
A robust maximum correntropy
forecasting model for time series with
outliers
Jing Ren1 and Wei-Qin Li2

1 College of Computer, Xi’an Aeronautical Institute, Xi’an, Shaanxi Province, China
2 School of Automation and Information Engineering, Xi’an University of Technology, Xi’an,
Shaanxi, China

ABSTRACT
It is of great significance to develop a robust forecasting method for time series. The
reliability and accuracy of the traditional model are reduced because the series is
polluted by outliers. The present study proposes a robust maximum correntropy
autoregressive (MCAR) forecasting model by examining the case of actual power
series of Hanzhong City, Shaanxi province, China. In order to reduce the interference
of the outlier, the local similarity between data is measured by the Gaussian kernel
width of correlation entropy, and the semi-definite relaxation method is used to solve
the parameters in MCAR model. The results show that the MCAR model in
comparison with deep learning methods, in terms of the average value of the mean
absolute percentage error (MAPE), performed better by 1.63%. It was found that
maximum correntropy is helpful for reducing the interference of outliers.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Optimization Theory and
Computation, Scientific Computing and Simulation
Keywords Maximum correntropy, Regression, Time series forecasting, Outlier

INTRODUCTION
The forecasting of the time series plays an important role in fields of natural science, social
science, industrial engineering, financial science and technology and other fields. For
instance, in the power system, important decisions are made on account of the forecasting
results, including the generating capacity, the reliability analysis of the scheduling plan.
However, under the influence of some factors, the time series has obvious variability and
non-stationary (Dudek, 2016), and therefore the accurate forecasting is increasingly
difficult. It becomes imperative to develop the robust and effective forecasting method with
higher accuracy (Fekri et al., 2021; José et al., 2019; Kong et al., 2019).

In the past, some machine learning methods, such as the linear regression model (Ilic
et al., 2021), the autoregressive integrated moving average (ARIMA) model (Büyükşahin &
Ertekin, 2019), the exponential smoothing (De Oliveria & Oliveira, 2018), the grey model
(Huang, Shen & Liu, 2019), and the fractal extrapolation model (Wang et al., 2012), have
been proposed for forecasting of time series. Here, the machine learning method can
establish a parameter model and forecast the data in the future according to the time series
data. Compared with the traditional regression model, it has higher forecasting
performance. Recently, some deep learning models, such as the TCN-based model by
incorporating calendar and weather information (Jiang, 2022), the FF-ANNs by
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considering the temperature, weekends and load lags (Rajbhandari et al., 2021), and the
RNN by BO-PSO optimizing the hyper-parameters (Li, Zhang & Cai, 2021), are proposed
to improve the load forecasting performance and have higher accuracy than traditional
methods.

However, the time series is easily polluted by the random noise and outlier, which
seriously reduce the reliability and accuracy of the forecasting model. For the interference
of the random noise, the wavelet analysis and Kalman filtering are introduced to
preprocess time series (Quilty & Adamowski, 2018; Bashir & El-Hawary, 2009; Nóbrega &
Oliveira, 2019). Recently, the empirical mode decomposition (EMD) and its improved
method are applied to eliminate the interference and randomness of the sequence at
different time scales (Li & Chang, 2018). As for the outlier, it is caused by the sensor faults,
the equipment failures and other unexpected events, and is generally considered as the data
beyond the error threshold (Dixit et al., 2022). The deep learning approach (Munir et al.,
2019), data preprocessing (Wang et al., 2020) and online sequential outlier robust extreme
learning machine (Zhang et al., 2019) are introduced to detect and eliminate the outliers,
which are depended on the statistical characteristics of the time series. The disadvantage of
the methods is that they need to set the threshold and have high time complexity.

To solve the problem of forecasting time series polluted by outlier, a robust regression
model without detecting and eliminating outlier is developed in this article. The
forecasting model is applicable to the complex occasions of data contaminated by outlier,
especially in actual industrial sites, such as electrical load forecasting, wind farm power
forecasting, etc. This model is expected to improve the efficiency, accuracy and robustness
of time series. This article develops a robust maximum correntropy auto-regression
(MCAR) forecasting model. First, the similarity of data is assessed by the Gaussian kernel
width of correlation entropy to eliminate the outlier. Then, the semi-quadratic method is
presented to the quadratic programming for the nonlinear non-convex programming.
Lastly, in order to improve the robustness and accuracy, the half a second type of the
conjugate convex function and the semi-definite relaxation (SDR) method are developed
to estimate the model parameters.

The rest of the article is organized as follows. Firstly, the robust MCAR method is
developed for time series with the outlier in “Methods”. Then, the forecasting results are
analyzed and performances are evaluated in “Results”. Next, the comparison with some
state of the art forecasting model and discussion are presented in “Discussion”. Moreover,
the brief finding is introduced in “Findings”. Lastly, the conclusion and future directions
are presented in the last section.

METHODS
The regression model
According to the linear theory, the auto-regression (AR) model of the series

Ŷ ¼ fŷ1; ŷ2; � � � ŷMgis shown in Eq. (1)

ŷt ¼ b1yt�1þb2yt�2þ � � � þ bNyt�N þ et (1)

where ŷt; t ¼ 1; 2; � � � ;M is the forecasting load at the current moment t,M the number of
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group, Yt−i the actual load at the past moment t − i, βi the regression parameter, et the
error, and N the regression order. Therefore, it can be expressed to Eq. (2)
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The least square algorithm is adopted to minimize the sum of the squares of errors
(Vovk et al., 2019; Midiliç, 2020). Let � ¼ ½b1;b2; � � � ;bN �, Z ¼ fz1; z2; � � � ; zMg and

zt ¼ ½yt�1;yt�2; � � � yt�N �T . Equation (3) is the objective function

min
�

ðŶ � �ZÞ2 (3)

Furthermore, Eq. (3) can also be written to Eq. (4)

min
�

XM
t¼1

ðŷt � �ztÞ2 (4)

Actually, some factors, such as the machine failure, human errors, can cause the outlier
point in the recording process. Consequently, the accuracy can be reduced by the above
method. In this work, we develop a robust regression model.

MCAR forecasting model
Correntropy analysis

As shown in Eq. (4), yt at the current moment t is calculated by the weighted sum of the
data of past moments. Actually, because Ŷ and �Z are two random variables, the objective
function of Eq. (3) is the smallest if they have same statistical distributions.

The correntropy is the similarity measure between two random variables, as shown in
Eq. (5)

VrðŶ ;�ZÞ ¼ E krðŶ � �ZÞ� �
(5)

where E[] is expectation. krðŶ � �ZÞ is the Gaussian kernel as illustrated in Eq. (6)

krðŶ � �ZÞ ¼ exp �ðŶ � �ZÞ2
2r2

 !
(6)

where σ is a random parameter representing the kernel width, which is selected by the
density estimates (such as the Silverman specification).

In Eq. (6), the joint probability density cannot be calculated directly. Therefore, the
Parzen window is developed to estimate the correntropy of the limited samples
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V̂rðŶ ;�ZÞ ¼ 1
M

XM
t¼1

krðŷt � �ztÞ (7)

where M is the number of groups as shown in Eq.(1).
In Eq. (7), the kernel width σ controls the window of the correntropy. Here, due to the

kernel width constraint and negative exponential term in Gaussian kernel, the contribution
of large error value to correlation entropy can be reduced. As a result, the numerical
instability caused by large deviation value can be avoided, and the adverse effect of outliers
can be effectively reduced.

The above method in this work compares the deviation between the output sample
(forecasting value) and the real sample (actual value) in the system one by one under the
Gauss kernel function, which is a local optimization method. However, the moment
expansion considers the data matrix from the whole situation and calculates the error
sequence. When the matrix operation is limited, it needs to construct a new calculation
method, which increases the algorithm complexity.

From geometric point of view, in the sample space, the mean square error in the least
square method is the 2 norm for distance, considering the second-order statistics of the
data signal only, and does not reflect the statistical characteristics of the data (Liu, Pokharel
& Principe, 2007), which makes the convergence of the least squares estimation worse in
non Gaussian environment. Gaussian kernel function contains exponential function, and
Taylor series of exponential function is shown in Eq. (8)

ex
2 ¼ 1þ x2 þ 1

2!
x4 þ 1

3!
x6 þ 1

4!
x8 þ 1

5!
x10 þ � � � (8)

where x can be regarded as the element corresponding to the position in the error
sequence. From Eq. (8), it can be seen that the correntropy contains the even order
distance. When the distance between two points is close, it is equivalent to the distance
measured as 2 norm. With the increase of the distance, it is similar to 1 norm, or even
eventually tends to 0 norm (Liang, Wang & Zeng, 2015).

The correntropy reflects the high-order statistical characteristics and can more
accurately evaluate the error between the estimated value and the actual one. Therefore, it
can reduce the influence of outliers. In this work, the correlation entropy is introduced into
the AR model to enhance the robustness.

MCAR forecasting model
In the regression model, the mean square error of Ŷ at the time t and the historical data�Z
is the quadratic function of the convex curve along a straight line Ŷ ¼ �Z. However, the
value away from Ŷ ¼ �Z will increase mean error of samples, and make the regression
parameters have larger error in MSE.

Traditional mean square error is measured in the way of global similarity. All samples in
the joint space contribute significantly to the similarity. However, the correntropy is
measured in a local way. Due to locality, the value of the similarity is determined by the
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kernel function along the line of Ŷ ¼ �Z for random variables. Assume that X ¼ Ŷ � �Z,
the Gaussian kernel function of X is shown in the Fig. 1.

From Fig. 1, we can see that if X = 0, Gaussian kernel krðŶ � �ZÞ is maximized, and the
residual at the origin is zero. Here, the maximum entropy is a kind of adaptive loss
function, known as the maximal entropy criterion. It is suitable for the situation with non-
Gaussian and large outlier value (Santamaria, Pokharel & Principe, 2006; Bessa, Miranda
& Gama, 2009; Chen & Principe, 2012; He et al., 2011). In this work, we establish a robust
multidimensional regression model based on the maximal entropy (MC).

Assume that the number of groups and order number of the model are M and N,
respectively. For the convenience of calculation, the equality constraint �T� ¼ 1 is
introduced. Thereby, Eq. (9) is the constraint problem on MC

max
�

XM
t¼1

krðŷt � �ztÞ

s:t:�T� ¼ 1

(9)

The optimization problem of Eq. (9) is nonlinear and non-convex, and cannot be solved
directly. The conjugate convex function is introduced to solve the semi-quadratic form.
Here, the auxiliary variables is introduced, and accordingly it can be simplified to Eq. (10)

min
�

XM
t¼1

xtðŷt � �ztÞ2

s:t:�T� ¼ 1

(10)

Actually, the weighted function can reduce the large error term and the adverse effect of
the outlier on the optimization result. We define the matrix R ¼ diagðwÞ, where
w ¼ ½x1;x2; � � � ;xM�, and hence Eq. (10) is equivalent to Eq. (11)
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Figure 1 Gaussian kernel function with different variables.
Full-size DOI: 10.7717/peerj-cs.1251/fig-1
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min
�

R Ŷ � �Z
�� ��2

s:t:�T� ¼ 1
(11)

The solution of Eq. (11) is a non-convex quadratic programming problem, which is
difficult to solve. When the initial condition of Rð0Þ ¼ diagð1Þ, � becomes the optimal
solution, and the above Eq. (11) is transformed into a homogeneous constraint
programming of Eq. (12)

min
�

cŶ � �Z
�� ��2

s:t:c2 ¼ 1;�T� ¼ 1
(12)

It is equivalent to Eq. (13)

min
�

½�T c� ZTZ �ZTŶ

�Ŷ
T
Z Zk k2

" #
�T

c

" #

s:t:c2 ¼ 1;�T� ¼ 1

(13)

Let n¼ ½�Tc�T ;B ¼ IN�N 0
0 0

� �
, and C ¼ ZTZ �ZTŶ

�Ŷ
T
Z Zk k2

� �
. Equation (13) can

simplified to Eq. (14)

min
�

nTCn

s:t:nTBn ¼ 1
(14)

Using the semi-definite relaxation (SDR) method, the objective function and constraint
conditions in Eq. (14) are equivalent to Eq. (15)

nTCn ¼ TrfnTCng ¼ TrfCnnTg
nTBn ¼ TrfnTBng ¼ TrfBnnTg (15)

where Tr{} is the trace of the matrix. In Eq. (16), we define the matrix

x ¼ nnT (16)

where x is a symmetric positive semi-definite (PSD) matrix with a rank of 1. The resulting
semi-definite relaxation optimization constraint is shown in Eq. (17)

min
�

TrfCxg
s:t:TrfBxg ¼ 1; x � 0

(17)

Furthermore, let Eq. (18) is the eigen-decomposition of the matrix x

� ¼ VRVT (18)

where V ¼ ½v1; v2; . . . vM� is the eigenvector of x, and R ¼ diagðr1; r2 � � � ; rMÞ is the
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corresponding eigenvalue. xð1Þ ¼ r1v1v1T is closest to x when the rank is 1, and so n is
estimated in Eq. (19)

n¼ ffiffiffiffiffiffiffiffi
r1v1

p
(19)

Finally, the parameter � is the first N value of n.
In summary, the steps of the robust MCAR forecasting method are as follows:
Step (1): Set the maximum number of iteration, and initialize Rð0Þ ¼ diagð1Þ;
Step (2): Solve the optimization constraint problem in Eq. (17) and n by Eq. (19);
Step (3): According to the Silverman specification: r ¼ 1:06�minðre;R=1:34Þ � I�0:2

(re is the standard deviation of Ŷ � �Z, and R is the quartile difference) get solution ofxt ;
Step (4): Perform Steps (2) and Step (3) until the termination condition is reached, and

find the regression parameters �;
Step (5): Forecast the data at the next moment based on the parameter � in Step (4).
It is worth pointing out that, unlike previous methods (Bashir & El-Hawary, 2009), the

proposed MCARmodel does not need to judge whether there is outliers in the data set, but
directly constructs and trains the model based on the data set, since the MCAR model can
automatically reduce the impact of outliers by the maximal entropy.

RESULTS
As a case study, the experimental data is taken from the actual electricity power of
Hanzhong City, Shaanxi province, China. Here, the time interval is 1 h. The forecasting is a
one-step mode, that is, the current load is forecasted from the historical data of the past N
times. To analyze the forecasting performance, the root mean square error (RMSE), the
mean absolute error (MAE) and the mean absolute percentage error (MAPE) are
employed in Eqs. (20) to (22)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
i¼1

ðyi � ŷiÞ2

T

vuuut
(20)

MAE ¼
PT
i¼1

yi � ŷi
�� ��
T

(21)

MAPE ¼
PT
i¼1

yi � ŷi
yi

����
����

T
� 100% (22)

where yi and ŷi represent the actual load value and the forecasting one at the time t
respectively, and T is the total forecasting number.

Firstly, the forecasting performance of regression forecasting model is tested. Here, the
model order N and group number M on the accuracy are set to 4 and 8, respectively. The
solution method is the least square method (LSM). As shown in Fig. 2, the forecasting load
curves of 4:00 in 15 days from January 6 to January 20 are shown respectively. It can be
seen that, if the load series is slow to change, the forecast error is rather low; contrarily, if
the sequence has a greater change (a sharp rise or drop), the forecast accuracy is rather
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high. This means that AR forecasting model is sensitive to the sharp change of time series.
Here, some effects may lead to load data greater change and regression forecasting model is
more sensitive to the outlier.

Comparison of MCAR and regression models
In this section, the performance of the proposed MCAR model is compared with the
differential autoregressive (MDAR) model and the AR model. Here, to guarantee a fair
comparison, parameters of three methods are set to the same value as shown in Table 1.
The training data sets are the same, which are taken from the January data set. Firstly, the
performance of three methods on normal data (no outlier) is verified. Results of the relative
errors (Re) of the 50 different forecasting points are illustrated in Fig. 3. It can be seen that,
the relative error of the AR and the MDAR model have a large error at the forecasting
point 7, 29 and 34, due to the sudden increase or decrease of the actual data.

Table 2 shows the corresponding performance indexes. Here, the MAPE of MCAR is
4.74%, while that of the AR and MDAR models are greater than 7%. Meanwhile, the other
performance indexes of MCAR are relatively small, indicating that the proposed MCAR
model is superior to the other regression models.

Next, the robustness of the MCAR model on the outlier is further verified. Fig. 4 shows
the comparison of forecasting results from January 6 (day 1) to January 20 (day 15). It can

5 10 15
200

400

600

800

1000

y/
M

W

n

Forecasting valuables

Actual valuables

Figure 2 The forecasting results by regression model at 4:00 from January 6 to 20. The solid and dot
curves indicate that the actual loads and the forecasting results, respectively.

Full-size DOI: 10.7717/peerj-cs.1251/fig-2

Table 1 Parameters setting of forecasting models.

Parameters Forecasting models

AR MDAR MCAR

Solution method LSM LSM LSM

Model order 4 4 4

Group number 8 8 8

Kernel width – – 1,000
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be observed that, after the training sample with the outlier, the forecasting values of
multiple points of AR and MDAR deviate greatly. Moreover, the results of MCAR are still
good compared with the actual valuables, which mean that the proposed MCAR model in
this work has higher robustness.

The comparisons of the relative errors (Re) between the forecasting result and the actual
one are shown in Fig. 5. It can be seen that, AR and MDAR models have large forecasting

0 10 20 30 40 50
0

0.1

0.2

0.3

d

R
e

MCAR
MAR
MDAR

Figure 3 Comparison of the forecasting relative errors of normal data (no outlier). The solid, dash,
and dot-dash curves are the relative errors of the outlier data of MCAR, MAR, and MDAR, respectively.

Full-size DOI: 10.7717/peerj-cs.1251/fig-3

Table 2 Performance indexes of the normal data of MCAR, AR and MDAR models.

Performance indexes Forecasting models

AR MDAR MCAR

RMSE (MW) 85.213 84.032 54.015

MAPE (%) 7.08 7.44 4.74

MAE (MW) 60.727 63.695 40.964

5 10 15
200
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800

1000

P
/M
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n

MCAR
Actual valuables

AR
MDAR

Figure 4 Comparison of the forecasting results with outlier data at 4:00 from January 6 to 20. The
dot, dash, and dot-dash curves show the forecasting results of MCAR, MAR, and MDAR, respectively.

Full-size DOI: 10.7717/peerj-cs.1251/fig-4
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errors. The relative error of the MCAR model remains relatively low, indicating that it is
less affected by the outlier. From the performance indexes in Table 3, it can be seen that the
MAPE of MCAR model is 4.88%, which is significantly smaller than that of the AR and
MDARmodels. In addition, compared with results with no outlier in Table 2, performance
indexes did not increase significantly after the outlier data was added. This shows that, the
MCAR model proposed in this work is robust to the outlier and can improve the
forecasting accuracy.

Parameters selection of MCAR
The influences of parameter kernel width σ, model order N and group number M on the
accuracy are discussed.

The influences of parameters of the Gaussian kernel on the forecasting performance are
analyzed. Actually, for different data sets, the width of Gaussian kernel is different. Here,
the Silverman rule is used to determinate the kernel width. The performance indexes are
calculated using the forecasting valuables obtained from each kernel width, compared with
the Silverman rule. It can be seen from Table 4 that, RMSE, MAPE and MAE of Silverman
rule are smaller than the corresponding valuables with other kernel width. Here, the model
considers the standard deviation and quartile potential difference of error sequence
synthetically, realizing the restriction of increasing the correntropy to the larger error
estimate value, and improves the robustness of the correntropy measurement method to
the outlier value.

Table 3 Performance indexes of AR, MDAR and MCAR with outlier data.

Performance indexes Forecasting model

AR MDAR MCAR

RMSE (MW) 92.783 84.818 56.655

MAPE (%) 7.79 7.55 4.88

MAE (MW) 67.752 64.500 41.952

0 10 20 30 40 50
0

0.1

0.2

0.3

d

R
e
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MAR
MDAR

Figure 5 Comparison of the forecasting relative errors of data with the outlier. The solid, dash, dot-
dash curves are the relative errors of MCAR, MAR, and MDAR, respectively.

Full-size DOI: 10.7717/peerj-cs.1251/fig-5
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Then, the AICc criterion is applied to optimize the model order in this work (Chang
et al., 2018). Equation (23) is the AICc criterion

AICc ¼ T lnRSSN þ 2N þ 2NðN þ 1Þ
T � N � 1

(23)

where T is the number of samples, and N the model order. RSSN ¼ Y � �Zk k2 is the
forecasting error. Here, when T is small, the constraint ability of the AICc criterion on the
number of parameters is strengthened, and so it is applicable to the case that the number of
samples is small in this work.

Table 5 shows the performance indexes of the normal data and the data with the outlier
with different model orders. Here, the number of groups is set to 4. It can be seen that, the
performance indexes are smallest when the order N = 4, which indicates that the
forecasting results are dependent on the model order. As shown in Table 6, the minimum

Table 4 Performance indexes of MCAR with different kernel sizes.

Kernel size Performance indexes

RMSE (MW) MAPE (%) MAE (MW)

1,000 316.704 14.25 119.954

1,200 317.115 14.55 122.516

1,500 81.285 7.98 67.884

2,000 181.499 11.71 98.329

2,500 102.938 10.62 91.065

Silverman 63.058 4.18 44.412

Table 5 Comparison of performance indexes of different model orders.

Model order Performance indexes (no outliers) Performance indexes (with outliers)

RMSE (MW) MAPE (%) MAE (MW) RMSE (MW) MAPE (%) MAE (MW)

3 53.593 0.0504 42.282 63.808 0.0598 49.889

4 53.499 0.0474 40.964 56.655 0.0488 41.952

5 86.611 0.0693 62.569 83.532 0.0742 65.976

6 85.198 0.0648 67.063 90.767 0.0644 68.483

Note:
The data indicate the performance indexes of the normal data and the data with the outlier of different model orders. The
performance indexes are smallest when the order N = 4.

Table 6 RSSN and AICc values of different model orders.

Model order 3 4 5 6 7

RSSN 143.28 25.26 53.02 250.34 239.57

AICc 40.52 34.07 48.77 74.51 86.22

Note:
The data indicate the AICc and RSSN with different model orders. The optimal model order is N = 4.
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value of the model order is 34.07 of AICc model. Meanwhile, the optimal model order is
N = 4. This is consistent with the experimental result in Table 5.

Lastly, the number of groups in the MCARmodel is also a variable parameter which can
affect on the forecasting performance. Table 7 shows the performance indexes of MCAR
model with different groups. Here, kernel width is optimized by the Silverman rule and the
model order is fixed to 4. It can be seen that, whether or not the load data with the outlier,
the forecasting error is minimum when the number of groups is 4 in this experiment. Here,
when the number of groups is small, the model cannot find the similarity of load series.
However, with the further increase of the number of groups, the similarity of the load series
decreases, and the distribution difference of the time series becomes larger. It should be
noted that, the optimal number of groups is different for different data sets. Thereby, in the
actual modeling process, the number of groups needs to be selected according to the
characteristics of the dataset.

DISCUSSION
In this section, the performance of the proposed model is compared with some state of the
art deep learning methods which have been applied for load forecasting, including adaptive
recurrent neural networks (Adaptive RNN), long short term memory (LSTM) networks,
gated recurrent units (GRU) and the combination model. The training samples in this
section are taken from the power series from January to November, and the test samples
from December. Settings of some parameters are shown in Table 8. To guarantee a fair
comparison, the valuables of parameters of deep learning methods networks (Adaptive
RNN, LSTM, and GRU) are set to same valuables, where these have been optimized. Here,
the parameters of Adaptive RNN are set as recommended in Fekri et al. (2021). The
algorithm of LSTM is based on Kong et al. (2019). The algorithm of GRU are based on
Li et al. (2020). Parameters of the combination model are set based on Li & Chang (2018).

The performance indexes of the series with the outlier are tabulated in Table 9. The
results show that, the proposed MCAR model displays promising results in terms of the
average values of MAPE, MAE, and RMSE indexes for the series with the outlier, although
LSTM produces less value for the normal data. As for the maximum values of MAPE,
MAE, and RMSE indexes, the MCAR model also produces smaller values due to less
sensitive to the outlier. Moreover, the MCAR model has less training times in comparison

Table 7 Comparison of performance indexes of different numbers of groups.

Group number Performance indexes (no outlier) Performance indexes (with outlier)

RMSE (MW) MAPE (%) MAE (MW) RMSE (MW) MAPE (%) MAE (MW)

3 58.347 5.21 42.782 59.095 5.06 43.776

4 54.015 4.74 40.964 56.655 4.88 41.952

5 64.902 5.44 46.819 71.249 6.19 53.212

6 57.934 5.55 44.742 65.724 5.85 48.166

7 63.685 5.66 50.003 74.157 6.26 57.016

Note:
The data indicate the performance indexes of MCAR model with different groups. The forecasting error is minimum when the number of groups is 4.
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with deep learning methods, since it only need several training samples and contrarily deep
learning methods need a large number of training samples and accordingly more
computing time.

Finally, the uniqueness and novelty of this work is introduced. The established MCAR
model can automatically eliminate the influence of outliers without detecting outliers. The
local similarity between the true value and the regression one is measured by the maximum
correlation entropy, which reduces outlier in the optimization solution of regression
model. The average value of MAPE can be reduced to 1.63% in comparison with some
state of the art method (Adaptive RNN, LSTM, GRU, and combination model). However,
the traditional methods need to use filtering methods, such as statistical learning methods
and wavelet analysis, to detect outliers and set thresholds which are depended on the
statistical characteristics of the series, and therefore have high time complexity.

Table 8 Parameters setting of forecasting models.

Combinational model Adaptive RNN, LSTM, GRU

Individual model: ARIMA, Elman, similarity model Number of layers: 2

Optimization algorithm: CPSO Number of training samples: 8,760

Knowledge capacity: 5 Optimization algorithm: Adam

xmax; xmin: 2, 0 Maximum number of iterations: 3,000

c1, c2: 2.5, 0.5 Number of neurons in the hidden layer: 50

mC, mI: 2 Learning rate: 0.01

nC, nI: 5 Batch size: 40

Model order: 5 Bidirectional: No

Table 9 Comparisons of performance indexes of studied forecasting models.

Performance indexes Forecasting models

Adaptive RNN LSTM GRU Combination model MCAR

RMSE (MW) Averages 79.562 77.683 79.006 81.329 56.655

Minimum 1.587 1.492 1.556 1.920 1.620

Maximum 150.041 149.478 153.275 154.451 107.358

MAPE (%) Averages 6.625 6.442 6.840 7.424 4.880

Minimum 0.123 0.097 0.088 0.111 0.079

Maximum 9.072 8.743 9.518 11.389 7.961

MAE (MW) Averages 58.669 56.504 59.774 61.502 41.952

Minimum 1.590 1.511 1.685 2.227 1.365

Maximum 94.074 93.258 93.662 118.468 79.347

Training time (s) – 746 767 253 96 26

Note:
The data show the performance indexes of the series with the outlier of some forecasting models. The proposed MCAR
model displays promising results in terms of the average values of MAPE, MAE, and RMSE indexes.
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FINDINGS
The advantages and limitations of the proposed MCAR model are analyzed in this section.
The model is a robust regression model that can automatically eliminate outlier
interference. It does not need to detect outliers of time series and to set thresholds, which
effectively improves the accuracy, efficiency and reliability. Therefore, it is suitable for
online forecasting of time series disturbed by outliers and noises. Moreover, different from
the deep learning model which requires a large number of training samples, the MCAR
model only needs a small number of (number groups) data to train model, but it is unable
to discover more information implied in the data set. Also, it is difficult to determine the
optimal number of groups in the modeling process, and it can only be selected according to
experience. How to optimize the number of groups is our further research content.

CONCLUSIONS
This study has established a robust MCAR forecasting model for the time series with
outlier. The local similarity between data is measured by the Gaussian kernel width of
maximum correlation entropy. Therefore, the MCAR model reduces the sensitivity to the
outlier and enhances the accuracy and robustness. The advantage is that there is no need to
detect outlier and set thresholds. The average values of MAPE, MAE and RMSE indexes
and the training time of MCAR model are decreased in comparison with deep learning
methods. However, it should be pointed out that, external factors, such as weather and
holidays, have not been considered in our model. In future, the forecasting model should
incorporate the calendar, weather information, the temperature, workday and weekends to
furthermore improve the forecasting performance. This is also our next research direction.
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