2017) (Amann et al., 2020) (Larasati and DeLiddo, 2020)

responsibility Provide appropriate means to let hu-

mans remain

Regulator (Reddy et al., 2020) (Tjoa and Guan, 2019) (Muehlematter et al.,

2021)

responsible or to increase perceived

responsibility

robustness Assess and increase a system’s ro-

bustness

Developer (Reddy et al., 2020) (US Food and Drug Administration (FDA),

2021) (Tjoa and Guan, 2019) (Singh et al., 2020) (Alshazly

et al., 2021) (Wei et al., 2020)

(Muehlematter et al., 2021) (Muddamsetty et al., 2021)

(e.g., against adversarial manipula-

tion)

security Assess and increase a system’s secu-

rity

All (Ahmad et al., 2018) (Larasati and DeLiddo, 2020) (Holzinger

et al., 2017) (Brunese et al., 2020) (Amann et al., 2020)

safety Assess and increase a system’s

safety

Deployer, User (Reddy et al., 2020) (Ahmad et al., 2018) (Holzinger et al.,

2017) (Singh et al., 2020) (Muehlematter et al., 2021) (Born

et al., 2020)

satisfaction Have satisfying systems User -

science Gain scientific insights from the sys-

tem

User (US Food and Drug Administration (FDA), 2021) (Tjoa and

Guan, 2019) (Muehlematter et al., 2021)

transferability Make a system’s learned model

transferable to other contexts

Developer (Alshazly et al., 2021)

transparency Have transparent systems Regulator (Reddy et al., 2020) (Panigutti et al., 2020) (US Food and Drug

Administration (FDA), 2021) (Ahmad et al., 2018) (Dave et al.,

2020) (Tjoa and Guan, 2019)

(Pawar et al., 2020b) (Larasati and DeLiddo, 2020) (Holzinger

et al., 2017) (Amann et al., 2020) (Muehlematter et al., 2021)

(Muddamsetty et al., 2021)

trust Have appropriate trust in the system User, Deployer (Reddy et al., 2020) (Panigutti et al., 2020) (US Food and Drug

Administration (FDA), 2021) (Ahmad et al., 2018) (Dave et al.,

2020) (Pawar et al., 2020b)

(Khedkar et al., 2019) (Larasati and DeLiddo, 2020) (Holzinger

et al., 2017) (Singh et al., 2020) (Pawar et al., 2020a)

trustworthiness Assess and increase the system’s

trustworthiness

Regulator (Reddy et al., 2020) (Dave et al., 2020)

usability Have usable systems User (US Food and Drug Administration (FDA), 2021) (Tjoa and

Guan, 2019) (Holzinger et al., 2017) (Amann et al., 2020)

usefullness Have useful systems User (Alshazly et al., 2021)

verification Be able to evaluate whether the sys-

tem does

Developer (Tjoa and Guan, 2019) (Brunese et al., 2020) (Amann et al.,

2020)

what it is supposed to do
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A grand overview of desiderata based on different stakeholders was provided by the authors of the279

study (Langer et al., 2021). They divided the stakeholders into five classes: users, (system) developers,280

affected parties, deployers, and regulators. They created a list of 29 desiderata to which they assigned a281

stakeholder class and the articles where they appeared. This list is not definitive and will tend to change282

or expand over time.283

Inspired by this overview, we collected and summarized recently published research papers and284

performed a similar overview for the medical field. The desiderata that appear in the field of medicine are285

summarized in the Table 1.286

Based on the table we can say that the most frequent requirements for XAI methods in the medical287

field are accuracy, accountability, transparency and trust.288

XAI metrics and measurements289

Based on requirements from the section on Desiderata of XAI models, it is possible to compare models290

and select those that are suitable for the application we need, e.g., in medicine (Ahmad et al., 2018).291

However, recent practical approaches have shown that this comparison may not be sufficient and that292

more attention needs to be paid to practice tests along with evaluations from domain experts using these293

models (Jesus et al., 2021).294

It is also possible to compare explainable methods from the point of view of several levels. The295

authors in (Doshi-Velez and Kim, 2017) propose three main levels for the evaluation of interpretability:296

• Application level evaluation (real task): Implementation of models for explainability in a specific297

application and testing it on a real task. For example, software that will detect fracture sites based298

on X-ray records. The doctor could evaluate the quality of the explanations that the software offers299

to explain its intentions.300

• Human-level evaluation (simple task): This level of explainability is also within applications, but the301

evaluation quality is not performed by experts, but by ordinary people - testers who are cheaper and302

also choose explanations according to how they help them understand at their level of knowledge.303

• Function level evaluation (proxy task): This level does not require people. It is appropriate if a304

class of methods that the target class can work with is used, e.g. a decision tree. This model can be305

bounded to better explainability, e.g., using the decision tree pruning method.306

However, the way in which methods are evaluated can vary considerably, depending on different307

objectives of their deployment, the stakeholders for which they are intended, and the type of the method308

used. This was also noted by Mohseni et al. (Mohseni et al., 2018) who categorized metrics based309

on design goals and evaluation metrics. They categorized requirements by type of target user into the310

following three groups:311

• AI novices - users with little expertise on AI models but using AI systems daily. XAI goals for this312

group of users are: Algorithmic Transparency, User Trust and Reliance, Bias Mitigation, Privacy313

Awareness314

• Data experts - data scientists or domain experts who use machine learning models for analysis and315

decision making tasks. Their goals are: Model Visualization and Inspection, Model Tuning and316

Selection317

• AI experts - machine learning scientist, designers and developers of ML algorithms with their goals:318

Model Interpretability and Model Debugging319

The model measurements can be divided as follows:320

1. Computational Measures321

• Fidelity of Interpretability Method (AI experts) - uses two metrics (Velmurugan et al., 2021)322

Recall (R = |T F∩EF |
|T F | ) and Precision (P = |T F∩EF |

|EF | ), where the term True Features (TF)323

represents the relevant features as extracted directly from the model and Explanation Features324

(EF) represents the features characterised as most relevant325
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• Model Trustworthiness (AI experts) - represents a set of domain specific goals such as safety326

(by robust feature learning), reliability, and fairness (by fair feature learning). Different327

similarity metrics, such as Intersection over Union (IoU) and mean Average Precision (mAP),328

are used to quantify the quality of model saliency explanations or bounding boxes compared329

to the ground truth (Mohseni et al., 2018). These metrics often depend on the model used330

and are compared to the annotated explanations.331

2. Human-grounded Measures332

• Human-machine Task Performance (Data experts and AI novices) - XAI should assist users333

in tasks involving machine learning. Therefore, it is important to measure user performance334

when evaluating XAI methods. For example, we can measure users’ performance in terms335

of success rates and task completion times while evaluating the impact of different types of336

explanations.337

• User Mental Model (AI novices) - The mental model represents how users understand the338

system. XAI assists users in creating a mental model of how AI works. One way of exploring339

these models is to ask users directly about their understanding of the decision-making process.340

The mental model can be measured by several metrics, e.g., ease of users’ self-explanations,341

user prediction of model output, or user prediction of model failure.342

• User Trust and Reliance (AI novices) - User trust and reliability can be measured by explicitly343

gauging users’ opinions during and after working with the system, which can be through344

interviews and questionnaires.345

• Explanation Usefulness and Satisfaction (AI novices) - The effort is to identify user satisfac-346

tion and the usefulness of machine explanation. Various subjective and objective measures347

of understandability and usefulness are used to assess the value of the explanation to users.348

Qualitative evaluations in the form of questionnaires and interviews are most commonly349

used.350

However, there is a lack of use cases for evaluating XAI methods in Healthcare. In some papers351

(Lauritsen et al., 2020) the evaluation was carried out by manual inspection with domain experts. There352

are some papers (Muddamsetty et al., 2021),(Panigutti et al., 2020) where the authors tried to evaluate353

and compare used XAI methods using computational measures.354

In (Panigutti et al., 2020), the authors developed a new model of explainability of black box models355

for processing sequential, multi-label medical data. To evaluate it, they used the computational measure’s356

Fidelity to the black-box, Hit (tells if the interpretable classifier predicts the same label as the black-box),357

and Explanation Complexity while comparing the black-box model with its interpretable replacement in358

the form of decision rules.359

However, the selection of appropriate metrics depends not only on the target domain or the method360

used but also on the type of data processed. In (Muddamsetty et al., 2021), the authors investigated361

expert-level evaluation of XAI methods in the medical domain on an image dataset. In doing so, they used362

the state-of-the-art metrics AUC-ROC Curve and Kullback-Leibler Divergence (KL-DIV), comparing the363

results of eye-tracking expert observations against the results of XAI methods. They showed that it is364

important to use domain experts when evaluating XAI methods, especially in a domain such as medicine.365

In a recent study (Gunraj et al., 2020), a new method called GSInquire was used to create heatmaps366

from the proposed COVID-net model for detection of COVID-19 from chest X-ray images. Together with367

the new method, the authors proposed new metrics - impact coverage and impact score. Impact coverage368

was defined as coverage of adversarially impacted factors in the input. The impact score was defined as a369

percentage of features that impacted the model’s confidence or decision.370

XAI METHODS371

Due to the growing number of methods in the field of explainability, it is difficult to understand the372

advantages, disadvantages, or competitive advantages in different domains. There are different taxonomies373

of XAI methods (Gilpin et al., 2018)(Barredo Arrieta et al., 2020) (Molnar, 2018), but most of them agree374
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on classifying methods into categories such as global methods (which explain the behavior of the model on375

the whole data set), local methods (which explain the prediction or decision for a specific example), ante-376

hoc (where the explanation model is created in the AI training phase), post-hoc (where the explanation377

model is created only on trained models), surrogate (an interpretable model replaces the AI model) or a378

directly interpretable model (decision trees or decision rules) is used. Molnar, in his book (Molnar, 2018)379

generally categorizes XAI methods into three types: (1) methods with internal interpretation, (2) model380

agnostic methods, and (3) example-based explanation methods. Another taxonomy of XAI methods is381

based on the data type (Bodria et al., 2021), such as tabular data, image data, and text data. Figure 2382

depicts a commonly used categorization of the XAI methods Linardatos et al. (2021).383

Figure 2. Taxonomy of the XAI methods according to. (Linardatos et al., 2021)

In this paper, only selected methods used in video processing tasks will be explained and referred to384

in the text.385

Model agnostic methods386

Model agnostic methods separate the explanations from the machine learning model. This brings an387

advantage over model-specific methods in their flexibility (Ribeiro et al., 2016) and universality. Agnostic388

methods can be used for a wide range of machine learning models, such as ensemble methods or deep389

neural networks. Even the output of an XAI method, whether it is a visual or textual user interface, also390

becomes independent of the machine learning model used. A single agnostic method can explain each of391

the multiple trained machine learning models and help decide the most appropriate deployment model.392

These methods can be further divided into global and local methods. Global methods describe the impact393

of features on the model on average, and local methods explain the model based on the predictions of394

individual examples.395

SHAP396

SHAP (SHapley Additive exPlanations) by Lundberg and Lee (Lundberg and Lee, 2017) is a method for397

explaining individual predictions of the model. This method is based on Shapley values the game theory.398

L. Shapley (Shapley, 2016) invented Shapley values as a way of providing a fair solution to the399

following question: If we have a coalition c that collaborates to produce value v, how much did each400

individual member contribute to the final value?401

To find the answer to this question, we can compute a Shapley value for each member of the coalition.402

For example, if we want to find the Shapley value for the first member. Let us compare a coalition formed403

with all members and a coalition formed without the first member. The difference between these results is404

the marginal contribution of the first member for the coalition composed of the other members. We then405
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look at all the marginal contributions we get in this way. The Shapley value is the average of these results406

for a single member. We can repeat this process for all members (Shapley, 2016).407

SHAP is based on a similar idea. Unlike coalition members, it looks at how individual features408

contribute to a model’s outputs. However, it does this in a specific way. As the name implies, the method409

uses Shapley values for explanations, but it also uses additive features. Lunberg and Lee (Lundberg and410

Lee, 2017) define an additive feature attribution as follows: If we have a set of inputs x and model f (x),411

we can define a set of simplified local inputs x′ and we can also define an explanatory model g(x′).412

What we need to ensure is:413

1. if x′ is roughly equal to x, then g(x′) should be roughly equal to f (x),414

2. g(x′) = φ0 +∑
N
i=1 φix

′
i415

Where φ0 is the average output of the model and φi is the explained effect of feature i, how much feature i416

changes the model, and this is called it’s attribution. In this way, we can get a simple interpretation for all417

features.418

SHAP describes the following three desirable properties:419

1. Local Accuracy - if the input and the simplified input are roughly the same, then the actual model420

and the explanatory model should produce roughly the same output.421

2. Missingness - if the feature is excluded from the model, it’s attribution must be zero.422

3. Consistency - if the feature’s contribution changes, the feature effect cannot change in the opposite423

direction.424

SHAP satisfies all three properties. The problem occurs, when computing Shapley values. There must425

be calculated values for each possible feature permutation. This means we need to evaluate the model426

multiple times. The get around this problem Lundberg and Lee (Lundberg and Lee, 2017) devise the427

Shapley kernel or KernelSHAP.428

KernelSHAP approximates Shapley values through much fewer samples. There are also other forms429

of SHAP presented in (Lundberg and Lee, 2017): Low-Order SHAP, Linear SHAP, Deep SHAP, Max430

SHAP. However, KernelSHAP is the most universal and can be used for any type of ML model.431

Figure 3. SHAP summary plot. Adapted from Ref. (Molnar, 2018)

11/27PeerJ Comput. Sci. reviewing PDF | (CS-2022:07:75813:1:0:NEW 23 Nov 2022)

Manuscript to be reviewedComputer Science



For visualization of SHAPley values, we can use a summary plot. Each point of the graph on the432

x-axis represents a Shapley value for one element of (Molnar, 2018). The elements on the y-axis are433

sorted by importance. The color represents the feature value from low (blue) to high (red). For example,434

from the figure 3, a low number of years of contraceptive use reduces the risk of cancer. Conversely, a435

high number of years increases this risk.436

LIME437

In their work, Ribeiro et al. (Ribeiro et al., 2016) proposed a method called Local Interpretable Model-438

agnostic Explanations (LIME). As the name implies, it is a method that focuses on local interpretation and439

is universal concerning the model used. LIME is a method that uses a surrogate for the black-box model440

in the form of an interpretable model, which it constructs based on examples within the neighborhood of441

the observed example and approximates the black-box model’s predictions. This assumes that a simple442

interpretable model can explain the model’s behavior in its neighborhood.443

This principle is quite intuitive. We have a black-box model whose decisions we want to understand.444

We choose a single example and start creating variations of the features of the chosen example that we445

give to the model. We save the input data (variations) and the predictions of the black-box model. LIME446

will then train an interpretable model based on this data. This model should have a good approximation447

of the predictions, close to the black-box model, but this does not mean that it will also be a global448

approximation of the model. Therefore, this is one of the local models. Any interpretable model from the449

previous chapter can be used as an interpretable model.450

In his book (Molnar, 2018), Molnar describes the process of the LIME method in steps:451

• Choosing an example to explain black-box prediction.452

• Creation of variations of the input data from the desired example.453

• Allocation of weights by a new example. The example that is more similar to the desired example454

gets more weight.455

• Training the chosen interpretable model on new variations of the weighted input data.456

• Explanation of prediction using the trained interpretable model.457

The LIME method can be applied to different types of input data, such as tabular data, text data, or458

images. The principle is the same, but the output differs in the interpretation of the outputs.459

T460

CIU461

The Contextual Importance and Utility (CIU) (Anjomshoae et al., 2019) (Anjomshoae et al., 2020)462

method explains the model‘s outcome using two algorithms Contextual Importance (CI) and Contextual463

Utility (CU). CI approximates the overall importance of a feature in the current context. CU provides an464

estimation of how favorable or not the current feature value is for the given output class. This can help to465

justify why one class is preferred over another. Explanations have contextual capabilities, which means466

that one feature can be more important for a decision about one class but irrelevant for another class. CI467

and CU values are formally defined as:468

CI =
Cmaxx(Ci)−Cminx(Ci)

absmax−absmin

CI =
yi, j −Cminx(Ci)

Cmaxx(Ci)−Cminx(Ci)

• x is the input(s) (vector) for which CI and CU are calculated,469

• Cmax and Cmin are highest and the lowest output values observed by varying the value of the470

input(s) x,471

• absmax and absmin specify the value range for the output j being studied.472

• yi, j is the otuput value for the output j studied when the inputs are those defined by Ci473
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Model-specific explanations474

There are several XAI methods in this group working with specific DL models, e.g., CNN, LSTM, or475

GAN for image processing (Alshazly et al., 2021) or video processing models (Chittajallu et al., 2019).476

There are also XAI methods for specific data types like text, voice, or timeseries.477

Papastratis, in his recent survey (Papastratis, 2021) presents current trends in explainable methods for478

deep neural networks. Some of the methods he presents have already been described above and belong to479

one of the previous categories. Papastratis has divided these methods into three categories:480

• Visual XAI methods: visual explanations and plots481

• Mathematical or numerical explanations482

• Textual explanations, given in text form483

Class Activation Mapping (CAM)484

CAM (Zhou et al., 2016) represents one of the basic methods from the visual domain. Other methods are485

also based on its principle. CAM adds a global average pooling layer between the last convolutional layer486

and the final fully connected layer of the CNN neural network. The fully connected layer, controlled by487

the softmax activation function, subsequently provides us with the desired probabilities at the output. We488

can obtain the importance of the weights concerning the category by back projecting the weights onto the489

saliency maps of the last convolutional layer. That allows us to visualize the CNN features from the layer490

responsible for the classification.491

A mathematical formulation of CAM: Let f (x,y) be the activation map of unit u in the last convo-

lutional layer at spatial location (x,y). The result of the Global Average Pooling (GAP) layer (injected

between the last convolutional layer and the final fully connected layer) is represented as:

Fu = ∑
x,y

fu(x,y)

For a class c, an input to softmax will be:

Sc = ∑
u

wc
uF(u)

Output of softmax layer:

Pc =
eSc

∑c eSc

Thus, the final equation for an activation map of class c would be:

Mc(x,y) = ∑
u

wc
u fu(x,y)

CAMs are a good and simple technique for interpreting features from CNN models. The disadvantage492

of this method is noise which causes a loss of spatial information. CAMs require a CNN model that493

contains a GAP layer, and CAM heatmaps can be generated only for the last convolutional layer. Therefore,494

other algorithms such as Grad-CAM have been developed.495

Gradient-weighted Class Activation Mapping (Grad-CAM)496

Grad-CAM (Ramakrishna and Batra, 2019) is a generalization of CAM, which can be applied to any497

type of CNN. Grad-CAM is applicable to different types of CNN architectures: CNN, VGG, DenseNet.498

Grad-CAM does not require a GAP layer and can be used for heatmaps for any layer. The difference499

between CAM and Grad-CAM is in calculating the weights for each heatmap. Grad-CAM takes the500

convolutional layer’s feature map and calculates which attribute is important, based on the gradient of501

the score, at the selected target class. Then the neuron weights are obtained by global averaging of the502

gradients. In this way, we obtain the weights of the flags for the target class. By multiplying the feature503

maps with their weights we obtain a heatmap highlighting regions that positively or negatively affect the504

class of interest. Finally, we apply the ReLU function, which sets the negative values to 0 because we are505
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Figure 4. Differences in Grad-CAM visualization between a biased and unbiased model. Adapted from

Ref. (Moreau, 2018)

only interested in the positive contributions of the selected class. In this way, we obtain feature maps that506

highlight important regions of the input image for the selected target class.507

Visualization methods like Grad-CAM can help identify bias in the trained model, as shown in Figure508

4. The activation maps showed part of the image that the model uses. The model decisions are based on509

the edge of the image instead of the lung area.510

Table 2 summarizes the advantages and disadvantages of the described methods.511

XAI IN VIDEO PROCESSING APPLICATIONS512

Deep learning methods perform very well in image processing and visualization tasks. With the increasing513

performance of AI computing units and decreasing cost, deep learning methods are also becoming more514

applicable in video processing, which is computationally more complex. However, video can provide515

important information about the evolution of the area under study over time. Thus, we can track the516

movement of objects or the temporal appearance of an object, which cannot be obtained simply from517

images. As the complexity of the neural network for video processing increases, the problem of the518

explainability of these networks also increases.519

XAI methods for video processing applications are based on visualization methods for 2D image520

processing. The most common methods are CAM and Grad-CAM, which are adapted for 3D neural521

networks, or methods that combine visual information with textual information.522

In the following subsections, we will discuss current approaches for using XAI methods for DL video523

processing, and potential applications of XAI methods in medical video processing.524
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Method Advantages Disadvantages

SHAP

SHAP predictions are fairly distributed

among symptom values. It is an agnostic

method regarding the model used. Fast com-

putation when applied to tree-based models.

Allows both local and global interpretation

of the model.

KernelSHAP is slow. For global interpre-

tation, this requires computing many in-

stances. Counting for many values is, there-

fore, slow and impractical. SHAP values

can be misinterpreted. It is possible to cre-

ate deliberately misleading interpretations.

As an end user, you, therefore, cannot be

100% sure of the veracity.

LIME

It can be applied directly to a trained in-

terpretable model (any trained model). It

can be applied to tabular, textual, or image

data. It uses a metric for the goodness-of-fit

measure that also tells how well the model

approximates the black-box model around

the example we are interested in.

When used with tabular data, defining what

a neighborhood means is difficult. The com-

plexity of the model is defined in advance.

The user chooses between fidelity and spar-

sity of explanation. The stability of expla-

nations - with two close examples; LIME

may offer different explanations.

CIU

CIU enables explanation of why a certain

instance is preferable to another one, or why

one class (outcome) is more probable than

another. CI and CU values can be calcu-

lated for more than one input which means

that higher-level concepts can be used in ex-

planations. It is also a lightweight method

which makes the model run faster compared

to LIME and SHAP.

CIU is a novel approach and still in an early

stage of development compared to LIME or

SHAP.

CAM

CAMs are a good and simple technique

for interpreting features from CNN mod-

els. CAM does not require a backward pass

through the network again.

The noise causing a loss of spatial informa-

tion. CAM heatmaps can be generated only

for the last convolutional layer. It cannot

be used for computer vision tasks such as

visual question answering.

Grad-

CAM

Based on the gradients of the task-specific

output with respect to the feature maps,

Grad-CAM can be used for all computer

vision tasks such as visual question answer-

ing and image captioning. It uses the gra-

dients of the output score as the weights of

the feature maps that eliminates the need to

retrain the models.

When there are multiple occurrences of the

target class within a single image, the spa-

tial footprint of each of the occurrences is

substantially lower. The inability to local-

ize multiple occurrences of an object in an

image. Inaccurate localization of heatmap

with reference to coverage of class region

due to the partial derivatives premise.

Table 2. Comparison of XAI methods .

XAI for Deep Learning video processing525

Hiley et al. In their work, (Hiley et al., 2020) focused on explaining the relevance of motion for activity526

recognition. They point out that in the same way, there are attempts to adapt XAI methods initially527

developed for images to enable them to work with videos (3D inputs). Similarly, 3D convolutional neural528

networks are being adapted to work with video in this way. However, the methods adapted in this manner529

consider spatial and temporal information together. Therefore, when using these XAI methods, it is530

impossible to clearly distinguish the role of motion in 3D model decision-making. The problem is that531

these methods do not consider motion information over time. Therefore, the authors proposed a method,532

Selective Relevance, for adapting 2D XAI methods for motion tracking and these are are better understood533

by the user. They demonstrated the results using several XAI methods and observed the improvement of534

the explanation for motion over time. Their method offers a different perspective to explain the model535

decision-making in video classification and it improves the explanations offered. A comparison of 3D and536

selective methods can be seen in figure 5. From the left, there are: original video frame, 3D DTD (Deep537
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Taylor decomposition), Selective DTD, 3D Grad-CAM, Selective Grad-CAM, 3D Guided Backprop538

explanation, 3D Guided GradCAM explanation, Selective Guided GradCAM. In Selective DTD, the539

resulting explanations are more focused and simpler compared to 3D DTD. In Selective Grad-CAM, the540

center of focus remains stable but the edges are stronger with red areas representing higher intensity541

change. The last three methods do not provide comparable results.542

Figure 5. Comparison of XAI methods for activity recognition from video. Adapted from Ref. (Hiley

et al., 2020)

Nourani et al. (Nourani et al., 2020) presented research focusing on perceptions of AI systems543

influenced by first experiences and how explainability can help users to form an idea of the system’s544

capabilities. They used a custom neural network to recognize activities from video and looked at whether545

the presence of explanatory information for system decisions influences the user’s perception of the546

system. They tested how changing the order of the model’s weaknesses and strengths can affect users’547

mental models. They found that the first impression of the system can significantly impact the task error548

rate and the user’s perception of the accuracy of the model. Adding additional explanations was not549

enough to negate the influence of first impressions, and users with a negative first impression also tried to550

find errors in further explanations. In contrast, users with positive first impressions were more likely to551

ignore errors in explanations.552

Escalante et al. in (Escalante et al., 2017), created a challenge for using DL and XAI methods for553

automated recruitment of people based on their videos. When interviewing, it is often the case that554

selection is based on subjective feelings and first impressions rather than objective assessment, which can555

lead to bias. In their study, they highlight the problem of explaining models’ decisions and using XAI to556

identify important visual aspects, trying to understand how these aspects relate to the model’s decisions,557

and gaining insight into unwanted biases. Their goal is to increase the awareness and importance of XAI558

methods for machine decision-making applications such as recruitment automation. The study describes559

the environment, scenario, and evaluation metrics. These are short videos (15s) of job recruitment560

interviews. This challenge resulted in several different models in XAI methods.561

In their work, Stano et al.(Mart, 2020) presented a novel approach for explaining and interpreting the562

decision-making process to a human expert working with a convolutional neural network-based system. In563

their work, they used Gaussian Mixture Models (GMMs) for a binary code in vector space that describes564

the process of input processing by a CNN network. By measuring the distance between pairs of examples565

in this perceptual encoding space, they obtained a set of perceptually most similar and least similar566

samples, which helped clarify the CNN model’s decision.567

This approach can be applied to 3D objects such as magnetic resonance imaging (MRI) or computed568

tomography (CT). 3D objects are very similar to videos; however, their third dimension is constant, unlike569

videos whose third dimension can be variable. The proposed method is suitable for explaining the model570

to medical personnel through similar examples from the same domain.571

Deep Learning video processing in Medical applications572

Ouyang et al. (Ouyang et al., 2020) from Stanford University created a new DL model based on573

echocardiography videos, which they called EchoNet-Dynamic. Repeated human measurements confirm574

that the model has a variance smaller than that of human experts, who need years of practice to make a575
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correct assessment and it outperforms human experts in the tasks of cardiac left ventricle segmentation,576

ejection fraction estimation, and cardiomyopathy assessment. The model can quickly identify changes in577

ejection fraction and can be used as a basis for the real-time prediction of cardiovascular disease. Along578

with the article, they also published more than 10,000 annotated echocardiographic videos. Born et al.579

(Born et al., 2020) aimed to help physicians diagnose COVID-19 using AI. In doing so, they used an580

image from a lung ultrasound. Ultrasound is non-invasive and commonly present in medical facilities581

around the world. Their contribution can be described in 3 points. They collected a set of ultrasound582

data compiled from various online sources and published it publicly. The dataset contains 64 videos583

from which 1103 images were created, divided into 3 classes (654 COVID-19, 277 pneumonia, 172584

healthy controls). Second, they created a DL model of the POCOVID-Net convolutional network that585

achieves an accuracy of 89%. Third, they provided a web service 1 on which the POCOVID-Net model is586

deployed and it enables physicians to make predictions based on ultrasound images or upload their own587

images to contribute to the dataset extension. This work would be even better if the system could also588

provide explanations for its decisions. XAI methods would increase physician confidence and make the589

system more transparent. In the current pandemic situation, this system has great potential to help identify590

COVID-19.591

In some cases, lung ultrasound can replace X-rays, for example, after chest surgery, when ionizing592

radiation is used as standard. After clinical testing of a new procedure using lung ultrasound, the need593

arose to automate the diagnostic procedure. A study by Jaščur et al. (Jaščur et al., 2021) used DL in594

their work and created a new method that works with videos of lung ultrasound. The method consists595

of semantic segmentation of ultrasound images from the first images of the video. The lung region is596

exploited from which 2D images in the temporal dimension of the video are subsequently created, called597

M-mode images. The convolutional network model then classifies the presence or absence of lungsliding598

in a given time interval based on these images. In this work, they tested different parameters, and the599

best results were obtained for the 64-frame version with an accuracy of 89 %, a sensitivity of 82 % and a600

specificity of 92 %.601

A nice overview of works that deal with visual data such as 2D images, 3D images, and videos was602

provided in (Cazuguel, 2017) or (Singh et al., 2020).603

In recent years, transfer learning has made a significant progress in the medical domain. Transfer604

learning helped to address some of the problems related to this domain, such as data scarcity. Especially605

in medical image classification, such approaches are very well studied Kim et al. (2022); Mukhlif et al.606

(2022); Hosseinzadeh Taher et al. (2021). In medical video processing, there are also several studies607

available in which transfer learning is applied. For example, in Klaiber et al. (2021) the authors provide an608

extensive review of transfer learning applied on 3D convolutional networks, with some of the applications609

also from the medical domain. In Aldahoul et al. (2021); Lee et al. (2021) the authors present particular610

approaches for transfer learning applied in the diagnosis of dysphagia using video frames and a pre-trained611

ResNet model for classification of laparoscopic videos. In our study, we focused on the explainability and612

interpretability aspects of the particular methods, therefore we did not include a more in-depth study of613

transfer learning applications.614

XAI for Deep Learning video processing in Medical applications615

Various uses of video processing with explanations in areas such as healthcare are also starting to come to616

the fore. Currently, various widely used technologies such as MRI, CT, or USG produce 3D images or617

short video sequences, which can be used by physicians to derive various diagnoses. To create systems618

that process these types of data, neural network architectures need to be modified, or the models used for619

2D image data processing need to be combined with other methods. In this context, explainability also620

plays a role, as it can help developers create more accurate models and help physicians understand the621

behavior of the model and assess the accuracy of its predictions.622

In their study, Chittajallu et al. (Chittajallu et al., 2019) present a human-in-the-loop XAI system623

for content-based image retrieval (CBIR) which they applied to video content from minimally invasive624

surgery (MIS) for surgical education. The method extracts semantic descriptors from MIS video frames625

using a self-supervised DL model. The model uses an iterative query refinement strategy, i.e., based on626

user feedback, the model is repeatedly trained and refines the search results. The system receives a single627

frame from a video as input and tries to find similar frames and return them to the user. Finally, the XAI628

1https://pocovidscreen.org
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method creates saliency maps that provide visual explanations of the system’s decisions. Based on the629

visual explanations, the user gives feedback to the system until the user is satisfied with the search result.630

Figure 6 is an example of their XAI system. The original (query) image is entered into the system and631

the content-based retrieval method is applied to the database of available images. The result containing632

similar images (bottom list of images) is visualized to the user and the system collects the user’s feedback633

on search results. The feedback is guided by showing a heat map indicating the salient parts of a retrieved634

image that most influence its relevance/similarity to the query image. The human-in-the-loop approach635

is addressed by an iterative query refinement (IQR) strategy, where a binary classifier trained on the636

feedback is used to iteratively refine the search results.637

Figure 6. Prototype of visual explanations from processing MIS video frames. Adapted from Ref.

(Chittajallu et al., 2019)

Manna et al. (Manna et al., 2021) proposed SSLM, a self-supervised deep learning method for learning638

spatial context-invariant representations from MR (magnetic resonance) video frames. Video clips are639

used for the diagnosis of knee medical conditions. They used two models: the pretext model for learning640

meaningful spatial context-invariant representations and the downstream task model for class imbalanced641

multi-label classification. To analyze the reliability of their method, they show the gradient class activation642

mappings (Grad-CAM) for the detection of all classes. The salient regions are regions where the pretext643

model gains maximum information, which is then fed to the ConvLSTM model as a downstream task.644

Zhang et al. (Zhang et al., 2021) proposed a surgical gesture recognition approach with an explainable645

feature extraction process from minimally invasive surgery videos. They use Deep Convolutional Neural646

Network (DCNN) based on VGG architecture with the Grad-CAM XAI method. The class activation647

maps provide explainable results by showing the regions of the surgical images that strongly relate to648

the surgical gesture classification results. This work combines the DCNN network for spatial feature649

extraction and RNN for temporal feature extraction from surgery video.650

Knapi et al. (Knapiˇ, 2021) present the potential of XAI methods for decision support in medical651

image analysis. They use three types of XAI methods on the same dataset to improve the comprehensibility652

of decisions provided by the CNN model. They use in vivo gastral images obtained by a video capsule653

endoscopy. In this study, they compare LIME, SHAP, and CIU methods, provide a questionnaire and654

quantitatively analyze it with three user groups with three distinct forms of explanations. Their findings655

suggest notable differences in human decision-making between various explanation support settings.656

Born et al. (Born et al., 2021b) (Born et al., 2021a) proposed a publicly available lung POCUS657

dataset comprising samples from ultrasound videos of COVID-19 patients, pneumonia-infected lungs,658

and healthy patients. The dataset contains 247 videos recorded with either convex or linear probes. They659

proposed two models for the classification of lung ultrasound data, a frame-based model based on VGG-16660

architecture and a video-based model based on 3D-CNN for 3D medical image analysis. They also used661
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the Grad-CAM method for a frame-based model to explain model decisions for each target class. For662

example, CAMs highlight COVID-19 (highlighting a B-line), bacterial pneumonia (highlighting pleural663

consolidations), and healthy lungs (highlighting A-lines).664

Hughes et al. (Hughes, 2020) tried to explain optical flow models for video tasks. They proposed a665

method for trajectory-based explanations and used saliency maps to create red points to indicate current666

positions and green points to indicate history. They applied this method to the EchoNet-Dynamic dataset667

of videos of the heart.668

Sakai et al. (Sakai et al., 2022) proposed a novel deep learning XAI representation called graph669

chart diagram to support fetal cardiac of video ultrasound screening. They reduce the dimensionality670

of time-series information to the two-dimensional diagram using the TimeCluster method, which helps671

to find anomalies in long time-series. Therefore, they use autoencoders to compress dimensions. They672

proposed two techniques, view-proxy loss and a cascade graph encoder which improve performance and673

explainability by creating sub-graph chart diagrams of sets of substructures. In (Komatsu et al., 2021)674

they proposed other techniques for explaining models of ultrasound images with bounding boxes of675

18 anatomical substructures. They used these 18 classes to create a barcode-like timeline of video to676

highlight changes in the ultrasound video of the heart.677

In their work, Duffy et al. (Duffy et al., 2021) have highlighted the lack of explainability and have678

re-examined explainable methods that fit the clinical workflow using 2D segmentation. However, they679

found out that the standard methods achieved lower accuracy. Therefore, they proposed the custom680

implementation of a DL model based on a frame-by-frame 3D depth-map approach that accounts for the681

standard clinical workflow while making the model explainable. This method is more applicable and can682

produce many predictions that clinicians can interpret easily and possibly improve the DL prediction.683

Figure 7 shows an example of their XAI approach.684

Figure 7. Example depth map prediction shown in different perspectives and with contours to show

geometry. Adapted from Ref. (Duffy et al., 2021)

Fiaidhi et al. Fiaidhi et al. (2022) used the XAI approach to provide better insights into DNN network685

decision-making in segmenting Ulcerative Colitis (UC) images. Their approach uses video processing686

methods such as summarization and automatic caption generation. In their model, they used the addition687

of contextual or heuristic information to increase the model’s accuracy and better understand the model’s688

decision-making. In their work, they investigated how adding heuristics for subtitles can increase the689

explainability of the model for UC severity classification. The model used a few video frames and690

classified them using a Siamese neural network. The output of the model, along with the captions from691

the gastroenterologist, were input to the LSTM network, which generated captions for the original video.692

However, the authors could not achieve an accuracy of descriptions higher than 62% due to the use of693

general embedding.694

In their research work, Acharya et al. Acharya et al. (2022) used the transfer learning technique for695

the deep learning model to classify laparoscopic video pictures. They proposed eENetB0 and eENetB7696

models based on the EfficientNet network and pre-trained on the ImageNet network. These models697

achieved 97.59% accuracy for eENetB0 and 98.78% for eENetB7 in the binary classification of video698

clips with blood and dry scenarios. GLENDA Leibetseder et al. (2019) dataset was used for training699

and testing models. The authors also provide a GUI application for real-time image-processing with700

human-like explanations of an area where the feature values are related to the model’s prediction.701
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SAKKOS et al. Sakkos et al. (2021) proposed a classification framework for infant body movements702

associated with the prediction of cerebral palsy from video data. Their novel method uses multiple deep703

learning approaches to classify the presence or absence of Fidgety Movements (FMs). Firstly they use704

OpenPose architecture to get the skeletal pose of the infant body. Specifically, to get trajectories of 8705

selected body joints, including right and left hands, elbow, ankle, and knee. Each part of the body was706

processed separately by the LSTM network to find spatio-temporal motion in determining the abnormality707

of the body movement. Lastly, the CNN network processed the output of the LSTM network to classify708

the presence or absence of FMs. They also proposed the XAI method for the visualization of framework709

decisions. The framework provides a contribution score between 0-1 for each part of the body where710

higher values respond to a higher chance to present of FMs, and lower values correspond to a lower711

chance to FMs. There is also a visualization of the video split into 4 parts, where colors from purple to712

red are for the positive class, and color range from blue to green for the negative class. The authors claim713

their results correspond to a manual diagnostic tool such as General Movement Assessment (GMA).714

Studies which deal with video processing using the above mentioned methods are summarized in715

Table 3.716

Video processing

type

Authors Application Model XAI Methods XAI evaluation method

Frame by frame Chittajallu et al. (2019) Human-in-the-loop XAI system

for content-based image retrieval

(CBIR)

ResNet50, IQR Saliency maps no XAI evaluation

Frame by frame Manna et al. (2021) Self-supervised deep learning

method for learning spatial

context-invariant represetnations

from MR (magnetic resonance)

video frames (SSML)

SSLM, ConvLSTM Grad-CAM no XAI evaluation

Frame by frame Zhang et al. (2021) Surgical gesture recognition ap-

proach with an explainable fea-

ture extraction process from min-

imally invasive surgery videos.

BML-indRNN, RNN + VGG16 Grad-CAM no XAI evaluation

Frame by frame Knapi et al. (2021) Potential of XAI methods for de-

cision support in medical image

analysis - in vivo gastral images

obtained by a video capsule en-

doscopy.

Custom CNN LIME, SHAP, CIU Human Evaluation User Study

Frame by frame Fiaidhi et al. (2022) Using XAI and heuristic infor-

mation to increase model’s per-

formance on Ulcerative Colitis

video data

Siamese neural network + LSTM Caption heuristic no XAI evaluation

Frame by frame Acharya et al. (2022) Classification blood or dry sce-

narios of laparoscopic videos

using EfficientNet and transfer

learning

eENetB0, eENetB7 Description based expla-

nations of video

no XAI evaluation

Frame by frame SAKKOS et al. (2021) Novel classification framework

for infant body movements asso-

ciated with prediction of cerebral

palsy from video data

OpenPose + 1D CNN + LSTM Contribution score and

image highlights

no XAI evaluation

Frame-based

classification +

video-based

Born et al. (2021) Lung POCUS dataset compris-

ing samples from ultrasound

videos and deep learning meth-

ods for the differential diagnosis

of lung pathologies.

VGG16, VGG-CAM CAMs

(only for frame-based)

Evaluation by domain experts

Optical flow Hughes et al. (2020) Explain optical flow models for

video tasks. They proposed

method for trajectory-based ex-

planations and test on EchoNet-

Dynamic dataset of videos of

heart.

Optical Flow Decomposition Trajectory-based expla-

nations

Sanity check,

Target Over Union,

Target Over All

Barcode

approach

Sakai et al. (2022) Novel XAI representation called

graph chart diagram, to support

fetal cardiac of video ultrasound

screening.

YOLOv2, auto-encoders Custom - graph chart dia-

gram

no XAI evaluation

3D depth-map Duffy et al. (2022) DL model based on a frame-by-

frame 3D depth-map approach

that accounts for the standard

clinical workflow.

DeepLabV3, ResNet Custom no XAI evaluation

Table 3. XAI methods for video analysis.

Table 4 below summarizes the deep learning models used in the studies described. We observed the717

type of architecture used, the use of transfer learning, the performance of models, and the dataset type718

used in the studies.719

Based on the presented survey of articles dealing with XAI deep learning models in medical video720

analysis we can summarize the following findings. In comparison with the traditional white box clas-721

sification methods where suitable features need to be hand-crafted from the videos, models based on722

deep neural networks are able to extract the necessary features on their own. However, it is necessary723

to preprocess videos suitably. Most of the analyzed articles (8 out of 11) use frame-by-frame video724
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Author Model Transfer learning Model performance Dataset

Chittajallu et al. (2019) ResNet50, IQR ImageNet pretrained - Public - Chochlec80

Manna et al. (2021) SSLM, ConvLSTM - Accuracy 87.4%

for abnormality class

Public - MRNet dataset

Zhang et al. (2021) BML-indRNN, RNN + VGG16 ImageNet pretrained Accuracy 87.1% Public - JIGSAWS database

Knapi et al. (2021) Custom CNN - Accuracy 98.58% Public - Red Lesion Endoscopy

Fiaidhi et al. (2022) Siamese neural network + LSTM - Accuracy 62% Public - KVASIR IBD data

Acharya et al. (2022) eENetB0, eENetB7 Imagenet pretrained Accuracy 98.78% (eEnetB7) Public - GLENDA

SAKKOS et al. (2021) OpenPose + 1D CNN + LSTM - Accuracy 100% (MINI-

RGBD),

Accuracy 92% (RVI-25)

Public - MINI-RGBD, Not public - RVI-25

Born et al. (2021) VGG16, VGG-CAM ImageNet pretrained(VGG16) Accuracy 94% Public - COVID-19 Lung ultrasound dataset

Hughes et al. (2020) Optical Flow Decomposition - - Public - EchoNet-Dynamic

Sakai et al. (2022) YOLOv2, auto-encoders - Accuracy 93.9% Not public available

Duffy et al. (2022) DeepLabV3, ResNet - R2 = 0.82

MAE = 4.05

Public - EchoNet-Dynamic

Table 4. Deep learning models and video datasets.

processing, but there are also some other specific approaches, usually tightly connected with the concrete725

application specifics.726

Regarding classification models used, the usually used DL architectures were successfully applied727

on 2D images with necessary adjustments or combinations of such architectures. In 4 out of 11 articles,728

transfer learning was used (in all cases model was pre-trained on ImageNet). The performance of the729

resulting models in terms of classification accuracy is usually very high, except for one very specific case730

and 2 articles where the classification performance was not documented.731

Analysis of XAI methods used for deep learning medical video classification showed that model-732

specific methods are dominating. From the methods presented in this article CAM and Grad-CAM, but733

authors developed also other, custom methods tightly connected with a specific type of applications, like734

contribution scores, trajectory-based explanations, or graph chart diagrams. In two articles we could735

find explanation methods providing some kind of textual descriptions. And only one article used model736

agnostic methods SHP, LIME and CIU described above.737

Surprisingly, only 3 out of 11 analyzed articles provided some form of evaluation of the explanations738

provided by the used XAI method(s). In two cases human-grounded measures and in one computational739

measures were used.740

DISCUSSION741

We think that the methodology used in this article provided sufficiently relevant, informative, and valuable742

insights into the rapidly evolving research domain of medical video analysis by means of XAI deep743

learning models. On the other hand, there may be some bias in case there exist also other relevant articles,744

which we missed because they could not be retrieved using the approach described at the beginning of this745

article. However, we think that the possible bias caused by this effect is very limited and does not threaten746

the validity of our findings. Another danger comes from the fact that this research area is evolving rapidly747

and new relevant articles may be published anytime.748

New technologies that are non-invasive and becoming increasingly available can, in conjunction with749

artificial intelligence, help physicians to diagnose problems more quickly. One example is ultrasonography,750

which can effectively replace standard methods using ionizing radiation. For example, based on (Born751

et al., 2020), it is possible to classify COVID-19 patients using deep neural network applied to lung752

ultrasonography data. Another example is using the right diagnostic procedure to create an automated753

system for detecting a lung motion problem after thoracic surgery. The design of such a system was754

published in the article by Jascur at. al. (Jaščur et al., 2021). These (and many other) approaches achieve755

interesting results, but suffer from a lack of explainability, which is required in healthcare, both by756

physicians and legislation. Using more transparent models or explainable methods can help explain AI757

decisions. In turn, choosing an appropriate architecture can help to improve the model prediction. For758

example, using 3D features that can be extracted from the video can improve prediction and simplify the759

application of explainability (Duffy et al., 2021).760

USG is one of the most common medical imaging techniques. It has several advantages over other761

techniques such as X-ray, CT, and MRI. USG does not use ionizing radiation and is portable, and762

cost-effective (Liu et al., 2019). However, the disadvantage of USG is the low quality of imaging due763

to low resolution and noise. The observation’s content depends on the physician’s experience and the764
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hardware specification of the equipment. Existing approaches using DL methods on USG data mainly765

deal with classification, detection, segmentation, and registration tasks. The tasks include analyzing766

distinct anatomical structures such as the heart, muscle, breast, liver, lung, etc.767

In classification tasks on lung USG, AI classifies the presence or absence of pathological features from768

images, mainly using 2D CNN architecture. These architectures are sufficient in case of static features769

like tumors and lesions in the breast and liver. The problem occurs if we use 2D architecture to analyze770

movement patterns in biomedical images, such as the presence of lung sliding. We need to use a 3D CNN771

architecture to capture motion over time. However, such an architecture tends to be more demanding on772

system resources and training time, and it is more challenging to implement the explainability of such a773

complex architecture.774

However, as we presented in this paper, there are similar open problems with the explainability of the775

video analytical methods, yet to be solved present in other domains than medicince. The most important776

open issues will be summarized in the following subsection.777

Open Issues and Future Trends778

As the application of XAI approaches in video processing tasks in the medical domain remains a very779

active research topic, there are several open problems to be solved in the future. One such problem780

lies in the lack of a qualitative metric for explanations. Nowadays, the most common approach in the781

medical domain, is getting feedback directly from the domain expert (clinician) expertise e.g., using a782

questionnaire. This approach has two major downsides. Firstly, it is time consuming and when handling783

multiple data sources it can be difficult to achieve in real-world deployment. Then, in the case of visual784

image/video explanations, there is subjectivity in such an approach, as experts opinions on the provided785

explanations may be biased. Therefore, the need for fully-automated evaluation of explanations (e.g.,786

using some objective metric) still remains among the open problems yet to be solved. Besides the787

evaluation, there are several issues related to the availability and quality of the training data. In the788

medical domain, the availability of the data is a complicated issue. Medical data are very sensitive, as they789

represent a portion of a person’s private patient’s data. Collection and storage of such data must involve790

actions to ensure the trust and security aspects. Then, there is the aspect of obtaining the class labels791

(as the majority of the analytical tasks are supervised). Labeling is mostly being done manually by the792

experts themselves, which is very time-consuming and resource-demanding. Also, in manual annotation,793

the subjectivity of the expert opinion may influence the correctness of the data labeling. One of the794

consequences of these factors is that there are not many available training datasets and those available are795

rather small. To overcome these problems, a combination of existing approaches can be adopted. For796

example, augmentation techniques can be used to enhance the volume of the datasets, as these approaches797

have proven to be effective in image and video processing tasks from other domains. Other techniques,798

such as transfer learning or self-supervised learning may help with the labeling, but must be further799

explored and evaluated on medical data.800

CONCLUSION801

This paper summarized and reviewed the current approaches to explainability techniques applied to deep802

learning models for medical video analysis. We started by introducing the fundamental terminology in803

the area of explainability and interpretability, focusing more on its importance in the healthcare domain.804

We summarized the requirements for an explainable AI system deployed in real-world applications and805

summarized the desiderata for XAI in this domain. Then, we provided an overview of classical XAI806

methods which can be used in video analytical tasks. After this, we reviewed the works focused on807

explaining the decision process of deep learning applied to medical video analysis. Here, we analyzed808

the existing approaches to medical video analysis and EAX techniques applied in this area. Some of the809

approaches utilize similar methods to those that are applied to medical imaging, but adapted with dynamic810

aspects to address the specifics of video data. We also highlighted open research issues in this area, some811

of them being similar and related to explainability issues in medical image analysis. This particular area is812

not currently as heavily studied as other tasks, therefore we think that providing a review of the currently813

used approaches may be beneficial for the research community focusing on this field.814
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