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ABSTRACT
Deep learning methods have proven to be effective for multiple diagnostic tasks
in medicine and have been performing significantly better in comparison to other
traditional machine learning methods. However, the black-box nature of deep neural
networks has restricted their use in real-world applications, especially in healthcare.
Therefore, explainability of the machine learning models, which focuses on providing
of the comprehensible explanations of model outputs, may affect the possibility of
adoption of such models in clinical use. There are various studies reviewing approaches
to explainability in multiple domains. This article provides a review of the current
approaches and applications of explainable deep learning for a specific area of medical
data analysis—medical video processing tasks. The article introduces the field of
explainable AI and summarizes the most important requirements for explainability
in medical applications. Subsequently, we provide an overview of existing methods,
evaluation metrics and focus more on those that can be applied to analytical tasks
involving the processing of video data in the medical domain. Finally we identify some
of the open research issues in the analysed area.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning, Multimedia
Keywords Explainability, Deep learning, Explainable AI, Interpretability, Medical video analysis

INTRODUCTION
Recent Artificial Intelligence (AI) systems that are based on machine learning algorithms
excel in many fields. AI can outperform humans in visual tasks or strategic games, but it
is also becoming an indispensable part of our everyday lives, such as online services that
analyze our shopping carts or systems that allow us to make decisions based on data. AI
systems based on black-box models are used in many areas today. These systems used
in smartphone applications or online services do not have key requirements for model
explainability but focus mainly on model accuracy and cost. If such a model fails and,
e.g., does not recognize the person logging into the system or the translation system
makes a grammatical error in translation, it usually does not have major consequences.
The requirements for transparency and trust in these applications are low. However,
these requirements play an important role in applications critical to human safety.
They can even be decisive when deploying such a system if the consequences of an AI
decision can be life-threatening, e.g., in autonomous vehicles or in the medical domain.
Therefore, explainability is more important, especially in these areas, and promotes
increased transparency of the model and trust in the deployed AI-based system. In order
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to understand how an AI model makes predictions, we need to know how it works
and based on what evidence it makes the decisions. Explainable Artificial Intelligence
(XAI) methods provide tools that can help to address these issues. In addition, there are
legislative requirements for clarity and transparency in the processing of personal data as
well as medical data.

This article aims to provide an overview based on current challenges and issues in the
explainability of AI methods used in video classification in the medical field. The article
is divided into four sections. In the first one, we summarize the rationale behind the field
researched and intended audience. Then we summarize how we conducted the literature
review.We introduce the explainability and interpretability of the AI aspect and the current
requirements of explainability in the medical field including the metrics used for evaluation
of XAI methods. The following section is dedicated to the particular XAI methods used
to explain the decisions of the models in image and video processing tasks and explains
selected XAI methods in more detail. The next section focuses more on the XAI methods
used for deep learning video processing from different domains and suggests applying
similar principles to video processing in healthcare.

RATIONALE AND INTENDED AUDIENCE
In the medical environment, feature extraction from ultrasonography (USG), magnetic
resonance imaging, computed tomography, X-ray, and other imaging modalities still
heavily relies on radiologists’ expertise. However, machine learning algorithms (ML) and
deep learning models have been introduced over the past decades to aid this process; they
often aid decision-making. Traditional ML approaches first extract hand-crafted features
followed by application of classifiers such as support vector machine, decision trees,
naive Bayes classifiers or K-nearest neighbours. However, these methods incorporate the
shortcomings of hand-crafted features. They are not invariant to occlusion, illumination,
morphological variation, rotation etc.

The interpretability and explainability of analytical models are becoming increasingly
important, especially in the context of applications in the medical domain that strongly
require credibility of deployed models. The problem becomes more complex when
processing 2D image sequences or video sequences. The explainable techniques consider
temporal and spatial information together and do not distinguish what role movement
plays in decision-making with such data.

The article is intended to support academic and industry researchers working on deep
learning in medical video analysis and the explainability of generated models. We expect
our results to inspire the researchers to explore new methods improving explainability in
close cooperation with relevant experts. Also, we expect practitioners to see the potential
and benefits of deep learning models and will contribute their knowledge and experience
to the final quality of models.
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SEARCH METHODOLOGY
The methodology used for the purpose of conducting this survey consisted of searching for
information from general to more specific. We divided this procedure into four steps. In
the first step, we focused on a general overview of the XAI area, its basic concepts, legislative
requirements, and current trends in medicine. We mainly relied on articles providing an
overview of XAI, which provided us with basic information about XAI and directed us to
various aspects of XAI and legislative documents. In the second step, we focused on articles
that use XAI methods in medicine. We looked for information on what requirements are
essential for AI in medicine and its explanations. We focused mainly on research articles
that used XAI methods to explain models in the field of medicine and health care. At the
same time, we identified the problems related to the insufficient evaluation of the quality
of XAI outputs. In the third step, we took a closer look at the metrics and possibilities for
evaluating the quality of XAI methods and XAI methods that are used in processing image
data in medicine in particular. Due to the scope of the article, we only describe selected
XAI methods in the article. In the fourth step, we focused on the specific problem of using
XAI methods in the processing of video data from the field of medicine.

In the entire search process (in all mentioned steps), we used Google Scholar to retrieve
the relevant studies, as well as references from other survey articles. We used multiple
queries consisting of keywords selected as relevant for a particular steps. The nature of
our survey required to collect the articles not only from a specific area of XAI methods
for deep learning-based video processing, but also related articles from medical imaging
applications, as mentioned in the previous paragraph.

First, we collected the studies related to the basic aspects of XAI in the medical domain.
We focused on collection of requirements and basic concepts applied in this domain.
We used very common keywords (‘‘XAI’’ and ‘‘healthcare’’ or ’’medical domain’’) to
retrieve the documents. Then, in the second step, we collected the studies dedicated to
particular XAI techniques applied in medical domain. Here we used a combination of
keywords related to XAI, domain and methods. In a similar fashion we collected the studies
describing the metrics related to XAI methods in medical domain. In the last step, studies
about deep learning applied to video data in medicine were retrieved using following search
procedure. The queries consisted of: (1) deep learning of any type (deep learning in general,
CNN, LSTM or other architectures); (2) video data; (3) explainability or interpretability
related keywords (or abbreviations).

The retrieved publications were screened by two reviewers, who performed relevance-
based selection to select the studies considered to be eligible for the scope of this survey.
During the selection process, we did not consider abstracts or in-progress reports; we
removed duplicates (e.g., articles from multiple sources). In all particular areas, we
considered only studies from the medical domain, did not consider the methods and
metrics not used in this domain and finally we focused on those dedicated to evaluation of
one or multiple deep learning models for video processing in the medical domain and any
aspect of explainability or interpretability. The investigated studies could demonstrate the
available options for the video analytical tasks using deep learning methods in the medical
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Figure 1 Survey methodology.
Full-size DOI: 10.7717/peerjcs.1253/fig-1

domain. The overall process of the survey methodology is depicted on Fig. 1. In total, this
resulted in the retrieval of 87 articles, including books, articles, review articles, and journal
and conference articles.

EXPLAINABILITY AND INTERPRETABILITY
Interpretability and explainability are often used in the literature as synonyms, but many
authors distinguish them. The term understanding is sometimes used as a synonym for
interpretation and explanation in the context of XAI (Das & Rad, 2020). In this context, the
term ‘‘understanding’’ usually means a functional understanding of the model instead of
an algorithmic understanding of the model at a low level. Understanding tries to describe
the outward behavior of a black-box model without trying to clarify its internal behavior.

In Montavon, Samek & Müller (2018) the authors distinguish between interpretation,
which they define as the mapping of an abstract concept to a domain that can be perceived
and understood by a human expert, and explanation, which they define as a set of
interpretable features that contributed to the example of decision making. In Edwards
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& Veale (2017), the authors divided the explanations into model-centric, and object-
centric, which basically correspond to the definitions of interpretability and explainability
from Montavon, Samek & Müller (2018). Similar tasks are explained in Doshi-Velez & Kim
(2017) as global and local interpretability. These terms will be explained later on in the
section XAI Methods. European Union (EU) legislation and the General Data Protection
Regulations (GDPR), which deal with the processing of personal data, mention only
the term explainability. Comprehensibility (Lecue, 2020) is used in the literature as a
synonym for interpretability. In Lipton (2018) transparency is used as a synonym for the
interpretability of the model, which is in a sense with understanding the logic of how the
model works.

Beaudouin et al. (2020) explain the concept of explainability as ‘‘explain’’ with the suffix
‘‘-ability’’. Explainability becomes the ability to be explained. In the following chapters, we
will therefore use the term explainability in this sense, covering alternatively interpretability
(model-centric) and explainability (object-centric or local).

Explainability as part of next-generation AI systems
The concept of explainability is increasingly found as one of the main requirements for
AI systems in documentation. This may be as part of the requirements for the application
domain, such as banking, healthcare, or they may be part of legislative regulations that are
gradually coming along with the development of AI systems. The ethical aspect should be
equally important, and they deal with the direct but also indirect impact of AI decisions on
people’s lives.

Fjeld et al. (2020) and Healey (2020) in their study analyzed 36 important documents
about AI requirements from various fields, such as organizations or government documents
or recommendations for AI, and based on these documents, defined eight key principles of
contemporary AI, including the terms explainability and transparency under one of these
principles:

• Privacy. AI systems should respect individuals’ right to privacy, both in the use of data
in technological systems and in the provision of data to decision-making agencies.
• Accountability. It is important that responsibility for the impacts of AI systems be
properly defined and that remedial action is provided.
• Safety and security. AI systems must be secure and operate as designed. They also need
to be secured and resilient against abuse by unauthorized parties.
• Transparency and explainability. AI systems should be designed and implemented to
allow supervision as well as interpretation of activities in comprehensible output and to
provide information on where, how, and when these systems are used. This principle
is the response to challenges such as transparency, explainability, open source data and
algorithms, or right to information.
• Fairness and non-discrimination. The principles of justice and non-discrimination
require that AI systems should be designed and used to maximize fairness and minimize
bias.
• Human control of technology. This principle requires that important decisions remain
under human control all the time.
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• Professional responsibility. This principle addresses the responsibilities and the role
of individuals in the process of developing and deploying AI systems and calls for
professionalism and integrity in ensuring communication with stakeholders on the
long-term effects of these systems.
• Promotion of human values. The principles of human values state that the goals pursued
by AI and how they are pursued should correspondwith our values and generally support
human well-being.

In addition to these key principles, which should become part of modern AI systems,
many scientists, lawyers, and psychologists are currently dealing with ethical issues related
to AI. Especially because with the increasing possibilities that AI offers us, new problems
or questions arise, especially in applications that have a major impact on human lives. For
example, how do we ensure that AI is fair and free from racial or gender prejudice? Who
will be responsible if life is threatened due to an AI’s decision? How to ensure that AI is
fair and transparent? When can the AI decide by itself and when is it necessary to retain
the supervision of a responsible person?

Recent initiatives in this area have also confirmed the importance of these problems.
In the EU, the AI Expert Group has produced document the Ethics Guidelines for
Trustworthy AI (High-Level Independent Group on Artificial Intelligence (AI HLEG), 2019),
which provides guidelines for the development of trusted AI based on the principles of
fundamental human rights that apply throughout the EU. The result is a kind of framework
that defines four ethical principles:
1. Respect for human autonomy : A person has the right to supervise the system and to

intervene in the AI process at any time.
2. Prevention of harm: This principle aims to prevent AI systems from harming a person,

whether physically or mentally.
3. Fairness: The aim is to prevent discrimination or bias in AI.
4. Explainability : AI systems and their decisions should be explained in a way that is

understandable to the stakeholders involved. Humans should know when they are
using an AI system and must be informed about its capabilities and limitations.
Also, commercial companies engaged in research in AI applications are interested in

creating systems that are ethical, fair, and transparent. For example, Google has released a
document with its own principles that they want to followwhen creating AI systems (Pichai,
2018).

China has similarly built on these ideas and, through the China Academy of Information
and Communications Technology (CAICT), has issued a white paper on trustworthy
AI (China Academy of Information and Communications Technology JD Explore Academy,
2021)—this is particularly noteworthy as it is in line with other major regulators in other
countries.

From this point of view, transparency is an essential part of the creation and deployment
of AI systems in the real environment and should be included in the design of the AI system.
Of course, there are exceptions in this area as well, applications in which explainability
does not play such an important role, especially business applications that focus on model
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accuracy and the potential profit and for which time devoted to a deeper understanding of
models would be cost-inefficient.

However, in safety-critical environments such as autonomous vehicles, industry, or
healthcare, explainable methods are essential and required when deploying AI to help
human decisions.

XAI in healthcare
In the healthcare field, AI can be very beneficial. There are already practical deployments
of AI, e.g., to help doctors to identify the heart failure problems (Choi et al., 2016), lung
problems after thoracic surgery (Jaščur et al., 2021) or automatic detection of COVID-19
from lung ultrasound (Born et al., 2020). However, the full potential of AI systems is
limited by the inability of the majority of algorithms to explain their results and decisions
to human experts. This is a huge problem, especially in themedical field, where doctors need
to understand why AI has made a decision and how it came to that decision. Transparent
algorithms could reasonably increase the confidence of medical experts in future AI
systems (Ahmad, Teredesai & Eckert, 2018). Therefore, research aimed at creating XAI
systems for medical applications requires the development of new methods for machine
learning and human–computer interaction. There is a certain tension between the accuracy
and explainability of machine learning methods. The most powerful models (especially
deep learning (DL) or ensembles) are often least transparent, and methods that provide
clear and comprehensible explanations known as interpretable models (e.g., decision trees)
are less accurate (Bologna & Hayashi, 2017).

In the healthcare domain, the motivation for using XAI methods is evident. In many
cases, both end-users and the critical nature of the predictions require some transparency,
either for user involvement or for patients’ safety. XAI methods contribute significantly to
transparency. However, sometimes an explanation of machine learning predictions is not
enough. It is important to think about how the end-user interprets the results, how they are
incorporated into the work process, or how they are used in other ways. Healthcare experts
are often overwhelmed by the influx of patients, the influx of data about these patients, and
the related tasks that are required of them, such as entering data into the system, analyzing
available electronic health records, providing health care. Therefore, if AI systems and their
explanations are not presented in the right way, it will not help healthcare experts, but
on the contrary, it takes extra work. Hence, these systems should be created specifically
tailored to the domain, and the perspective of the user who will work with them (Ahmad,
Teredesai & Eckert, 2018).

AI is often associated with the idea that artificial intelligence should replace the decisions
of health professionals. However, it is not obligatory to create systems in this way.
Conversely, AI can be beneficial in important decisions that doctors must make, especially
if the reasons for AI decisions or predictions are properly explained.

Requirements of AI systems in the medical field
The field of medicine places specific requirements on all computer systems because it
requires these systems to be safe, reliable, secure, certified, or audited. In addition, the
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systems must work together and be fault-tolerant. A system error can cause a power outage
or the administration of the wrong medication, resulting in the worst case in the death
of a patient. It is, therefore, necessary that responsibility for the proper functioning of all
systems is defined. This responsibility lies with the system administrators or certification
authorities.

In the healthcare field, research focuses on the needs and specific requirements for
security, trust, or accountability. AI’s ethical or regulatory aspects in healthcare are also
increasingly becoming a concern in this area. These concerns include, for example, model
bias, lack of transparency, privacy concerns related to sensitive data used to train models,
or liability issues. Although these concerns are often a topic of discussion, there are very
few practical recommendations or examples.

A recent publication (Reddy et al., 2020) provides a governance model for AI in
healthcare (GMAIH) that covers the introduction and implementation of AI models
in health care. This model includes recent requirements from the United States Food
and Drug Administration (FDA) (Food and Drug Administration, 2016) institute about
requirements for AI systems. The GMAIH model outlines methods and practices for these
four categories:

• Fairness—there should be data governance panels to oversee the collection and use of
data. AI models should be designed to ensure procedural and distributive fairness.
• Transparency—includes transparency in decision-making on AI models and support
for patient and physician autonomy.
• Credibility—education of physicians and patients in AI should be applied to enhance
it. The integration of AI systems should include fully informed consent from patients to
the use of AI and appropriate and authorized patient data.
• Accountability—means regulation and responsibility in the approval, implementation,
and deployment phase of AI applications in healthcare.

Legislative requirements for AI systems in healthcare can vary from one part of the world
to another. New AI systems and devices are subject to FDA approval in the US. In the EU,
unlike the US, medical devices are not approved by a centralized agency. Medical devices
are divided into risk classes (Muehlematter, Daniore & Vokinger, 2021), with the lowest
risk class 1 being the device manufacturer’s responsibility. Medical devices in the high-risk
classes (IIa, IIb, and III) are dealt with by private ‘notified bodies’—i.e., organizations
that have been accredited to carry out conformity assessment and issue the Conformité
Européenne (CE) mark.

The FDA has only recently published (US Food and Drug Administration (FDA), 2021)
the agency’s first action plan for software as a medical device (SaMD) based on artificial
intelligence/machine learning (AI/ML). This action plan describes a multi-pronged
approach to advance the agency’s oversight of AI/ML-based medical software. We can
expect the EU will follow the US in improving oversight of AI/ML control of healthcare
systems in the near future.
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Desiderata of XAI models
In the literature on explainability, we often come across the term ‘‘desiderata’’ which we
could translate as necessary requirements for XAI methods. These requirements represent
aspects or properties that are expected and required from a method capable of explaining
AI models. These requirements also vary in the literature or are intended for specific types
of methods, e.g., Desiderata for gradient methods (Das & Rad, 2020) or Desiderata for
interpretable model (Guidotti et al., 2018).

General requirements to be met by XAI models also include fidelity, or honesty (Ribeiro,
Singh & Guestrin, 2016; Plumb, Molitor & Talwalkar, 2018). Other requirements include
robustness or stability, which measures whether similar input instances generate
similar conclusions (Alvarez-Melis & Jaakkola, 2018) as well as interpretability or
comprehensibility (Narayanan et al., 2018), which means measures how difficult is for
a person to understand the results from a given XAI model. Other requirements that
were defined in Robnik-Šikonja & Bohanec (2018) for XAI methods are expressive power,
translucency, portability, and algorithmic complexity. For individual explainability, authors
defined other necessary properties such as accuracy, fidelity, consistency, comprehensibility,
certainty, degree of importance, novelty, and representativeness.

However, these desiderata depend on the specific application or environment in which
the models will be deployed. The authors of the article on the deployment of explainable
models (Bhatt et al., 2020) argue that these requirements should be designed only based on
the selected application and environment. It should be based on the following three points:
1. Identify stakeholders; 2. Involve each of the stakeholders; 3. Understand the reasons for
an explanation.

A grand overview of desiderata based on different stakeholders was provided by the
authors of the study (Langer et al., 2021). They divided the stakeholders into five classes:
users, (system) developers, affected parties, deployers, and regulators. They created a list
of 29 desiderata to which they assigned a stakeholder class and the articles where they
appeared. This list is not definitive and will tend to change or expand over time.

Inspired by this overview, we collected and summarized recently published research
articles and performed a similar overview for the medical field. The desiderata that appear
in the field of medicine are summarized in the Table 1.

Based on the table we can say that the most frequent requirements for XAI methods in
the medical field are accuracy, accountability, transparency and trust.

XAI metrics and measurements
Based on requirements from the section on desiderata of XAI models, it is possible to
compare models and select those that are suitable for the application we need, e.g., in
medicine (Ahmad, Teredesai & Eckert, 2018). However, recent practical approaches have
shown that this comparison may not be sufficient and that more attention needs to be paid
to practice tests along with evaluations from domain experts using these models (Jesus et
al., 2021).
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Table 1 XAI desiderata in the medical field.

Desideratum Description Stakeholder Occurence

acceptance Improve acceptance of systems Deployer, Regulator Reddy et al. (2020) and Panigutti, Perotti & Pedreschi (2020)
accountability Provide appropriate means to deter-

mine who is accountable
Regulator Reddy et al. (2020), Panigutti, Perotti & Pedreschi (2020),

US Food and Drug Administration (FDA) (2021), Ahmad,
Teredesai & Eckert (2018), Dave et al. (2020) and Tjoa &
Guan (2019)
Pawar et al. (2020b) and Larasati & DeLiddo (2020)

accuracy Assess and increase a system’s predic-
tive accuracy

Developer Reddy et al. (2020), Ahmad, Teredesai & Eckert (2018), Dave
et al. (2020), Tjoa & Guan (2019), Khedkar et al. (2019) and
Holzinger et al. (2017)
Singh, Sengupta & Lakshminarayanan (2020), Pawar et al.
(2020a), Brunese et al. (2020), Alshazly et al. (2021) andWei
et al. (2020)

autonomy Enable humans to retain their auton-
omy when interacting

User Reddy et al. (2020), Holzinger et al. (2017) and Singh,
Sengupta & Lakshminarayanan (2020)

with a system
confidence Make humans confident when using a

system
User Reddy et al. (2020), Larasati & DeLiddo (2020), Holzinger

et al. (2017) and Singh, Sengupta & Lakshminarayanan
(2020)

controllability Retain (complete) human control
concerning a system

User –

debugability Identify and fix errors and bugs Developer Ahmad, Teredesai & Eckert (2018), Dave et al. (2020),
Khedkar et al. (2019), Holzinger et al. (2017) and Brunese
et al. (2020)

education Learn how to use a system and sys-
tem’s peculiarities

User Reddy et al. (2020)

effectiveness Assess and increase a system’s effec-
tiveness;

Developer, User Reddy et al. (2020), US Food and Drug Administration
(FDA) (2021), Holzinger et al. (2017), Brunese et al. (2020)
and Alshazly et al. (2021)

work effectively with a system
fairness Assess and increase a system’s (actual)

fairness
Affected, Regulator Reddy et al. (2020), Panigutti, Perotti & Pedreschi (2020),

Ahmad, Teredesai & Eckert (2018), Dave et al. (2020) and
Holzinger et al. (2017)

informed consent Enable humans to give their informed
consent

Affected, Regulator Reddy et al. (2020) andWei et al. (2020)

concerning a system’s decisions
legal compliance Assess and increase the legal compli-

ance of a system
Deployer –

ethics Assess and increase a system’s compli-
ance with moral

Affected, Regulator Reddy et al. (2020), Holzinger et al. (2017), Tjoa & Guan
(2019) and Singh, Sengupta & Lakshminarayanan (2020)

and ethical standards
performance Assess and increase the performance

of a system
Developer Reddy et al. (2020), Panigutti, Perotti & Pedreschi (2020),

US Food and Drug Administration (FDA) (2021), Ahmad,
Teredesai & Eckert (2018), Dave et al. (2020) and Khedkar
et al. (2019)
Singh, Sengupta & Lakshminarayanan (2020), Pawar et al.
(2020a) and Brunese et al. (2020)

(continued on next page)
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Table 1 (continued)

Desideratum Description Stakeholder Occurence

privacy Assess and increase a system’s privacy
practices

User Reddy et al. (2020), Ahmad, Teredesai & Eckert (2018),
Holzinger et al. (2017), Amann et al. (2020) and Larasati &
DeLiddo (2020)

responsibility Provide appropriate means to let hu-
mans remain

Regulator Reddy et al. (2020), Tjoa & Guan (2019) andMuehlematter,
Daniore & Vokinger (2021)

responsible or to increase perceived
responsibility

robustness Assess and increase a system’s robust-
ness

Developer Reddy et al. (2020), US Food and Drug Administration
(FDA) (2021), Tjoa & Guan (2019), Singh, Sengupta &
Lakshminarayanan (2020), Alshazly et al. (2021) andWei
et al. (2020)
Muehlematter, Daniore & Vokinger (2021) and
Muddamsetty, Jahromi & Moeslund (2021)

(e.g., against adversarial manipula-
tion)

security Assess and increase a system’s security All Ahmad, Teredesai & Eckert (2018), Larasati & DeLiddo
(2020), Holzinger et al. (2017), Brunese et al. (2020) and
Amann et al. (2020)

safety Assess and increase a system’s safety Deployer, User Reddy et al. (2020), Ahmad, Teredesai & Eckert
(2018), Holzinger et al. (2017), Singh, Sengupta &
Lakshminarayanan (2020),Muehlematter, Daniore &
Vokinger (2021) and Born et al. (2020)

satisfaction Have satisfying systems User –
science Gain scientific insights from the sys-

tem
User US Food and Drug Administration (FDA) (2021), Tjoa &

Guan (2019) andMuehlematter, Daniore & Vokinger (2021)

transferability Make a system’s learned model trans-
ferable to other contexts

Developer Alshazly et al. (2021)

transparency Have transparent systems Regulator Reddy et al. (2020), Panigutti, Perotti & Pedreschi (2020),
US Food and Drug Administration (FDA) (2021), Ahmad,
Teredesai & Eckert (2018), Dave et al. (2020) and Tjoa &
Guan (2019)
Pawar et al. (2020b), Larasati & DeLiddo (2020), Holzinger
et al. (2017), Amann et al. (2020),Muehlematter, Daniore
& Vokinger (2021) andMuddamsetty, Jahromi & Moeslund
(2021)

trust Have appropriate trust in the system User, Deployer Reddy et al. (2020), Panigutti, Perotti & Pedreschi (2020),
US Food and Drug Administration (FDA) (2021), Ahmad,
Teredesai & Eckert (2018), Dave et al. (2020) and Pawar
et al. (2020b)
Khedkar et al. (2019), Larasati & DeLiddo (2020), Holzinger
et al. (2017), Singh, Sengupta & Lakshminarayanan (2020)
and Pawar et al. (2020a)

trustworthiness Assess and increase the system’s trust-
worthiness

Regulator Reddy et al. (2020) and Dave et al. (2020)

usability Have usable systems User US Food and Drug Administration (FDA) (2021), Tjoa
& Guan (2019), Holzinger et al. (2017) and Amann et al.
(2020)

usefullness Have useful systems User Alshazly et al. (2021)
verification Be able to evaluate whether the system

does
Developer Tjoa & Guan (2019), Brunese et al. (2020) and Amann et al.

(2020)
what it is supposed to do
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It is also possible to compare explainablemethods from the point of view of several levels.
The authors in Doshi-Velez & Kim (2017) propose three main levels for the evaluation of
interpretability:

• Application level evaluation (real task): Implementation of models for explainability
in a specific application and testing it on a real task. For example, software that will
detect fracture sites based on X-ray records. The doctor could evaluate the quality of the
explanations that the software offers to explain its intentions.
• Human-level evaluation (simple task): This level of explainability is also within
applications, but the evaluation quality is not performed by experts, but by ordinary
people - testers who are cheaper and also choose explanations according to how they
help them understand at their level of knowledge.
• Function level evaluation (proxy task): This level does not require people. It is
appropriate if a class of methods that the target class can work with is used, e.g., a
decision tree. This model can be bounded to better explainability, e.g., using the decision
tree pruning method.

However, the way in which methods are evaluated can vary considerably, depending
on different objectives of their deployment, the stakeholders for which they are intended,
and the type of the method used. This was also noted by Mohseni, Zarei & Ragan (2018)
who categorized metrics based on design goals and evaluation metrics. They categorized
requirements by type of target user into the following three groups:

• AI novices—users with little expertise on AI models but using AI systems daily. XAI
goals for this group of users are: algorithmic transparency, user trust and reliance, bias
mitigation, privacy awareness
• Data experts—data scientists or domain experts who use machine learning models for
analysis and decision making tasks. Their goals are: model visualization and inspection,
model tuning and selection
• AI experts—machine learning scientist, designers and developers of ML algorithms
with their goals: model interpretability and model debugging

The model measurements can be divided as follows:
1. Computational measures

• Fidelity of interpretability method (AI experts)—uses two metrics (Velmurugan
et al., 2021), recall (R= |TF∩EF |

|TF | ) and precision (P = |TF∩EF |
|EF | ), where the term True

Features (TF) represents the relevant features as extracted directly from the model
and Explanation Features (EF) represents the features characterised as most relevant
• Model trustworthiness (AI experts)—represents a set of domain specific goals
such as safety (by robust feature learning), reliability, and fairness(by fair feature
learning). Different similarity metrics, such as Intersection over Union (IoU) and
mean Average Precision (mAP), are used to quantify the quality of model saliency
explanations or bounding boxes compared to the ground truth (Mohseni, Zarei &
Ragan, 2018). These metrics often depend on the model used and are compared to
the annotated explanations.
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2. Human-grounded measures

• Human-machine task performance (data experts andAI novices)—XAI should assist
users in tasks involving machine learning. Therefore, it is important to measure user
performance when evaluating XAI methods. For example, we can measure users’
performance in terms of success rates and task completion times while evaluating
the impact of different types of explanations.
• User mental model (AI novices)—The mental model represents how users
understand the system. XAI assists users in creating a mental model of how AI
works. One way of exploring these models is to ask users directly about their
understanding of the decision-making process. The mental model can be measured
by several metrics, e.g., ease of users’ self-explanations, user prediction of model
output, or user prediction of model failure.
• User trust and reliance (AI novices)—User trust and reliability can be measured by
explicitly gauging users’ opinions during and after working with the system, which
can be through interviews and questionnaires.
• Explanation usefulness and satisfaction (AI novices)—The effort is to identify
user satisfaction and the usefulness of machine explanation. Various subjective and
objective measures of understandability and usefulness are used to assess the value
of the explanation to users. Qualitative evaluations in the form of questionnaires
and interviews are most commonly used.

However, there is a lack of use cases for evaluating XAI methods in healthcare. In
some articles (Lauritsen et al., 2020) the evaluation was carried out by manual inspection
with domain experts. There are some articles (Muddamsetty, Jahromi & Moeslund, 2021;
Panigutti, Perotti & Pedreschi, 2020) where the authors tried to evaluate and compare used
XAI methods using computational measures.

In Panigutti, Perotti & Pedreschi (2020), the authors developed a new model of
explainability of black box models for processing sequential, multi-label medical data.
To evaluate it, they used the computational measure’s fidelity to the black-box, hit (tells
if the interpretable classifier predicts the same label as the black-box), and explanation
complexity while comparing the black-box model with its interpretable replacement in the
form of decision rules.

However, the selection of appropriate metrics depends not only on the target domain
or the method used but also on the type of data processed. In Muddamsetty, Jahromi &
Moeslund (2021), the authors investigated expert-level evaluation of XAI methods in the
medical domain on an image dataset. In doing so, they used the state-of-the-art metrics
AUC-ROC curve and Kullback–Leibler divergence (KL-DIV), comparing the results of
eye-tracking expert observations against the results of XAI methods. They showed that it
is important to use domain experts when evaluating XAI methods, especially in a domain
such as medicine.

In a recent study (Gunraj, Wang & Wong, 2020), a new method called GSInquire was
used to create heatmaps from the proposed COVID-net model for detection of COVID-19
from chest X-ray images. Together with the new method, the authors proposed new
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metrics—impact coverage and impact score. Impact coverage was defined as coverage of
adversarially impacted factors in the input. The impact score was defined as a percentage
of features that impacted the model’s confidence or decision.

XAI METHODS
Due to the growing number of methods in the field of explainability, it is difficult to
understand the advantages, disadvantages, or competitive advantages in different domains.
There are different taxonomies of XAI methods (Gilpin et al., 2018; Barredo Arrieta et al.,
2020; Molnar, 2018), but most of them agree on classifying methods into categories such
as global methods (which explain the behavior of the model on the whole data set), local
methods (which explain the prediction or decision for a specific example), ante-hoc (where
the explanation model is created in the AI training phase), post-hoc (where the explanation
model is created only on trained models), surrogate (an interpretable model replaces the
AI model) or a directly interpretable model (decision trees or decision rules) is used.
Molnar, in his book (Molnar, 2018) generally categorizes XAI methods into three types: (1)
methods with internal interpretation, (2) model agnostic methods, and (3) example-based
explanation methods. Another taxonomy of XAI methods is based on the data type (Bodria
et al., 2021), such as tabular data, image data, and text data. Figure 2 depicts a commonly
used categorization of the XAI methods Linardatos, Papastefanopoulos & Kotsiantis (2021).

In this article, only selected methods used in video processing tasks will be explained
and referred to in the text.

Model agnostic methods
Model agnostic methods separate the explanations from the machine learning model.
This brings an advantage over model-specific methods in their flexibility (Ribeiro, Singh
& Guestrin, 2016) and universality. Agnostic methods can be used for a wide range of
machine learning models, such as ensemble methods or deep neural networks. Even the
output of an XAI method, whether it is a visual or textual user interface, also becomes
independent of the machine learning model used. A single agnostic method can explain
each of the multiple trainedmachine learning models and help decide the most appropriate
deployment model. These methods can be further divided into global and local methods.
Global methods describe the impact of features on themodel on average, and local methods
explain the model based on the predictions of individual examples.

SHAP
SHAP (SHapley Additive exPlanations) by Lundberg & Lee (2017) is a method for
explaining individual predictions of the model. This method is based on Shapley values the
game theory.

Shapley (2016) invented Shapley values as a way of providing a fair solution to the
following question: If we have a coalition c that collaborates to produce value v , how much
did each individual member contribute to the final value?

To find the answer to this question, we can compute a Shapley value for each member
of the coalition. For example, if we want to find the Shapley value for the first member.
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Figure 2 Taxonomy of the XAI methods according to Linardatos, Papastefanopoulos & Kotsiantis
(2021).

Full-size DOI: 10.7717/peerjcs.1253/fig-2

Let us compare a coalition formed with all members and a coalition formed without the
first member. The difference between these results is the marginal contribution of the first
member for the coalition composed of the other members. We then look at all the marginal
contributions we get in this way. The Shapley value is the average of these results for a
single member. We can repeat this process for all members (Shapley, 2016).

SHAP is based on a similar idea. Unlike coalition members, it looks at how individual
features contribute to a model’s outputs. However, it does this in a specific way. As the
name implies, the method uses Shapley values for explanations, but it also uses additive
features. Lundberg & Lee (2017) define an additive feature attribution as follows: If we have
a set of inputs x and model f (x), we can define a set of simplified local inputs x ′ and we
can also define an explanatory model g (x ′).

What we need to ensure is:
1. if x ′ is roughly equal to x , then g (x ′) should be roughly equal to f (x),
2. g (x ′)=φ0+

∑N
i=1φix′i

where φ0 is the average output of the model and φi is the explained effect of feature i, how
much feature i changes the model, and this is called it’s attribution. In this way, we can get
a simple interpretation for all features.

SHAP describes the following three desirable properties:
1. Local accuracy—if the input and the simplified input are roughly the same, then the

actual model and the explanatory model should produce roughly the same output.
2. Missingness—if the feature is excluded from the model, it’s attribution must be zero.
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3. Consistency—if the feature’s contribution changes, the feature effect cannot change in
the opposite direction.
SHAP satisfies all three properties. The problem occurs, when computing Shapley values.

There must be calculated values for each possible feature permutation. This means we need
to evaluate the model multiple times. The get around this problem Lundberg & Lee (2017)
devise the Shapley kernel or KernelSHAP.

KernelSHAP approximates Shapley values through much fewer samples. There are also
other forms of SHAP presented in Lundberg & Lee (2017): Low-Order SHAP, Linear SHAP,
Deep SHAP, Max SHAP. However, KernelSHAP is the most universal and can be used for
any type of ML model.

For visualization of SHAPley values, we can use a summary plot. Each point of the graph
on the x-axis represents a Shapley value for one element of Molnar (2018). The elements
on the y-axis are sorted by importance. The color represents the feature value from low
(blue) to high (red). For example, from the Fig. 3, a low number of years of contraceptive
use reduces the risk of cancer. Conversely, a high number of years increases this risk.

LIME
In their work, Ribeiro, Singh & Guestrin (2016) proposed a method called Local
Interpretable Model-agnostic Explanations (LIME). As the name implies, it is a method
that focuses on local interpretation and is universal concerning the model used. LIME is
a method that uses a surrogate for the black-box model in the form of an interpretable
model, which it constructs based on examples within the neighborhood of the observed
example and approximates the black-box model’s predictions. This assumes that a simple
interpretable model can explain the model’s behavior in its neighborhood.

This principle is quite intuitive. We have a black-box model whose decisions we want
to understand. We choose a single example and start creating variations of the features of
the chosen example that we give to the model. We save the input data (variations) and
the predictions of the black-box model. LIME will then train an interpretable model based
on this data. This model should have a good approximation of the predictions, close to
the black-box model, but this does not mean that it will also be a global approximation
of the model. Therefore, this is one of the local models. Any interpretable model from the
previous chapter can be used as an interpretable model.

In his book (Molnar, 2018), Molnar describes the process of the LIME method in steps:
• Choosing an example to explain black-box prediction.
• Creation of variations of the input data from the desired example.
• Allocation of weights by a new example. The example that is more similar to the desired
example gets more weight.
• Training the chosen interpretable model on new variations of the weighted input data.
• Explanation of prediction using the trained interpretable model.

The LIME method can be applied to different types of input data, such as tabular data,
text data, or images. The principle is the same, but the output differs in the interpretation
of the outputs.
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Figure 3 SHAP summary plot (Molnar, 2018).
Full-size DOI: 10.7717/peerjcs.1253/fig-3

TCIU
The Contextual Importance and Utility (CIU) (Anjomshoae, Främling & Najjar, 2019;
Anjomshoae, Kampik & Främling, 2020) method explains the model‘s outcome using two
algorithms Contextual Importance (CI) and Contextual Utility (CU). CI approximates the
overall importance of a feature in the current context. CU provides an estimation of how
favorable or not the current feature value is for the given output class. This can help to
justify why one class is preferred over another. Explanations have contextual capabilities,
which means that one feature can be more important for a decision about one class but
irrelevant for another class. CI and CU values are formally defined as:

CI =
Cmaxx(Ci)−Cminx(Ci)

absmax−absmin

CI =
yi,j−Cminx(Ci)

Cmaxx(Ci)−Cminx(Ci)

• x is the input(s) (vector) for which CI and CU are calculated,
• Cmax and Cmin are highest and the lowest output values observed by varying the value
of the input(s) x ,
• absmax and absmin specify the value range for the output j being studied.
• yi,j is the otuput value for the output j studied when the inputs are those defined by Ci
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Model-specific explanations
There are several XAI methods in this group working with specific DL models, e.g., CNN,
LSTM, or GAN for image processing (Alshazly et al., 2021) or video processing models
(Chittajallu et al., 2019). There are also XAI methods for specific data types like text, voice,
or timeseries.

Papastratis, in his recent survey (Papastratis, 2021) presents current trends in explainable
methods for deep neural networks. Some of the methods he presents have already been
described above and belong to one of the previous categories. Papastratis has divided these
methods into three categories:

• Visual XAI methods: visual explanations and plots
• Mathematical or numerical explanations
• Textual explanations, given in text form

Class Activation Mapping (CAM)
CAM (Zhou et al., 2016) represents one of the basic methods from the visual domain. Other
methods are also based on its principle. CAM adds a global average pooling layer between
the last convolutional layer and the final fully connected layer of the CNN neural network.
The fully connected layer, controlled by the softmax activation function, subsequently
provides us with the desired probabilities at the output. We can obtain the importance of
the weights concerning the category by back projecting the weights onto the saliency maps
of the last convolutional layer. That allows us to visualize the CNN features from the layer
responsible for the classification.

A mathematical formulation of CAM: Let f (x,y) be the activation map of unit u in the
last convolutional layer at spatial location (x,y). The result of the global average pooling
(GAP) layer (injected between the last convolutional layer and the final fully connected
layer) is represented as:

Fu=
∑
x,y

fu(x,y).

For a class c , an input to softmax will be:

Sc =
∑
u

wc
uF(u).

Output of softmax layer:

Pc =
eSc∑
c eSc

.

Thus, the final equation for an activation map of class c would be:

Mc(x,y)=
∑
u

wc
ufu(x,y).

CAMs are a good and simple technique for interpreting features from CNN models.
The disadvantage of this method is noise which causes a loss of spatial information. CAMs
require a CNN model that contains a GAP layer, and CAM heatmaps can be generated
only for the last convolutional layer. Therefore, other algorithms such as Grad-CAM have
been developed.
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Gradient-weighted Class Activation Mapping (Grad-CAM)
Grad-CAM (Selvaraju et al., 2019) is a generalization of CAM, which can be applied to
any type of CNN. Grad-CAM is applicable to different types of CNN architectures: CNN,
VGG, DenseNet. Grad-CAM does not require a GAP layer and can be used for heatmaps
for any layer. The difference between CAM and Grad-CAM is in calculating the weights
for each heatmap. Grad-CAM takes the convolutional layer’s feature map and calculates
which attribute is important, based on the gradient of the score, at the selected target class.
Then the neuron weights are obtained by global averaging of the gradients. In this way, we
obtain the weights of the flags for the target class. By multiplying the feature maps with
their weights we obtain a heatmap highlighting regions that positively or negatively affect
the class of interest. Finally, we apply the ReLU function, which sets the negative values to
0 because we are only interested in the positive contributions of the selected class. In this
way, we obtain feature maps that highlight important regions of the input image for the
selected target class.

Visualization methods like Grad-CAM can help identify bias in the trained model, as
shown in Fig. 4. The activation maps showed part of the image that the model uses. The
model decisions are based on the edge of the image instead of the lung area.

Table 2 summarizes the advantages and disadvantages of the described methods.

XAI IN VIDEO PROCESSING APPLICATIONS
Deep learning methods perform very well in image processing and visualization tasks.
With the increasing performance of AI computing units and decreasing cost, deep learning
methods are also becoming more applicable in video processing, which is computationally
more complex. However, video can provide important information about the evolution of
the area under study over time. Thus, we can track themovement of objects or the temporal
appearance of an object, which cannot be obtained simply from images. As the complexity
of the neural network for video processing increases, the problem of the explainability of
these networks also increases.

XAI methods for video processing applications are based on visualization methods for
2D image processing. The most common methods are CAM and Grad-CAM, which are
adapted for 3D neural networks, or methods that combine visual information with textual
information.

In the following subsections, we will discuss current approaches for using XAI methods
for DL video processing, and potential applications of XAI methods in medical video
processing.

XAI for deep learning video processing
Hiley et al. (2020) in their work, focused on explaining the relevance of motion for activity
recognition. They point out that in the same way, there are attempts to adapt XAI methods
initially developed for images to enable them to work with videos (3D inputs). Similarly,
3D convolutional neural networks are being adapted to work with video in this way.
However, the methods adapted in this manner consider spatial and temporal information
together. Therefore, when using these XAI methods, it is impossible to clearly distinguish
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Figure 4 Differences in Grad-CAM visualization between a biased and unbiased model (Moreau,
2018).

Full-size DOI: 10.7717/peerjcs.1253/fig-4

the role of motion in 3D model decision-making. The problem is that these methods do
not consider motion information over time. Therefore, the authors proposed a method,
selective relevance, for adapting 2D XAI methods for motion tracking and these are are
better understood by the user. They demonstrated the results using several XAI methods
and observed the improvement of the explanation for motion over time. Their method
offers a different perspective to explain the model decision-making in video classification
and it improves the explanations offered. A comparison of 3D and selective methods can
be seen in Fig. 5. From the left, there are: original video frame, 3D DTD (Deep Taylor
decomposition), selective DTD, 3D Grad-CAM, selective Grad-CAM, 3D guided backprop
explanation, 3D guided GradCAM explanation, selective guided GradCAM. In selective
DTD, the resulting explanations are more focused and simpler compared to 3D DTD. In
selective Grad-CAM, the center of focus remains stable but the edges are stronger with
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Table 2 Comparison of XAI methods.

Method Advantages Disadvantages

SHAP SHAP predictions are fairly distributed among symptom
values. It is an agnostic method regarding the model used.
Fast computation when applied to tree-based models.
Allows both local and global interpretation of the model.

KernelSHAP is slow. For global interpretation, this requires
computing many instances. Counting for many values
is, therefore, slow and impractical. SHAP values can
be misinterpreted. It is possible to create deliberately
misleading interpretations. As an end user, you, therefore,
cannot be 100% sure of the veracity.

LIME It can be applied directly to a trained interpretable model
(any trained model). It can be applied to tabular, textual, or
image data. It uses a metric for the goodness-of-fit measure
that also tells how well the model approximates the black-
box model around the example we are interested in.

When used with tabular data, defining what a
neighborhood means is difficult. The complexity of the
model is defined in advance. The user chooses between
fidelity and sparsity of explanation. The stability of
explanations - with two close examples; LIME may offer
different explanations.

CIU CIU enables explanation of why a certain instance is
preferable to another one, or why one class (outcome)
is more probable than another. CI and CU values can
be calculated for more than one input which means that
higher-level concepts can be used in explanations. It is also
a lightweight method which makes the model run faster
compared to LIME and SHAP.

CIU is a novel approach and still in an early stage of
development compared to LIME or SHAP.

CAM CAMs are a good and simple technique for interpreting
features from CNNmodels. CAM does not require a
backward pass through the network again.

The noise causing a loss of spatial information. CAM
heatmaps can be generated only for the last convolutional
layer. It cannot be used for computer vision tasks such as
visual question answering.

Grad-CAM Based on the gradients of the task-specific output with
respect to the feature maps, Grad-CAM can be used for all
computer vision tasks such as visual question answering
and image captioning. It uses the gradients of the output
score as the weights of the feature maps that eliminates the
need to retrain the models.

When there are multiple occurrences of the target class
within a single image, the spatial footprint of each of the
occurrences is substantially lower. The inability to localize
multiple occurrences of an object in an image. Inaccurate
localization of heatmap with reference to coverage of class
region due to the partial derivatives premise.

red areas representing higher intensity change. The last three methods do not provide
comparable results.

Nourani et al. (2020) presented research focusing on perceptions of AI systems
influenced by first experiences and how explainability can help users to form an idea
of the system’s capabilities. They used a custom neural network to recognize activities from
video and looked at whether the presence of explanatory information for system decisions
influences the user’s perception of the system. They tested how changing the order of the
model’s weaknesses and strengths can affect users’ mental models. They found that the
first impression of the system can significantly impact the task error rate and the user’s
perception of the accuracy of the model. Adding additional explanations was not enough
to negate the influence of first impressions, and users with a negative first impression also
tried to find errors in further explanations. In contrast, users with positive first impressions
were more likely to ignore errors in explanations.

Escalante et al. (2017), created a challenge for using DL and XAI methods for automated
recruitment of people based on their videos. When interviewing, it is often the case
that selection is based on subjective feelings and first impressions rather than objective
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Figure 5 Comparison of XAI methods for activity recognition from video dataset UCF-101. From top
to bottom: classes JavelinThrow, JugglingBalls, Skijet and RopeClimbing. From Left to Right: Original
frame for reference, 3D DTD explanation, selective DTD, 3D GradCAM explanation, selective GradCAM,
3D guided backprop explanation, 3D guided GradCAM explanation, selective guided GradCAM (Hiley et
al., 2020).

Full-size DOI: 10.7717/peerjcs.1253/fig-5

assessment, which can lead to bias. In their study, they highlight the problem of explaining
models’ decisions and using XAI to identify important visual aspects, trying to understand
how these aspects relate to the model’s decisions, and gaining insight into unwanted biases.
Their goal is to increase the awareness and importance of XAI methods for machine
decision-making applications such as recruitment automation. The study describes
the environment, scenario, and evaluation metrics. These are short videos (15s) of job
recruitment interviews. This challenge resulted in several different models in XAI methods.

In their work, Stano, Benesova & Martak (2020) presented a novel approach for
explaining and interpreting the decision-making process to a human expert working
with a convolutional neural network-based system. In their work, they used Gaussian
mixture models (GMMs) for a binary code in vector space that describes the process of
input processing by a CNN network. By measuring the distance between pairs of examples
in this perceptual encoding space, they obtained a set of perceptually most similar and least
similar samples, which helped clarify the CNN model’s decision.

This approach can be applied to 3D objects such as magnetic resonance imaging (MRI)
or computed tomography (CT). 3D objects are very similar to videos; however, their third
dimension is constant, unlike videos whose third dimension can be variable. The proposed
method is suitable for explaining the model to medical personnel through similar examples
from the same domain.

Deep learning video processing in medical applications
Ouyang et al. (2020) from Stanford University created a new DL model based on
echocardiography videos, which they called EchoNet-Dynamic. Repeated human
measurements confirm that the model has a variance smaller than that of human experts,
who need years of practice to make a correct assessment and it outperforms human
experts in the tasks of cardiac left ventricle segmentation, ejection fraction estimation,
and cardiomyopathy assessment. The model can quickly identify changes in ejection

Kolarik et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1253 22/39

https://peerj.com
https://doi.org/10.7717/peerjcs.1253/fig-5
http://dx.doi.org/10.7717/peerj-cs.1253


fraction and can be used as a basis for the real-time prediction of cardiovascular disease.
Along with the article, they also published more than 10,000 annotated echocardiographic
videos. Born et al. (2020) aimed to help physicians diagnose COVID-19 using AI. In
doing so, they used an image from a lung ultrasound. Ultrasound is non-invasive
and commonly present in medical facilities around the world. Their contribution
can be described in three points. They collected a set of ultrasound data compiled
from various online sources and published it publicly. The dataset contains 64 videos
from which 1,103 images were created, divided into three classes (654 COVID-19, 277
pneumonia, 172 healthy controls). Second, they created a DL model of the POCOVID-Net
convolutional network that achieves an accuracy of 89%. Third, they provided a web
service (https://github.com/jannisborn/covid19_ultrasound/tree/master/pocovidscreen) on
which the POCOVID-Net model is deployed and it enables physicians to make predictions
based on ultrasound images or upload their own images to contribute to the dataset
extension. This work would be even better if the system could also provide explanations
for its decisions. XAI methods would increase physician confidence and make the system
more transparent. In the current pandemic situation, this system has great potential to
help identify COVID-19.

In some cases, lung ultrasound can replace X-rays, for example, after chest surgery,
when ionizing radiation is used as standard. After clinical testing of a new procedure using
lung ultrasound, the need arose to automate the diagnostic procedure. A study by Jaščur et
al. (2021) used DL in their work and created a new method that works with videos of lung
ultrasound. The method consists of semantic segmentation of ultrasound images from
the first images of the video. The lung region is exploited from which 2D images in the
temporal dimension of the video are subsequently created, called M-mode images. The
convolutional network model then classifies the presence or absence of lungsliding in a
given time interval based on these images. In this work, they tested different parameters,
and the best results were obtained for the 64-frame version with an accuracy of 89%, a
sensitivity of 82% and a specificity of 92%.

A nice overview of works that deal with visual data such as 2D images, 3D images, and
videos was provided in Cazuguel (2017) or Singh, Sengupta & Lakshminarayanan (2020).

In recent years, transfer learning has made a significant progress in the medical domain.
Transfer learning helped to address some of the problems related to this domain, such
as data scarcity. Especially in medical image classification, such approaches are very well
studied (Kim et al., 2022; Mukhlif, Al-Khateeb & Mohammed, 2022; Hosseinzadeh Taher et
al., 2021). In medical video processing, there are also several studies available in which
transfer learning is applied. For example, in Klaiber et al. (2021) the authors provide an
extensive review of transfer learning applied on 3D convolutional networks, with some
of the applications also from the medical domain. In Aldahoul et al. (2021) and Lee et
al. (2021) the authors present particular approaches for transfer learning applied in the
diagnosis of dysphagia using video frames and a pre-trained ResNet model for classification
of laparoscopic videos. In our study, we focused on the explainability and interpretability
aspects of the particular methods, therefore we did not include a more in-depth study of
transfer learning applications.
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XAI for deep learning video processing in medical applications
Various uses of video processing with explanations in areas such as healthcare are also
starting to come to the fore. Currently, various widely used technologies such as MRI, CT,
or USG produce 3D images or short video sequences, which can be used by physicians to
derive various diagnoses. To create systems that process these types of data, neural network
architectures need to be modified, or the models used for 2D image data processing need to
be combined with other methods. In this context, explainability also plays a role, as it can
help developers create more accurate models and help physicians understand the behavior
of the model and assess the accuracy of its predictions.

In their study, Chittajallu et al. (2019) present a human-in-the-loop XAI system for
content-based image retrieval (CBIR) which they applied to video content from minimally
invasive surgery (MIS) for surgical education. The method extracts semantic descriptors
from MIS video frames using a self-supervised DL model. The model uses an iterative
query refinement strategy, i.e., based on user feedback, the model is repeatedly trained and
refines the search results. The system receives a single frame from a video as input and
tries to find similar frames and return them to the user. Finally, the XAI method creates
saliency maps that provide visual explanations of the system’s decisions. Based on the
visual explanations, the user gives feedback to the system until the user is satisfied with
the search result. Figure 6 is an example of their XAI system. The original (query) image is
entered into the system and the content-based retrieval method is applied to the database of
available images. The result containing similar images (bottom list of images) is visualized
to the user and the system collects the user’s feedback on search results. The feedback is
guided by showing a heat map indicating the salient parts of a retrieved image that most
influence its relevance/similarity to the query image. The human-in-the-loop approach is
addressed by an iterative query refinement (IQR) strategy, where a binary classifier trained
on the feedback is used to iteratively refine the search results.

Manna, Bhattacharya & Pal (2021) proposed SSLM, a self-supervised deep learning
method for learning spatial context-invariant representations from MR (magnetic
resonance) video frames. Video clips are used for the diagnosis of knee medical conditions.
They used two models: the pretext model for learning meaningful spatial context-
invariant representations and the downstream task model for class imbalanced multi-
label classification. To analyze the reliability of their method, they show the gradient class
activation mappings (Grad-CAM) for the detection of all classes. The salient regions are
regions where the pretext model gains maximum information, which is then fed to the
ConvLSTM model as a downstream task.

Zhang, Wang & Lo (2021) proposed a surgical gesture recognition approach with an
explainable feature extraction process from minimally invasive surgery videos. They
use Deep Convolutional Neural Network (DCNN) based on VGG architecture with the
Grad-CAM XAI method. The class activation maps provide explainable results by showing
the regions of the surgical images that strongly relate to the surgical gesture classification
results. This work combines the DCNN network for spatial feature extraction and RNN
for temporal feature extraction from surgery video.
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Figure 6 Prototype of visual explanations from processingMIS video frames (Chittajallu et al., 2019).
Full-size DOI: 10.7717/peerjcs.1253/fig-6

Knapi (2021) present the potential of XAI methods for decision support in medical
image analysis. They use three types of XAI methods on the same dataset to improve the
comprehensibility of decisions provided by the CNNmodel. They use in vivo gastral images
obtained by a video capsule endoscopy. In this study, they compare LIME, SHAP, and CIU
methods, provide a questionnaire and quantitatively analyze it with three user groups with
three distinct forms of explanations. Their findings suggest notable differences in human
decision-making between various explanation support settings.

Born et al. (2021b) and Born et al. (2021a) proposed a publicly available lung POCUS
dataset comprising samples from ultrasound videos of COVID-19 patients, pneumonia-
infected lungs, and healthy patients. The dataset contains 247 videos recorded with either
convex or linear probes. They proposed twomodels for the classification of lung ultrasound
data, a frame-based model based on VGG-16 architecture and a video-based model based
on 3D-CNN for 3D medical image analysis. They also used the Grad-CAM method for a
frame-based model to explain model decisions for each target class. For example, CAMs
highlight COVID-19 (highlighting a B-line), bacterial pneumonia (highlighting pleural
consolidations), and healthy lungs (highlighting A-lines).

Hughes (2020) tried to explain optical flow models for video tasks. They proposed a
method for trajectory-based explanations and used saliency maps to create red points to
indicate current positions and green points to indicate history. They applied this method
to the EchoNet-Dynamic dataset of videos of the heart.
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Figure 7 Example depth map prediction shown in different perspectives and with contours to show
geometry (Duffy et al., 2021).

Full-size DOI: 10.7717/peerjcs.1253/fig-7

Sakai et al. (2022) proposed a novel deep learning XAI representation called graph
chart diagram to support fetal cardiac of video ultrasound screening. They reduce the
dimensionality of time-series information to the two-dimensional diagram using the
TimeCluster method, which helps to find anomalies in long time-series. Therefore, they
use autoencoders to compress dimensions. They proposed two techniques, view-proxy loss
and a cascade graph encoder which improve performance and explainability by creating
sub-graph chart diagrams of sets of substructures. In Komatsu et al. (2021) they proposed
other techniques for explaining models of ultrasound images with bounding boxes of 18
anatomical substructures. They used these 18 classes to create a barcode-like timeline of
video to highlight changes in the ultrasound video of the heart.

In their work, Duffy et al. (2021) have highlighted the lack of explainability and have
re-examined explainable methods that fit the clinical workflow using 2D segmentation.
However, they found out that the standard methods achieved lower accuracy. Therefore,
they proposed the custom implementation of a DL model based on a frame-by-frame 3D
depth-map approach that accounts for the standard clinical workflow while making the
model explainable. This method is more applicable and can produce many predictions that
clinicians can interpret easily and possibly improve the DL prediction. Figure 7 shows an
example of their XAI approach.

Fiaidhi, Mohammed & Zezos (2022) used the XAI approach to provide better insights
into DNN network decision-making in segmenting Ulcerative Colitis (UC) images. Their
approach uses video processing methods such as summarization and automatic caption
generation. In their model, they used the addition of contextual or heuristic information to
increase the model’s accuracy and better understand the model’s decision-making. In their
work, they investigated how adding heuristics for subtitles can increase the explainability of
the model for UC severity classification. The model used a few video frames and classified
them using a Siamese neural network. The output of the model, along with the captions
from the gastroenterologist, were input to the LSTM network, which generated captions
for the original video. However, the authors could not achieve an accuracy of descriptions
higher than 62% due to the use of general embedding.
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In their research work, Acharya, Guda & Raovenkatajammalamadaka (2022) used the
transfer learning technique for the deep learning model to classify laparoscopic video
pictures. They proposed eENetB0 and eENetB7 models based on the EfficientNet network
and pre-trained on the ImageNet network. These models achieved 97.59% accuracy for
eENetB0 and 98.78% for eENetB7 in the binary classification of video clips with blood and
dry scenarios. GLENDA Leibetseder et al. (2019) dataset was used for training and testing
models. The authors also provide a GUI application for real-time image-processing with
human-like explanations of an area where the feature values are related to the model’s
prediction.

Sakkos et al. (2021) proposed a classification framework for infant body movements
associated with the prediction of cerebral palsy from video data. Their novel method uses
multiple deep learning approaches to classify the presence or absence of fidgety movements
(FMs). Firstly they use OpenPose architecture to get the skeletal pose of the infant body.
Specifically, to get trajectories of 8 selected body joints, including right and left hands,
elbow, ankle, and knee. Each part of the body was processed separately by the LSTM
network to find spatio-temporal motion in determining the abnormality of the body
movement. Lastly, the CNN network processed the output of the LSTM network to classify
the presence or absence of FMs. They also proposed the XAI method for the visualization
of framework decisions. The framework provides a contribution score between 0-1 for
each part of the body where higher values respond to a higher chance to present of FMs,
and lower values correspond to a lower chance to FMs. There is also a visualization of the
video split into 4 parts, where colors from purple to red are for the positive class, and color
range from blue to green for the negative class. The authors claim their results correspond
to a manual diagnostic tool such as general movement assessment (GMA).

Studies which deal with video processing using the above mentioned methods are
summarized in Table 3.

Table 4 below summarizes the deep learning models used in the studies described. We
observed the type of architecture used, the use of transfer learning, the performance of
models, and the dataset type used in the studies.

Based on the presented survey of articles dealing with XAI deep learning models in
medical video analysis we can summarize the following findings. In comparison with the
traditional white box classificationmethods where suitable features need to be hand-crafted
from the videos, models based on deep neural networks are able to extract the necessary
features on their own. However, it is necessary to preprocess videos suitably. Most of the
analyzed articles (8 out of 11) use frame-by-frame video processing, but there are also some
other specific approaches, usually tightly connected with the concrete application specifics.

Regarding classificationmodels used, the usually used DL architectures were successfully
applied on 2D images with necessary adjustments or combinations of such architectures.
In 4 out of 11 articles, transfer learning was used (in all cases model was pre-trained on
ImageNet). The performance of the resulting models in terms of classification accuracy is
usually very high, except for one very specific case and two articles where the classification
performance was not documented.
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Table 3 XAI methods for video analysis.

Video processing
type

Authors Application Model XAIMethods XAI evaluation
method

Frame by frame Chittajallu et al. (2019) Human-in-the-loop XAI system for
content-based image retrieval (CBIR)

ResNet50, IQR Saliency maps no XAI evaluation

Frame by frame Manna, Bhattacharya & Pal (2021) Self-supervised deep learning method for
learning spatial context-invariant repre-
setnations from MR (magnetic resonance)
video frames (SSML)

SSLM, ConvLSTM Grad-CAM no XAI evaluation

Frame by frame Zhang, Wang & Lo (2021) Surgical gesture recognition approach with
an explainable feature extraction process
from minimally invasive surgery videos.

BML-indRNN,
RNN + VGG16

Grad-CAM no XAI evaluation

Frame by frame Knapi (2021) Potential of XAI methods for decision sup-
port in medical image analysis - in vivo gas-
tral images obtained by a video capsule en-
doscopy.

Custom CNN LIME, SHAP, CIU Human Evaluation User
Study

Frame by frame Fiaidhi, Mohammed & Zezos (2022) Using XAI and heuristic information to in-
crease model’s performance on Ulcerative
Colitis video data

Siamese neural network
+ LSTM

Caption heuristic no XAI evaluation

Frame by frame Acharya, Guda &
Raovenkatajammalamadaka (2022)

Classification blood or dry scenarios of la-
paroscopic videos using EfficientNet and
transfer learning

eENetB0, eENetB7 Description based expla-
nations of video

no XAI evaluation

Frame by frame Sakkos et al. (2021) Novel classification framework for infant
body movements associated with predic-
tion of cerebral palsy from video data

OpenPose + 1D CNN +
LSTM

Contribution score and
image highlights

no XAI evaluation

Frame-based
classification +
video-based

Born et al. (2020) Lung POCUS dataset comprising samples
from ultrasound videos and deep learning
methods for the differential diagnosis of
lung pathologies.

VGG16, VGG-CAM CAMs
(only for frame-based)

Evaluation by domain
experts

Optical flow Hughes (2020) Explain optical flow models for video tasks.
They proposed method for trajectory-based
explanations and test on EchoNet-Dynamic
dataset of videos of heart.

Optical Flow Decompo-
sition

Trajectory-based expla-
nations

Sanity check,
Target Over Union,
Target Over All

Barcode
approach

Sakai et al. (2022) Novel XAI representation called graph
chart diagram, to support fetal cardiac of
video ultrasound screening.

YOLOv2, auto-encoders Custom - graph chart
diagram

no XAI evaluation

3D depth-map Duffy et al. (2021) DL model based on a frame-by-frame 3D
depth-map approach that accounts for the
standard clinical workflow.

DeepLabV3, ResNet Custom no XAI evaluation
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Table 4 Deep learning models and video datasets.

Author Model Transfer learning Model performance Dataset

Chittajallu et al. (2019) ResNet50, IQR ImageNet pretrained – Public - Chochlec80
Manna, Bhattacharya & Pal (2021) SSLM, ConvLSTM – Accuracy 87.4%

for abnormality class
Public - MRNet dataset

Zhang, Wang & Lo (2021) BML-indRNN, RNN + VGG16 ImageNet pretrained Accuracy 87.1% Public - JIGSAWS database
Knapi (2021) Custom CNN – Accuracy 98.58% Public - Red Lesion Endoscopy
Fiaidhi, Mohammed & Zezos (2022) Siamese neural network + LSTM – Accuracy 62% Public - KVASIR IBD data
Acharya, Guda &
Raovenkatajammalamadaka (2022)

eENetB0, eENetB7 Imagenet pretrained Accuracy 98.78% (eEnetB7) Public - GLENDA

Sakkos et al. (2021) OpenPose + 1D CNN + LSTM – Accuracy 100% (MINI-RGBD),
Accuracy 92% (RVI-25)

Public - MINI-RGBD, Not
public - RVI-25

Born et al. (2020) VGG16, VGG-CAM ImageNet pretrained
(VGG16)

Accuracy 94% Public - COVID-19 Lung
ultrasound dataset

Hughes (2020) Optical Flow Decomposition – – Public - EchoNet-Dynamic
Sakai et al. (2022) YOLOv2, auto-encoders – Accuracy 93.9% Not public available
Duffy et al. (2021) DeepLabV3, ResNet – R2 = 0.82 MAE = 4.05 Public - EchoNet-Dynamic
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Analysis of XAI methods used for deep learning medical video classification showed that
model-specific methods are dominating. From the methods presented in this article CAM
and Grad-CAM, but authors developed also other, custommethods tightly connected with
a specific type of applications, like contribution scores, trajectory-based explanations, or
graph chart diagrams. In two articles we could find explanation methods providing some
kind of textual descriptions. And only one article used model agnostic methods SHP, LIME
and CIU described above.

Surprisingly, only three out of 11 analyzed articles provided some form of evaluation
of the explanations provided by the used XAI method(s). In two cases human-grounded
measures and in one computational measures were used.

DISCUSSION
We think that the methodology used in this article provided sufficiently relevant,
informative, and valuable insights into the rapidly evolving research domain of medical
video analysis by means of XAI deep learning models. On the other hand, there may be
some bias in case there exist also other relevant articles, which wemissed because they could
not be retrieved using the approach described at the beginning of this article. However,
we think that the possible bias caused by this effect is very limited and does not threaten
the validity of our findings. Another danger comes from the fact that this research area is
evolving rapidly and new relevant articles may be published anytime.

New technologies that are non-invasive and becoming increasingly available can, in
conjunction with artificial intelligence, help physicians to diagnose problems more quickly.
One example is ultrasonography, which can effectively replace standard methods using
ionizing radiation. For example, based on Born et al. (2020), it is possible to classify
COVID-19 patients using deep neural network applied to lung ultrasonography data.
Another example is using the right diagnostic procedure to create an automated system for
detecting a lung motion problem after thoracic surgery. The design of such a system was
published in the article by Jaščur et al. (2021). These (and many other) approaches achieve
interesting results, but suffer from a lack of explainability, which is required in healthcare,
both by physicians and legislation. Using more transparent models or explainable methods
can help explain AI decisions. In turn, choosing an appropriate architecture can help to
improve the model prediction. For example, using 3D features that can be extracted from
the video can improve prediction and simplify the application of explainability (Duffy et
al., 2021).

USG is one of the most common medical imaging techniques. It has several advantages
over other techniques such as X-ray, CT, andMRI. USG does not use ionizing radiation and
is portable, and cost-effective (Liu et al., 2019). However, the disadvantage of USG is the
low quality of imaging due to low resolution and noise. The observation’s content depends
on the physician’s experience and the hardware specification of the equipment. Existing
approaches using DL methods on USG data mainly deal with classification, detection,
segmentation, and registration tasks. The tasks include analyzing distinct anatomical
structures such as the heart, muscle, breast, liver, lung, etc.
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In classification tasks on lung USG, AI classifies the presence or absence of pathological
features from images, mainly using 2D CNN architecture. These architectures are sufficient
in case of static features like tumors and lesions in the breast and liver. The problem occurs
if we use 2D architecture to analyze movement patterns in biomedical images, such as the
presence of lung sliding. We need to use a 3D CNN architecture to capture motion over
time. However, such an architecture tends to be more demanding on system resources and
training time, and it is more challenging to implement the explainability of such a complex
architecture.

However, as we presented in this article, there are similar open problems with the
explainability of the video analytical methods, yet to be solved present in other domains
than medicince. The most important open issues will be summarized in the following
subsection.

Open issues and future trends
As the application of XAI approaches in video processing tasks in the medical domain
remains a very active research topic, there are several open problems to be solved in
the future. One such problem lies in the lack of a qualitative metric for explanations.
Nowadays, the most common approach in the medical domain, is getting feedback directly
from the domain expert (clinician) expertise e.g., using a questionnaire. This approach
has two major downsides. Firstly, it is time consuming and when handling multiple data
sources it can be difficult to achieve in real-world deployment. Then, in the case of visual
image/video explanations, there is subjectivity in such an approach, as experts opinions
on the provided explanations may be biased. Therefore, the need for fully-automated
evaluation of explanations (e.g., using some objective metric) still remains among the
open problems yet to be solved. Besides the evaluation, there are several issues related to
the availability and quality of the training data. In the medical domain, the availability
of the data is a complicated issue. Medical data are very sensitive, as they represent a
portion of a person’s private patient’s data. Collection and storage of such data must
involve actions to ensure the trust and security aspects. Then, there is the aspect of
obtaining the class labels (as the majority of the analytical tasks are supervised). Labeling is
mostly being done manually by the experts themselves, which is very time-consuming and
resource-demanding. Also, in manual annotation, the subjectivity of the expert opinion
may influence the correctness of the data labeling. One of the consequences of these factors
is that there are not many available training datasets and those available are rather small.
To overcome these problems, a combination of existing approaches can be adopted. For
example, augmentation techniques can be used to enhance the volume of the datasets, as
these approaches have proven to be effective in image and video processing tasks from
other domains. Other techniques, such as transfer learning or self-supervised learning may
help with the labeling, but must be further explored and evaluated on medical data.
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CONCLUSION
This article summarized and reviewed the current approaches to explainability techniques
applied to deep learning models for medical video analysis. We started by introducing the
fundamental terminology in the area of explainability and interpretability, focusing more
on its importance in the healthcare domain. We summarized the requirements for an
explainable AI system deployed in real-world applications and summarized the desiderata
for XAI in this domain. Then, we provided an overview of classical XAI methods which can
be used in video analytical tasks. After this, we reviewed the works focused on explaining
the decision process of deep learning applied to medical video analysis. Here, we analyzed
the existing approaches to medical video analysis and EAX techniques applied in this
area. Some of the approaches utilize similar methods to those that are applied to medical
imaging, but adapted with dynamic aspects to address the specifics of video data. We also
highlighted open research issues in this area, some of them being similar and related to
explainability issues in medical image analysis. This particular area is not currently as
heavily studied as other tasks, therefore we think that providing a review of the currently
used approaches may be beneficial for the research community focusing on this field.
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