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Background. The availability of large databases containing high resolution three-dimensional (3D)

models of proteins in conjunction with functional annotation allows the exploitation of advanced

supervised machine learning techniques for automatic protein function prediction.

Methods. In this work, novel shape features are extracted representing protein structure in the form of

local (per amino acid) distribution of angles and amino acid distances, respectively. Each of the multi-

channel feature maps is introduced into a deep convolutional neural network (CNN) for function

prediction and the outputs are fused through Support Vector Machines (SVM) or a correlation-based k-

nearest neighbor classifier. Two different architectures are investigated employing either one CNN per

multi-channel feature set, or one CNN per image channel.

Results. Cross validation experiments on single-functional enzymes (n=44,661) from the PDB database

achieved 90.1% correct classification, demonstrating an improvement over previous results on the same

dataset when sequence similarity was not considered.

Discussion. The automatic prediction of protein function can provide quick annotations on extensive

datasets opening the path for relevant applications, such as pharmacological target identification. The

proposed method shows promise for structure-based protein function prediction but sufficient data may

not yet be available to properly assess the method's performance on non-homologous proteins, thus

reduce the confounding factor of evolutionary relationships.
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Discussion. The automatic prediction of protein function can provide quick annotations on extensive
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1 INTRODUCTION25

Research in metagenomics led to a huge increase of protein databases and discovery of new protein26

families (Godzik, 2011). While the number of newly discovered, but possibly redundant, protein sequences27

rapidly increases, experimentally verified functional annotation of whole genomes remains limited. Protein28

structure, i.e. the 3D configuration of the chain of amino acids, is a very good predictor of protein function,29

and in fact a more reliable predictor than protein sequence because it is far more conversed in nature30

(Illergård et al., 2009).31

By now, the number of proteins with functional annotation and experimentally predicted structure32

of their native state (e.g. by NMR spectroscopy or X-ray crystallography) is adequately large to allow33

learning training models that will be able to perform automatic functional annotation of unannotated34

proteins. Also, as the number of protein sequences rapidly grows, the overwhelming majority of proteins35

can only be annotated computationally. In this work enzymatic structures from the Protein Data Bank36

(PDB) are considered and the enzyme commission (EC) number is used as a fairly complete framework37

for annotation. The EC number is a numerical classification scheme based on the chemical reactions the38

enzymes catalyze, proven by experimental evidence (web, 1992).39

There have been plenty machine learning approaches in the literature for automatic enzyme annotation.40

A systematic review on the utility and inference of various computational methods for functional charac-41

terization is presented in (Sharma and Garg, 2014), while a comparison of machine learning approaches42

can be found in (Yadav and Tiwari, 2015). Most methods use features derived from the amino acid43

sequence and apply Support Vector Machines (SVM) (Cai et al., 2003)(Han et al., 2004)(Dobson and44

Doig, 2005)(Chen et al., 2006)(Zhou et al., 2007)(Lu et al., 2007)(Lee et al., 2009)(Qiu et al., 2010)(Wang45

et al., 2010)(Wang et al., 2011)(Amidi et al., 2016), k-Nearest Neighbor (kNN) classifier (Huang et al.,46
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2007)(Shen and Chou, 2007a)(Nasibov and Kandemir-Cavas, 2009a), classification trees/forests (Lee47

et al., 2009)(Kumar and Choudhary, 2012a)(Nagao et al., 2014)(Yadav and Tiwari, 2015), and neural48

networks (Volpato et al., 2013). In (Borgwardt et al., 2005) sequential, structural and chemical information49

was combined into one graph model of proteins which was further classified by SVM. There has been little50

work in the literature on automatic enzyme annotation based only on structural information. A Bayesian51

approach (Borro et al., 2006) for enzyme classification using structure derived properties achieved 45%52

accuracy. Amidi et al. (2016) obtained 73.5% classification accuracy on 39,251 proteins from the PDB53

database when they used only structural information.54

In the past few years, deep learning techniques, and particularly convolutional neural networks,55

have rapidly become the tool of choice for tackling many challenging computer vision tasks, such as56

image classification (Krizhevsky et al., 2012). The main advantage of deep learning techniques is the57

automatic exploitation of features and tuning of performance in a seamless fashion, that simplifies the58

conventional image analysis pipelines. CNNs have recently been used for protein secondary structure59

prediction (Spencer et al., 2015)(Li and Shibuya, 2015). In (Spencer et al., 2015) prediction was based60

on the position-specific scoring matrix profile (generated by PSI-BLAST), whereas in (Li and Shibuya,61

2015) 1D convolution was applied on features related to the amino acid sequence. Also a deep CNN62

architecture was proposed in (Lin et al., 2016) to predict protein properties. This architecture used a63

multilayer shift-and-stitch technique to generate fully dense per-position predictions on protein sequences.64

To the best of authors’s knowledge, deep CNNs have not been used for prediction of protein function so65

far.66

In this work the author exploits experimentally acquired structural information of enzymes and apply67

deep learning techniques in order to produce models that predict enzymatic function based on structure.68

Novel geometrical descriptors are introduced and the efficacy of the approach is illustrated by classifying69

a dataset of 44,661 enzymes from the PDB database into the l = 6 primary categories: oxidoreductases70

(EC1), transferases (EC2), hydrolases (EC3), lyases (EC4), isomerases (EC5), ligases (EC6). The novelty71

of the proposed method lies first in the representation of the 3D structure as a “bag of atoms (amino acids)”72

which are characterized by geometric properties, and secondly in the exploitation of the extracted feature73

maps by deep CNNs. Although assessed for enzymatic function prediction, the method is not based74

on enzyme-specific properties and therefore can be applied (after re-training) for automatic large-scale75

annotation of other 3D molecular structures, thus providing a useful tool for data-driven analysis. In76

the following sections more details on the implemented framework are first provided, including the77

representation of protein structure, the CNN architecture and the fusion process of the network outputs.78

Then the evaluation framework and the obtained results are presented, followed by some discussion and79

conclusions.80

2 METHODS81

Data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that82

cannot be represented through any handcrafted features. It is hypothesized that by combining “amino acid83

specific” descriptors with the recent advances in deep learning we can boost model performance. The84

main advantage of the proposed method is that it exploits complementarity in both data representation85

phase and learning phase. Regarding the former, the method uses an enriched geometric descriptor that86

combines local shape features with features characterizing the interaction of amino acids on this 3D87

spatial model. Shape representation is encoded by the local (per amino acid type) distribution of torsion88

angles (Bermejo et al., 2012). Amino acid interactions are encoded by the distribution of pairwise amino89

acid distances. While the torsion angles and distance maps are usually calculated and plotted for the90

whole protein (Bermejo et al., 2012), in the current approach they are extracted for each amino acid91

type separately, therefore characterizing local interactions. Thus, the protein structure is represented as92

a set of multi-channel images which can be introduced into any machine learning scheme designed for93

fusing multiple 2D feature maps. Moreover, it should be noted that the utilized geometric descriptors94

are invariant to global translation and rotation of the protein, therefore previous protein alignment is not95

required.96

Our method constructs an ensemble of deep CNN models that are complementary to each other.97

The deep network outputs are combined and introduced into a correlation-based k-nearest neighbor98

(kNN) classifier for function prediction. For comparison purposes, SVM were also implemented for99

final classification. Two system architectures are investigated in which the multiple image channels are100
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Figure 1. The deep CNN ensemble for protein classification. In this framework (Architecture 1) each

multi-channel feature set is introduced to a CNN and results are combined by kNN or SVM classification.

The network includes layers performing convolution (Conv), batch normalization (Bnorm), rectified linear

unit (ReLU) activation, dropout (optionally) and max-pooling (Pool). Details are provided in section 2.2.

considered jointly or independently, as will be described next. Both architectures use the same CNN101

structure (within the highlighted boxes) which is illustrated in Fig.1.102

2.1 Representation of protein structure103

The building blocks of proteins are amino acids which are linked together by peptide bonds into a chain.104

The polypeptide folds into a specific conformation depending on the interactions between its amino acid105

side chains which have different chemistries. Many conformations of this chain are possible due to the106

rotation of the chain about each carbon (Cα) atom. For structure representation, two sets of feature107

maps were used. They express the shape of the protein backbone and the distances between the protein108

building blocks (amino acids). The use of global rotation and translation invariant features is preferred109

over features based on the Cartesian coordinates of atoms, in order to avoid prior protein alignment, which110

is a bottleneck in the case of large datasets with proteins of several classes (unknown reference template111

space). The feature maps were extracted for every amino acid being present in the dataset including the112

20 standard amino acids, as well as asparagine/aspartic (ASX), glutamine/glutamic (GLX), and all amino113

acids with unidentified/unknown residues (UNK), resulting in m = 23 amino acids in total.114

Torsion angles density. The shape of the protein backbone was expressed by the two torsion angles of115

the polypeptide chain which describe the rotations of the polypeptide backbone around the bonds between116

N-Cα (angle φ ) and Cα-C (angle ψ). All amino acids in the protein were grouped according to their type117

and the density of the torsion angles φ and ψ(∈ [−180,180]) was estimated for each amino acid type118

based on the 2D sample histogram of the angles (also known as Ramachandran diagram) using equal119

sized bins (number of bins hA = 19). The histograms were not normalized by the number of instances,120

therefore their values indicate the frequency of each amino acid within the polypeptide chain. In the121

obtained feature maps (XA), with dimensionality [hA×hA×m], he number of amino acids (m) corresponds122

to the number of channels. Smoothness in the density function was achieved by moving average filtering,123

i.e. by convoluting the density map with a 2D gaussian kernel (σ = 0.5).124

Density of amino acid distances. For each amino acid ai, i = 1, ..,m, the distances to amino acid125

a j, j = 1, ..,m, in the protein are calculated based on the coordinates of the Cα atoms for the residues126

and stored as an array di j. Since the size of the proteins varies significantly, the length of the array di j127

is different across proteins, thus not directly comparable. In order to standardize measurements, the128

sample histogram of di j is extracted (using equally sized bins) and smoothed by convolution with a 1D129

gaussian kernel (σ = 0.5). The processing of all pairs of amino acids resulted to feature maps (XD) of130
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dimensionality [m×m×hD], where hD = 8 is the number of histogram bins (considered as number of131

channels in this case).132

2.2 Classification by deep CNNs133

Feature extraction stage of each CNN. The CNN architecture employs three computational blocks of134

consecutive convolutional, batch normalization, rectified linear unit (ReLU) activation, dropout (option-135

ally) and max-pooling layers, and a fully-connected layer. The convolutional layer computes the output136

of neurons that are connected to local regions in the input in order to extract local features. It applies137

a 2D convolution between each of the input channels and a set of filters. The 2D activation maps are138

calculated by summing the results over all channels and then stacking the output of each filter to produce139

the output 3D volume. Batch normalization normalizes each channel of the feature map by averaging over140

spatial locations and batch instances. The ReLU layer applies an element-wise activation function, such141

as the max(0,x) thresholding at zero. The dropout layer is used to randomly drop units from the CNN142

during training and reduce overfitting. Dropout was used only for the XA feature set. The pooling layer143

performs a downsampling operation along the spatial dimensions in order to capture the most relevant144

global features with fixed length. The max operator was applied within a [2×2] neighborhood. The last145

layer is fully-connected and represents the class scores.146

Training and testing stage of each CNN. The output of each CNN is a vector of probabilities, one for147

each of the l possible enzymatic classes. The CNN performance can be measured by a loss function which148

assigns a penalty to classification errors. The CNN parameters are learned to minimize this loss averaged149

over the annotated (training) samples. The softmaxloss function (i.e. the softmax operator followed by the150

logistic loss) is applied to predict the probability distribution over categories. Optimization was based on151

an implementation of stochastic gradient descent. At the testing stage, the network outputs after softmax152

normalization are used as class probabilities.153

2.3 Fusion of CNN outputs using two different architectures154

Two fusion strategies were implemented. In the first strategy (Architecture 1) the two feature sets, XA155

and XD, are each introduced into a CNN, which performs convolution at all channels, and then the l class156

probabilities produced for each feature set are combined into a feature vector of length l ∗2. In the second157

strategy (Architecture 2) , each one of the (m = 23 or hD = 8) channels of each feature set is introduced158

independently into a CNN and the obtained class probabilities are concatenated into a vector of l ∗m159

features for XA and l ∗hD features for XD, respectively. These two feature vectors are further combined160

into a single vector of length l ∗ (m+hD) (=186). For both architectures, kNN classification was applied161

for final class prediction using as distance measure between two feature vectors, x1 and x2, the metric162

1− cor(x1,x2), where cor is the sample Spearman’s rank correlation. The value k = 12 was selected for163

all experiments. For comparison, fusion was also performed with linear SVM classification (Chang and164

Lin, 2011). The code was developed in MATLAB environment and the implementation of CNNs was165

based on MatConvNet (Vedaldi and Lenc, 2015).166

3 RESULTS167

The protein structures (n = 44,661) were collected from the PDB. Only enzymes that occur in a single168

class were processed, whereas enzymes that perform multiple reactions and are hence associated with169

multiple enzymatic functions were excluded. Since protein sequence was not examined during feature170

extraction, all enzymes were considered without other exclusion criteria, such as small sequence length or171

homology bias. The dataset was unbalanced in respect to the different classes. The number of samples per172

class is shown in Table 1. The dataset was split into 5 folds. Four folds were used for training and one for173

testing. The training samples were used to learn the parameters of the network (such as the weights of the174

convolution filters), as well as the parameters of the subsequent classifiers used during fusion (SVM or175

kNN model). Once the network was trained, the class probabilities were obtained for the testing samples,176

which were introduced into the trained SVM or kNN classifier for final prediction. The SVM model was177

linear, thus didn’t require any hyper-parameter optimization. Due to lack of hyper-parameters, no extra178

validation set was necessary. On the side, the author examined also non-linear SVM with gaussian radial179

basis function kernel, but didn’t observe any significant improvement, thus the corresponding results are180

not reported.181
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Table 1. Cross-validation accuracy (in percentage) in predicting main enzymatic function using the deep

CNN ensemble

Architecture 1 Architecture 2

Class Samples linear-SVM kNN linear-SVM kNN

EC1 8,075 86.4 88.8 91.2 90.6

EC2 12,739 84.0 87.5 88.0 91.7

EC3 17,024 88.7 91.3 89.6 94.0

EC4 3,114 79.4 78.4 84.9 80.7

EC5 1,905 69.5 68.6 79.6 77.0

EC6 1,804 61.0 60.6 73.6 70.4

Total 44,661 84.4 86.7 88.0 90.1

Table 2. Confusion matrices for each fusion scheme and classification technique

Classifier prediction by Architecture 1 prediction by Architecture 2

1 2 3 4 5 6 1 2 3 4 5 6

linear- EC1 86.5 4.9 4.8 1.8 1.1 1.0 91.2 2.9 1.9 2.2 1.1 0.7

SVM EC2 3.4 84.0 7.9 1.9 1.2 1.6 3.6 88.0 3.5 2.2 1.2 1.5

EC3 2.4 6.1 88.7 1.0 0.8 1.0 2.3 4.1 89.6 1.6 1.2 1.2

EC4 4.4 7.3 5.7 79.4 1.8 1.3 4.3 4.9 2.7 84.9 1.7 1.4

EC5 7.0 10.1 9.0 2.9 69.4 1.6 4.5 5.4 4.7 4.4 79.5 1.7

EC6 5.9 15.5 13.0 2.3 2.3 61.0 5.5 10.3 5.4 3.3 1.9 73.6

kNN EC1 88.8 5.0 4.5 0.7 0.5 0.5 90.6 4.4 4.6 0.3 0.1 0.0

EC2 2.5 87.5 7.4 1.0 0.6 1.1 1.7 91.7 5.8 0.3 0.2 0.4

EC3 1.8 5.4 91.3 0.5 0.4 0.6 1.2 4.4 94.0 0.2 0.1 0.2

EC4 3.8 9.1 7.2 78.5 1.1 0.4 3.7 8.4 6.9 80.7 0.1 0.1

EC5 6.1 11.5 10.7 2.3 68.5 1.0 3.5 9.7 8.6 0.9 76.9 0.3

EC6 4.9 18.8 13.5 1.0 1.3 60.6 4.2 14.1 10.3 0.7 0.3 70.5

A classification result was deemed a true positive if the match with the highest probability was in first182

place in a rank-ordered list. The classification accuracy (percentage of correctly classified samples over183

all samples) was calculated for each fold and then averaged across the 5 folds.184

3.1 Classification performance185

Common options for the network were used, except of the size of the filters which was adjusted to the186

dimensionality of the input data. Specifically, the convolutional layer used neurons with receptive field of187

size 5 for the first two layers and 2 for the third layer. The stride (specifying the sliding of the filter) was188

always 1. The number of filters was 20, 50 and 500 for the three layers, respectively, and the learning rate189

0.001. The batch size was selected according to information amount (dimensionality) of input. It was190

assumed (and verified experimentally) that for more complicated the data, a larger number of samples is191

required for learning. One thousand samples per batch were used for Architecture 1, which takes as input192

all channels, and 100 samples per batch for Architecture 2, in which an independent CNN is trained for193

each channel. The dropout rate was 20%. The number of epochs was adjusted to the rate of convergence194

for each architecture (300 for Architecture 1 and 150 for Architecture 2).195

The average classification accuracy over the 5 folds for each enzymatic class is shown in Table 1 for196

both fusion schemes, whereas the analytic distribution of samples in each class is shown in the form of197

confusion matrices in Table 2.198

In order to further assess the performance of the deep networks, receiver operating characteristic199

(ROC) curves and area-under-the-curve (AUC) values were calculated for each class for the selected200

scheme (based on kNN and Architecture 2), as shown in Fig.2). The calculations were performed based201
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Figure 2. ROC curves for each enzymatic class based on kNN and Architecture 2

on the final decision scores in a one-versus-rest classification scheme. The decision scores for the kNN202

classifier reflected the ratio of the within-class neighbors over total number of neighbors. The ROC curve203

represents the true positive rate against the false positive rate and was produced by averaging over the five204

folds of the cross-validation experiments.205

Effect of sequence redundancy and sample size. Analysis of protein datasets is often performed206

after removal of redundancy, such that the remaining entries do not overreach a pre-arranged threshold207

of sequence identity. In the previously presented results, sequence/threshold metrics were not applied208

to remove sequence-redundancy. Although structure similarity is affected by sequence similarity, the209

aim was not to lose structural entries (necessary for efficient learning) over a sequence based threshold210

cutoff. Also, only X-ray crystallography data were used; such data represent a ‘snapshot’ of a given211

protein’s 3D structure. In order not to miss the multiple poses that the same protein may adopt in different212

crystallography experiments, the whole dataset was explored.213

Subsequently, the performance of the method was also investigated on a less redundant dataset and214

the classification accuracy was compared in respect to the original (redundant) dataset, but randomly215

subsampled to include equal number of proteins. This experiment allows to assess the effect of redundancy216

under conditions (number of samples). Since inference in deep networks requires the estimation of a very217

large number of parameters, a large amount of training data is required and therefore very strict filtering218

strategies could not be applied. A dataset, the pdbaanr 1, pre-compiled by PISCES (Wang and Dunbrack,219

2003), was used that includes only non-redundant sequences across all PDB files (n = 23242 proteins,220

i.e. half in size of the original dataset). This dataset has one representative for each unique sequence in221

the PDB; representative chains are selected based on the highest resolution structure available and then222

the best R-values. Non-X-ray structures are considered after X-ray structures. As a note, the author also223

explored the Leaf algorithm (Bull et al., 2013) which is especially designed to maximize the number of224

retained proteins and has shown improvement over PISCES. However, the computational cost was too225

high (possibly due to the large number of samples) and the analysis was not completed.226

The classification performance was assessed on Architecture 2 by using 80% of the samples for227

training and 20% of the samples for testing. For the pdbaanr dataset, the accuracy was 79.3% for kNN228

and 75.5% for linear-SVM, whereas for the sub-sampled dataset it was 85.7% for kNN and 83.2% for229

linear-SVM. The results show that for the selected classifier (kNN), the accuracy drops 4.4% when the230

number of samples is reduced to the half, and it also drops additionally 6.4% if the utilized sequences are231

less similar. The decrease in performance shows that the method is affected by the number of samples as232

1http://dunbrack.fccc.edu/Guoli/pisces download.php
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Figure 3. Torsion angles density maps (Ramachandran plots) averaged over all samples for each of the

20 standard and 3 non-standard (ASX, GLX, UNK) amino acids. The horizontal and vertical axes at each

plot correspond to φ and ψ angles and vary from −180◦ (top left) to 180◦ (right bottom). The color scale

(blue to red) is in the range [0,1]. For an amino acid a, red means that the number of occurrences of the

specific value (φ ,ψ) in all observations of a (within and across proteins) is at least equal to the number of

proteins. On the opposite, blue indicates a small number of occurrences, and is observed for rare amino

acids or unfavorable conformations.

well as by their similarity level.233

3.2 Structural representation and complementarity of features234

Next, some examples of the extracted feature maps are illustrated, in order to provide some insight on the235

representation of protein’s 3D structure. The average (over all samples) 2D histogram of torsion angles for236

each amino acid is shown in Fig. 3. The horizontal and vertical axes at each plot represent torsion angles237

(in [−180◦,180◦]). It can be observed that the non-standard (ASX, GLX, UNK) amino acids are very rare,238

thus their density maps have nearly zero values. The same color scale was used in all plots to make feature239

maps comparable, as “seen” by the deep network. Since the histograms are (on purpose) not normalized240

for each sample, rare amino acids will have few visible features and due to the ’max-pooling operator’241

will not be selected as significant features. The potential of these feature maps to differentiate between242

classes is illustrated in Fig. 4 for three randomly selected amino acids (ALA, GLY, TYR). Overall the243

spatial patterns in each class are distinctive and form a multi-dimensional signature for each sample. As a244

note, before training of the CNN ensemble data standardization is performed by subtracting the mean245

density map. The same map is used to standardize the test sample during assessment.246

Examples of features maps representing amino acid distances (XD) are illustrated in figures 1 and 5.247

Fig. 1 illustrates an image slice across the 3rd dimension, i.e. one [m×m] channel, and as introduced in248

the 2D multichannel CNN, i.e. after mean-centering (over all samples). Fig. 5 illustrates image slices (of249

size [m×hD]) across the 1st dimension averaged within each class. Fig. 5 has been produced by selecting250

the same amino acids as in Fig. 4 for easiness of comparison of the different feature representations. It251

can be noticed that for all classes most pairwise distances are concentrated in the last bin, corresponding252

to high distances between amino acids. Also, as expected there are differences in quantity of each amino253

acid, e.g. by focusing on the last bin, it can be seen that ALA and GLY have higher values than TYR in254

most classes. Moreover, the feature maps indicate clear differences between samples of different classes.255
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Figure 4. Ramachandran plots averaged across samples within each class. Rows correspond to amino

acids and columns to functional classes. Three amino acids (ALA, GLY, TYR) are randomly selected for

illustration of class separability. The horizontal and vertical axes at each plot correspond to φ and ψ

angles and vary from −180◦ (top left) to 180◦ (right bottom). The color scale (blue to red) is in the range

[0,1] as illustrated in Fig. 3.

Table 3. Cross-validation accuracy (average ± standard deviation over 5 folds) for each feature set

separately and after fusion of CNN outputs based on Architecture 2

Feature sets linear-SVM kNN

XA (angles) 79.6 ± 0.5 82.4 ± 0.4

XD (distances) 88.1 ± 0.4 89.8 ± 0.2

Ensemble 88.0 ± 0.4 90.1 ± 0.2

The discrimination ability and complementary of the extracted features in respect to classification256

performance is shown in Table 3. It can be observed that the relative position of amino acids and their257

arrangement in space (features XD) predict enzymatic function better than the backbone conformation258

(features XA). Also, the fusion of network decisions based on correlation distance outperforms predictions259

from either network alone, but the difference is only marginal in respect to the predictions by XD. In260

all cases the differences in prediction for the performed experiments (during cross validation) was very261

small (usually standard deviation < 0.5%), indicating that the method is robust to variations in training262

examples.263

4 DISCUSSION264

A deep CNN ensemble was presented that performs enzymatic function classification through fusion265

in feature level and decision level. The method has been applied for the prediction of the primary EC266

number and achieved 90.1% accuracy, which is a considerable improvement over the accuracy obtained267

in our previous work (73.5% in (Amidi et al., 2016) and 83% in (Amidi et al., 2017)) when only structural268

information was incorporated. These results were achieved without imposing any pre-selection criteria,269

such as based on sequence identity, thus the effect of evolutionary relationships, as confounding factor270

in the prediction of function from 3D structure, has not been sufficiently studied. Since deep learning271

technology requires a large number of samples to produce generalizable models, a filtered dataset with272

only non-redundant proteins would be too small for reliable training. This is a limitation of the current273

approach, which mainly aimed to increase predictive power over previous methods using common274
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Figure 5. Histograms of paiwise amino acid distances averaged across samples within each class. The

same three amino acids (ALA, GLY, TYR) selected in Fig. 4 are also shown here. The horizontal axis at

each plot represents the histogram bins (distance values in the range [5,40]). The vertical axis at each plot

corresponds to the 23 amino acids sorted alphabetically from top to bottom (ALA, ARG, ASN, ASP,

ASX, CYS, GLN, MET, GLU, GLX, GLY, HIS, ILE, LEU, LYS, PHE, PRO, SER, THR, TRP, TYR,

UNK, VAL). Thus each row shows the histogram of distances for a specific pair of the amino acids (the

one in the title and the one corresponding to the specific row). The color scale is the same for all plots and

is shown horizontally at the bottom of the figure.

9/12

PeerJ Comput. Sci. reviewing PDF | (CS-2016:08:12536:2:0:NEW 15 May 2017)

Manuscript to be reviewedComputer Science



features for structural representation and common classifiers such as SVM and nearest neighbor, rather275

than addressing this confounding factor in the prediction of protein structure.276

Many methods have been proposed in the literature using different features and different classifiers.277

Nasibov and Kandemir-Cavas (2009b) obtained 95%-99% accuracy by applying kNN-based classification278

on 1200 enzymes based on their amino acid composition. Shen and Chou (2007b) fused results derived279

from the functional domain and evolution information and obtained 93.7% average accuracy on 9,832280

enzymes. On the same dataset Wang et al. (2011) improved the accuracy (which ranged from 81%281

to 98% when predicting the first three EC digits) by using sequence encoding and SVM for hierarchy282

labels. Kumar and Choudhary (2012b) reported overall accuracy of 87.7% in predicting the main class283

for 4,731 enzymes using random forests. Volpato et al. (2013) applied neural networks on the full284

sequence and achieve 96% correct classification on 6,000 non-redundant proteins. Most of the previous285

methods incorporate sequence-based features. Many were assessed on a subset of enzymes acquired286

after imposition of different pre-selection criteria and levels of sequence similarity. More discussion on287

machine learning techniques for single-label and multi-label enzyme classification can be found in (Amidi288

et al., 2017).289

Assessment of the relationship between function and structure (Todd et al., 2001) revealed 95%290

conservation of the fourth EC digit for proteins with up to 30% sequence identity. Similarity, Devos291

and Valencia (2000) concluded that enzymatic function is mostly conserved for the first digit of EC292

code whereas more detailed functional characteristics are poorly conserved. It is generally believed that293

as sequences diverge, 3D protein structure becomes a more reliable predictor than sequence, and that294

structure is far more conversed than sequence in nature (Illergård et al., 2009). The focus of this study295

was to explore the predictive ability of 3D structure and provide a tool that can generalize in cases where296

sequence information is insufficient. Thus the presented results are not directly comparable to the ones of297

previous methods due to the use of different features a well as datasets. If desired, the current approach298

can easily incorporate also sequence-related features. In such a case however, the use of non-homologous299

data would be inevitable for rigorous assessment.300

The reported accuracy is the average of 5 folds on the testing set. A separate validation set was not301

used within each fold, because the design of the network architecture (size of convolution kernel, number302

of layers, etc) and final classifier (number of neighbors in kNN) were preselected and not optimized303

within the learning framework. Additional validation and optimization of the model would be necessary304

to improve performance and provide better insight into the capabilities of this method.305

A possible limitation of the proposed approach is that the extracted features do not capture the306

topological properties of the 3D structure. Due to the statistical nature of the implemented descriptors,307

calculated by considering the amino acids as elements in Euclidean space, connectivity information is not308

strictly retained. The author and colleagues recently started to investigate in parallel the predictive power309

of the original 3D structure, represented as a volumetric image, without the extraction of any statistical310

features. Since the more detailed representation increased the dimensionality considerably, new ways311

are being explored to optimally incorporate the relationship between the structural units (amino-acids) in312

order not to impede the learning process.313

5 CONCLUSIONS314

A method was presented that extracts shape features from the 3D protein geometry that are introduced315

into a deep CNN ensemble for enzymatic function prediction. The investigation of protein function316

based only on structure reveals relationships hidden at the sequence level and provides the foundation317

to build a better understanding of the molecular basis of biological complexity. Overall, the presented318

approach can provide quick protein function predictions on extensive datasets opening the path for319

relevant applications, such as pharmacological target identification. Future work includes application of320

the method for prediction of the hierarchical relation of function subcategories and annotation of enzymes321

up to the last digit of the enzyme classification system.322
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Illergård, K., Ardell, D. H., and Elofsson, A. (2009). Structure is three to ten times more conserved366

than sequence—a study of structural response in protein cores. Proteins: Structure, Function, and367

Bioinformatics, 77(3):499–508.368

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional369

neural networks. In Advances in neural information processing systems, pages 1097–1105.370

Kumar, C. and Choudhary, A. (2012a). A top-down approach to classify enzyme functional classes and371

sub-classes using random forest. EURASIP Journal on Bioinformatics and Systems Biology, 1:1–14.372

Kumar, C. and Choudhary, A. (2012b). A top-down approach to classify enzyme functional classes373

and sub-classes using random forest. EURASIP Journal on Bioinformatics and Systems Biology,374

2012(1):1–14.375

Lee, B. J., Shin, M. S., Oh, Y. J., Oh, H. S., and Ryu, K. H. (2009). Identification of protein functions376

using a machine-learning approach based on sequence-derived properties. Proteome science, 7(1):1.377

Li, Y. and Shibuya, T. (2015). Malphite: A convolutional neural network and ensemble learning based378

protein secondary structure predictor. In IEEE Int. Conf. on Bioinformatics and Biomedicine (BIBM),379

pages 1260–1266.380

Lin, Z., Lanchantin, J., and Qi, Y. (2016). Must-cnn: A multilayer shift-and-stitch deep convolutional381

architecture for sequence-based protein structure prediction. In 30th AAAI Conference on Artificial382

11/12

PeerJ Comput. Sci. reviewing PDF | (CS-2016:08:12536:2:0:NEW 15 May 2017)

Manuscript to be reviewedComputer Science



Intelligence.383

Lu, L., Qian, Z., Cai, Y.-D., and Li, Y. (2007). Ecs: an automatic enzyme classifier based on functional384

domain composition. Computational biology and chemistry, 31(3):226–232.385

Nagao, C., Nagano, N., and Mizuguchi, K. (2014). Prediction of detailed enzyme functions and identifica-386

tion of specificity determining residues by random forests. PloS one, 9(1):1–12.387

Nasibov, E. and Kandemir-Cavas, C. (2009a). Efficiency analysis of knn and minimum distance-based388

classifiers in enzyme family prediction. Computational biology and chemistry, 33(6):461–464.389

Nasibov, E. and Kandemir-Cavas, C. (2009b). Efficiency analysis of knn and minimum distance-based390

classifiers in enzyme family prediction. Computational biology and chemistry, 33(6):461–464.391

Qiu, J.-D., Huang, J.-H., Shi, S.-P., and Liang, R.-P. (2010). Using the concept of chou’s pseudo amino392

acid composition to predict enzyme family classes: an approach with support vector machine based on393

discrete wavelet transform. Protein and peptide letters, 17(6):715–722.394

Sharma, M. and Garg, P. (2014). Computational approaches for enzyme functional class prediction: A395

review. Current Proteomics, 11(1):17–22.396

Shen, H.-B. and Chou, K.-C. (2007a). Ezypred: a top–down approach for predicting enzyme functional397

classes and subclasses. Biochemical and biophysical research communications, 364(1):53–59.398

Shen, H.-B. and Chou, K.-C. (2007b). Ezypred: a top–down approach for predicting enzyme functional399

classes and subclasses. Biochemical and biophysical research communications, 364(1):53–59.400

Spencer, M., Eickholt, J., and Cheng, J. (2015). A deep learning network approach to ab initio protein401

secondary structure prediction. IEEE/ACM Trans. on Computational Biology and Bioinformatics402

(TCBB), 12(1):103–112.403

Todd, A. E., Orengo, C. A., and Thornton, J. M. (2001). Evolution of function in protein superfamilies,404

from a structural perspective. Journal of molecular biology, 307(4):1113–1143.405

Vedaldi, A. and Lenc, K. (2015). Matconvnet: Convolutional neural networks for matlab. In Proceedings406

of the 23rd ACM international conference on Multimedia, pages 689–692. ACM.407

Volpato, V., Adelfio, A., and Pollastri, G. (2013). Accurate prediction of protein enzymatic class by n-to-1408

neural networks. BMC bioinformatics, 14(1):1.409

Wang, G. and Dunbrack, R. L. (2003). Pisces: a protein sequence culling server. Bioinformatics,410

19(12):1589–1591.411

Wang, Y.-C., Wang, X.-B., Yang, Z.-X., and Deng, N.-Y. (2010). Prediction of enzyme subfamily class412

via pseudo amino acid composition by incorporating the conjoint triad feature. Protein and Peptide413

Letters, 17(11):1441–1449.414

Wang, Y.-C., Wang, Y., Yang, Z.-X., and Deng, N.-Y. (2011). Support vector machine prediction of415

enzyme function with conjoint triad feature and hierarchical context. BMC systems biology, 5(1):1.416

Yadav, S. K. and Tiwari, A. K. (2015). Classification of enzymes using machine learning based approaches:417

a review. Machine Learning and Applications: An International Journal (MLAIJ), 2(3/4).418

Zhou, X.-B., Chen, C., Li, Z.-C., and Zou, X.-Y. (2007). Using chou’s amphiphilic pseudo-amino acid419

composition and support vector machine for prediction of enzyme subfamily classes. Journal of420

theoretical biology, 248(3):546–551.421

12/12

PeerJ Comput. Sci. reviewing PDF | (CS-2016:08:12536:2:0:NEW 15 May 2017)

Manuscript to be reviewedComputer Science




