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ABSTRACT
Given a directed graph G = (V, E), a feedback vertex set is a vertex subset C whose
removal makes the graph G acyclic. The feedback vertex set problem is to find the
subset C* whose cardinality is the minimum. As a general model, this problem has a
variety of applications. However, the problem is known to be NP-hard, and thus
computationally challenging. To solve this difficult problem, this article develops an
iterated dynamic thresholding search algorithm, which features a combination of
local optimization, dynamic thresholding search, and perturbation. Computational
experiments on 101 benchmark graphs from various sources demonstrate the
advantage of the algorithm compared with the state-of-the-art algorithms, by
reporting record-breaking best solutions for 24 graphs, equally best results for 75
graphs, and worse best results for only two graphs. We also study how the key
components of the algorithm affect its performance of the algorithm.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Feedback vertex set, Dynamic thresholding search, Descent search, Heuristic

INTRODUCTION
Given a directed graph G ¼ ðV; EÞ, where V denotes the set of vertices and E the set of
edges, a feedback vertex set (FVS) is a vertex subset C � V whose removal leads to an
acyclic graph. The feedback vertex set problem (FVSP) aims to identify a FVS of minimum
cardinality. In other words, we want to remove the fewest vertices to make the graph
acyclic.

The decision version of the FVSP is one of the 21 nondeterministic polynomial-time
complete (NP-complete) problems, which were first proved in the early 1970s (Cook, 1971;
Karp, 1972). Its broad applications include very large scale integration circuit design (Festa,
Pardalos & Resende, 1999), deadlock detection (Leung & Lai, 1979; Wang, Lloyd & Soffa,
1985), program verification (Seymour, 1995), Bayesian inference (Bar-Yehuda et al., 1998),
operating systems (Silberschatz, Galvin & Gagne, 2006) and complex network systems
(Liu, Slotine & Barabási, 2011). A typical application of the FVSP is to control the state of a
complex network system, making the system to change from any given state to an expected
state by controlling a minimal subset of vertices from the outside. For instance,Mochizuki
et al. (2013), Fiedler et al. (2013) and Zhao et al. (2020) investigated FVS-based control
mechanisms. This FVS approach proves to be suitable when only the network formation is
known, while the functional form of the governing dynamic equations are ambiguous
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(Zhao et al., 2020). Studies also showed that this approach needs to remove fewer vertices
than other structure-based methods in many cases (e.g., Zañudo, Yang & Albert, 2017).

Figure 1A shows a directed graph G with five vertices fa; b; c; d; eg. Figure 1B displays
an arbitrary FVS fa; b; dg with a cardinality of 3, while Fig. 1C presents an optimal FVS
fb; cg with a minimum cardinality of 2.

Some approximation algorithms were proposed for the FVSP to provide solutions of
provable quality. Erdős & Pósa (1962) presented an algorithm with an approximation ratio
of 2logn (n ¼ jV j). Later, Monien & Schulz (1981) improved the approximation ratio toffiffiffiffiffiffiffiffi

logn
p

. Even et al. (1998) realized an approximation factor of OðlogsloglogsÞ on directed

graphs, where s is the size of a minimum FVS for the input graph. Other polynomial time
approximation algorithms for the FVSP in tournament graphs include those presented by
Cai, Deng & Zang (2001), Mnich, Williams & Végh (2015) and Lokshtanov et al. (2021).

From the perspective of solution methods for the FVSP applied to the ISCAS89
benchmark instances (up to 1,728 vertices), several exact algorithms combined with graph
reduction have been proposed. Specifically, Levy & Low (1988) presented an exact
reduction based on the graph structure and proved its equivalence to the original graph.
Based on the exact reduction of Levy & Low (1988), Orenstein, Kohavi & Pomeranz (1995)
proposed graph partitioning methods with new reduction operations, which achieved
optimal results on all the ISCAS89 benchmark instances within 2 CPU hours on a Sun-4
station. Lin & Jou (1999) investigated the branch-and-bound algorithm that considers the
exact reduction of Orenstein, Kohavi & Pomeranz (1995), which could find the optimal
results for the ISCAS89 benchmarks in less than 3 s on a SUN-UltraII workstation. There
are many vertices whose in-degrees or out-degrees are 0 or 1 in the ISCAS89 benchmark
instances. The average reduction ratio (the sum of the deleted vertices/the sum of vertices
of a given graph) of these reduction approaches is 72.48%, implying that these benchmark
instances are easy for modern FVSP algorithms. Hence, we report in this work
computational results not only on these ISCAS89 instances, but also on more challenging
benchmark instances. Some theoretical exact algorithms were reported without
experimental validation. For example, Razgon presented a backtrack algorithm that solved
the FVSP in time Oð1:8899nÞ (Razgon, 2006) and a branch-and-prune algorithm requiring
Oð1:9977nÞ time (Razgon, 2007). Fomin, Gaspers & Pyatkin (2006) developed a branching
algorithm with a time complexity of Oð1:7548nÞ. Some exact algorithms were also

Figure 1 Random FVS and optimal FVS (the vertices of FVS are in orange and the other vertices are
in blue). (A) A given graph G; (B) a random FVS fa; b; dg; (C) an optimal FVS fb; cg.

Full-size DOI: 10.7717/peerj-cs.1245/fig-1
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proposed specifically for tournament graphs (Moon, 1971; Gaspers & Mnich, 2013; Fomin
et al., 2019).

Parameterized algorithm is another popular approach to solve the FVSP. Chen et al.
(2008) solved the FVSP in time Oð4kk!nmÞ, where m is the number of edges of the graph,
and k is the largest number of selected vertices. Lokshtanov, Ramanujan & Saurabh (2018)
proposed an algorithm whose running time is Oð4kk!k5ðnþmÞÞ. Bonamy et al. (2018)
proved that the running time could be reduced to 2OðkÞnOð1Þ for planar directed graphs.

Considering the high difficulty of the FVSP, exponential time exact algorithms can only
be applied to specific graphs (such as the ISCAS89 benchmark instances). Therefore,
heuristic algorithms are usually adopted to obtain sub-optimal solutions within a
reasonable time frame to tackle more general and complicated graphs. Pardalos, Qian &
Resende (1998) introduced the first heuristic algorithm for the FVSP, based on the greedy
randomized adaptive search procedure (GRASP) approach. Galinier, Lemamou & Bouzidi
(2013) presented a simulated annealing (SA) that applies the INSERT operation and a fast
neighborhood evaluation technique. Besides, they combined their SA algorithm with an
exact reduction technique (Red+SA). They performed extensive experiments on 40
random instances (1,000 runs for SA and 30 runs for Red+SA) and showed that both SA
and Red+SA fully dominate the GRASP algorithm. Zhou (2016) constructed a spin glass
model and implemented a belief propagation-guided decimation (BPD) algorithm, which
initially declares all vertices as active and repeats the fixing-and-updating procedure until
all vertices are turned into inactive. The BPD algorithm obtained the same best known
results as SA on the set of instances in Galinier, Lemamou & Bouzidi (2013). Tang, Feng &
Zhong (2017) put forward a variant of SA by introducing a non-uniform neighborhood
sampling strategy (SA-FVSP-NNS). However, experiments proved that SA in Galinier,
Lemamou & Bouzidi (2013) dominates the SA-FVSP-NNS for 30 runs with 39 better
results and one equal result. In summary, according to the literature (Galinier, Lemamou &
Bouzidi, 2013; Zhou, 2016; Tang, Feng & Zhong, 2017), among all existing practical
algorithms for the FVSP, the Red+SA, SA (Galinier, Lemamou & Bouzidi, 2013) and BPD
(Zhou, 2016) algorithms are the top algorithms for the problem. Thus, we use them as our
main reference approaches for this study. Finally, Qin & Zhou (2014) presented the
simulated annealing local search algoritm (SALS), which is an adaptation of the SA
algorithm of Galinier, Lemamou & Bouzidi (2013) to the undirected FVS problem and
showed its effectiveness on large random undirected graphs. We adopt SALS as an
additional reference method for our study on undirected graphs.

The above literature review demonstrates that progresses were continually realized since
the introduction of the FVSP. However, few effective heuristic algorithms exist, able to
solve the problem in a satisfactory manner. This work partially fills the gap by presenting
an iterated dynamic thresholding search (IDTS) algorithm for the FVSP. The algorithm
includes three exact reduction rules to simplify the graph, a greedy initialization to
generate initial acyclic subgraphs, a dynamic thresholding local search to reduce the size of
the acyclic subgraph, and a learning-based perturbation to reconsider the vertices that
would have been wrongly regarded as feedback vertices.
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Experiments are performed on 101 benchmark instances from various sources to assess
the IDTS algorithm. For the 70 instances with unknown optima, IDTS is able to improve
24 best-known solutions and attain the best-known results for 44 other instances. Only for
two instances, IDTS reports a worse result. Moreover, IDTS easily attains the known
optimal results for all 31 ISCAS89 benchmark instances.

The remainder of this article is arranged as follows. “Basic Notations and Fitness
Function” introduces useful basic notations and fitness function of the FVSP.
“Preliminaries” is a preliminary presentation. “Iterated Dynamic Thresholding Algorithm
for the FVSP” explains the components of the IDTS algorithm. “Experimental Results and
Comparisons” evaluates the algorithm with computational results. “Analysis” studies
critical components of the proposed algorithm, and “Conclusions” provides conclusions.

BASIC NOTATIONS AND FITNESS FUNCTION
This section introduces relevant basic definitions, solution representation and fitness
function, which are necessary for presenting the proposed algorithm.

Basic definitions
Given a directed graph G ¼ ðV; EÞ, basic definitions that are useful for describing the
proposed IDTS algorithm are presented as below.

Definition 1: a critical vertex of G is a vertex that belongs to a FVS. We use C to denote
the set of critical vertices that have been detected. C is a FVS only when all vertices of the
FVS are detected.

Definition 2: an uncritical vertex is a vertex that does not belong to a FVS. We use U to
denote the set of uncritical vertices, and V ¼ C [ U;C \ U ¼ [.

Definition 3: a redundant vertex refers to a vertex that is recognized as critical or
uncritical according to the exact rules proposed by Levy & Low (1988). We use Vr to denote
the set of redundant vertices that have been detected, Cr to denote the set of critical vertices
of Vr , Ur to denote the set of uncritical vertices of Vr , and Vr ¼ Cr [ Ur;Cr \ Ur ¼ [.

Definition 4: V0 refers to the set of residual vertices after applying the removal exact
algorithm proposed by Levy & Low (1988). C0 denotes the set of feedback vertices of V0

(that is, all vertices of a FVS are detected and belong to C0), U0 denotes the set of non-
feedback vertices of V0, and V0 ¼ C0 [ U0;C0 \ U0 ¼ [. Levy & Low (1988) proved that
the FVS of the reduced graph plus the FVS removed in the reduction process composes the
FVS of the original graph. Let Cr be the set of vertices removed in the reduction process,
and C�0 be the minimum FVS of the reduced graph G ¼ ðV0; E0Þ, where E0 ¼ V0 � V0 \ E.
Then, Cr \ C�0 ¼ [ and C�0 [ Cr is a minimum FVS of the given graph G ¼ ðV ;EÞ. In this
case, only the feedback vertices of the reduced graph need to be found out.

In summary, the vertex set V of G consists of two disjoint sets fV0;Vrg or four disjoint
sets fC0;U0;Cr;Urg.

Definition 5: a directed acyclic graph (DAG) (Bangjensen & Gutin, 2008) is a directed
graph with no directed cycles.

Vertices in each DAG are in a topological ordering where the starting point of every
directed edge is ahead of its terminal point (Galinier, Lemamou & Bouzidi, 2013). For a
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vertex set U � V , we notice that the induced subgraph GU ¼ ðU ;EUÞ, EU ¼ U � U \ E is
acyclic if and only if VnU is a FVS. Hence, the objective of the FVSP is to find the setU that
has the maximum cardinality to make GU ¼ ðU; EUÞ acyclic.

Figure 2 presents an example illustrating these basic definitions. For the given graph
G ¼ ðV ;EÞ, let fa; b; d; hg be the current FVS. The set of critical vertices C is the current
FVS fa; b; d; hg, and the set of remaining vertices is the set of uncritical vertices U, i.e.,
fc; e; f ; g; i; jg. According to the rules in “Reduction Procedure”, h can be recognized as a
critical vertex (Cr ¼ fhg, purple vertex) and f ; g; i; j as uncritical vertices (Ur ¼ ff ; g; i; jg,
dark blue vertices). Thus the set of redundant vertices Vr is ff ; g; h; i; jg, and the set of
residual vertices V0 is fa; b; c; d; eg. V0 can be divided into C0 ¼ fa; b; dg (orange vertices)
and U0 ¼ fc; eg (blue vertices). Clearly, the graph induced by the vertices in
U ¼ fc; e; f ; g; i; jg is a DAG without directed cycles.

Solution representation and fitness function
The solution representation and fitness function of the FVSP are given as follows.

Solution representation: the constraint of the FVSP is that there is no cycle in U0 after
removing the set of redundant vertices Cr [ Ur and the set of critical vertices C0. To
quickly assess the number of cycles in U0 after each neighborhood operation, the
number of conflicts (see “Preliminaries”) is taken as the number of cycles (Galinier,
Lemamou & Bouzidi, 2013). Let p be an assignment of the vertices of U0 to the positions
f1; 2; . . . ; jU0jg, and thus the permutation p denotes the candidate solution (Galinier,
Lemamou & Bouzidi, 2013).

Fitness function: To evaluate the quality of the FVS C, the evaluation or fitness function
counts the number of vertices in C. Recall that Ur is the set of uncritical vertices of the
redundant vertices and p is the corresponding permutation solution of C. The fitness
function f0 (to be minimized) is given by

Minimum f0ðpÞ ¼ jV j � jUrj � jpj (1)

Thus, the minimization of the function f0 is equal to the maximization of the fitness
function f , which is expressed as:

Figure 2 An example for illustrating basic definitions. Full-size DOI: 10.7717/peerj-cs.1245/fig-2
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Maximize f ðpÞ ¼ jpj (2)

PRELIMINARIES
In this section, we introduce two properties of FVS: number of conflicts and INSERT
operator position.

Number of conflicts: u and v are a pair of conflicting vertices if v is ahead of u in
permutation p and there is a directed edge from u to v. The number of conflicting vertex
pairs of the permutation p is the number of conflicts. Let edgeðu; vÞ ¼ 1 if there is a
directed edge from u to v. Otherwise, edgeðu; vÞ ¼ 0. We use cðu; vÞ, where
u; v 2 p; u 6¼ v; edgeðu; vÞ ¼ 1, to indicate whether u and v form a conflicting vertex pair
as follows

cðu; vÞ ¼ 1; pv ,pu
0; pv .pu

�
(3)

where pv represents the position chosen for vertex v in permutation p. Then, the number
of conflicts gðpÞ is given by

gðpÞ ¼
X
u;v2p

cðu; vÞ (4)

Thus, for a conflict-free solution p, gðpÞ ¼ 0 holds. The time complexity to compute
gðpÞ is OðdmaxÞ, where dmax denotes the largest degree of a vertex in the graph. Clearly, the
number of conflicts is more than the actual number of cycles for the same solution.

Figure 3 displays two cases between the number of conflicts and the number of cycles.
The left part of Fig. 3A indicates the current remaining vertex setU0 of the given G, and the
right part is its corresponding permutation p ¼ fa; b; dg. In this permutation, no directed
edge from b to a (d to b or to a) exists. Thus, there is no conflicting pair, meaning the
number of cycles is 0. Figure 3B shows a situation where the number of conflicts is more
than the number of cycles. Vertex b is behind vertex d in the solution permutation
p ¼ fd; a; bg on the right side, and there is a directed edge from b to d. Accordingly, vertex
b and vertex d are conflicting, and the number of conflicts is 1, which exceeds the number
of cycles (0).

INSERT operator position: The INSERT operator inserts a vertex v from the uncritical
vertex set to two possible positions in p (Galinier, Lemamou & Bouzidi, 2013); one is

Figure 3 An example of conflicts in a solution. (A) The number of conflicts is equal to the number of
cycles; (B) the number of conflicts exceeds the number of cycles.

Full-size DOI: 10.7717/peerj-cs.1245/fig-3
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closely behind its numbered in-coming neighbors (named i�ðvÞ), and the other is just
ahead its numbered out-going neighbors (named iþðvÞ). The number of conflicting pairs
after the insertion operation at the above two positions is calculated respectively, and the
position with less conflicting pairs is selected.

We use , v; i�ðvÞ; iþðvÞ. to represent such a move, and p� , v; i�ðvÞ; iþðvÞ. to
stand for the neighboring solution generated by applying the INSERT move to p.
Moreover, gðp� , v; i�ðvÞ; iþðvÞ. Þ refers to the number of conflicts after inserting the
vertex v 2 C0. NIðpÞ contains the vertices that satisfy the condition
gðp� , v; i�ðvÞ; iþðvÞ. Þ ¼ 0. That is, the vertex v to be inserted has to be a vertex that
will not cause any conflict after being inserted into p. NIðpÞ can be expressed as

NIðpÞ ¼ fv : gðp� , v; i�ðvÞ; iþðvÞ. Þ ¼ 0; v 2 C0g (5)

ITERATED DYNAMIC THRESHOLDING ALGORITHM FOR
THE FVSP
Basic steps
This section introduces the iterated dynamic thresholding algorithm for solving the FVSP,
which is composed of five main procedures as shown in Algorithm 1.

Reduction procedure: IDTS adopts a set of conventional reduction rules (Levy & Low,
1988) to simplify the given graph G. Firstly, a set of redundant vertices Vr (made up of the
set of critical vertices Cr and the set of uncritical vertices Ur) is confirmed according to
those rules. Then, the redundant vertices and related edges (whose starting or ending
vertex is a redundant vertex) are deleted, reducing the input graph G ¼ ðV ;EÞ to the
reduced graph G ¼ ðV0;E0Þ (see “Reduction Procedure”).

Algorithm 1: IDTS algorithm for the FVSP

Input: A directed graph G ¼ ðV ; EÞ, cutoff time, and search depth ω

Output: The smallest FVS of size jC�j
1 p [; p?  [, jC�j  jVj
2 ðG;Cr;UrÞ  Reduction phaseðGÞ /*Section 3.2*/

3 p Greedy InitializationðGÞ /*Section 3.3*/

4 p?  p

5 while The cutoff time is not reached do

6 p Local searchðG; p; p?;xÞ /*Section 3.4*/

7 p PerturbationðpÞ /*Section 3.5*/

8 if f ðpÞ. f ðp?Þ then
9 p? ¼ p

10 end

11 end

12 C�  Recovery phaseðG;Cr;Ur; p?Þ /*Section 3.6*/

13 return jC�j
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Initialization procedure: this procedure greedily chooses a vertex (Cai, Huang & Jian,
2006) such that its insertion to p does not increase the number of cycles. This process
continues until no such vertex can be inserted (see “Greedy Initialization”).

Local search procedure: this procedure consists of two complementary search stages: a
dynamic thresholding search stage (diversification) to extend the search to unexplored
regions, and a descent search stage (intensification) to find new local optimal solutions
with improved quality. These two stages alternate until the best-found solution cannot be
further improved for x continuous local search rounds (see “Local Search”).

Perturbation procedure: When the search is considered as trapped in a deep local
optimum, the perturbation procedure is initiated to move some specifically identified
vertices between U0 and C0 to relieve the search from the trap. The solution perturbed is
then adopted to start the next round of the local search procedure (see “Perturbation
Procedure”).

Recovery procedure: If the best solution ever found cannot be improved after c
continuous local search rounds and the perturbation phase, the search then terminates and
the recovery procedure starts. The best solution (minimum feedback vertex set) found in
the search procedure is recorded as C�0 and returned as the input of the recovery procedure.
The current reduced graph G ¼ ðV0; E0Þ is recovered to the original graph G ¼ ðV ; EÞ,
and the FVS C�0 for G ¼ ðV0;E0Þ is correspondingly projected back to C�0 [ Cr for
G ¼ ðV ;EÞ (see “Recovery Procedure”).

Reduction procedure
The graph reduction procedure follows three rules when traversing all vertices in a given
graph G ¼ ðV; EÞ and processes those that satisfy any rule proposed by Levy & Low (1988).
The three reduction rules are as follows.

Rule 1: If the in-degree (out-degree) of a vertex v is 0, that is, v is an uncritical vertex,
then v and all its edges can be deleted without missing any optimal feedback vertex of G.
Such vertices are added into the redundant uncritical set Ur (Ur ¼ Ur [ fvg). For example,
as shown in Fig. 4B, the edges of the vertex g whose in-degree is 0, and those of the vertex j
whose out-degree is 0 can be deleted.

Rule 2: If the in-degree (out-degree) of a vertex v is 1, and there is no self-loop, then
vertex v can be merged with the unique precursor (successor) vertex without missing any
optimal feedback vertex of G. The merging process is that all edges connected to the vertex
v are linked to the unique precursor (successor) vertex of v. Such vertices are added into
the redundant uncritical set Ur (Ur ¼ Ur [ fvg). Figure 4C displays that the vertex f with
an in-degree of 1 can be merged with the precursor vertex a, and the vertex i with an out-
degree of 1 can be merged with the successor vertex b.

Rule 3: If a self-loop exists for a vertex v, then v and all its edges can be deleted and
recovered as a part of the feedback vertex set without losing any optimal feedback vertex of
G. Such vertices are added into the redundant uncritical set Cr (Cr ¼ Cr [ fvg). As shown
in Fig. 4D, the self-loop vertex h and its connected edges can be deleted.
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After deleting the sets Ur and Cr , the remaining vertex set V0 ¼ VnðUr [ CrÞ, and the
reduced subgraph G ¼ ðV0; E0Þ, ðE0 ¼ ðV0 � V0 \ EÞÞ. After obtaining reduced G, the
greedy initialization is used to generate an initial solution for it.

Greedy initialization
Given the reduced subgraph G ¼ ðV0; E0Þ, its critical vertex set is defined as C0, and the
uncritical vertex set as U0. Recall that p is an assignment of the vertices of U0 to the
positions f1; 2; . . . ; jU0jg. We initialize C0 ¼ V0, p ¼ [. Then, p is iteratively extended in
the greedy procedure by inserting a minimum-score vertex v of C0 until no vertex can be
inserted.

(1) Calculate NIðpÞ: recall that NIðpÞ contains the vertices that satisfy
gðp� , v; i�ðvÞ; iþðvÞ. Þ ¼ 0. Thus, we only has to traverse all vertices and add the
vertex whose gðp� , v; i�ðvÞ; iþðvÞ. Þ ¼ 0 into NIðpÞ.

(2) Select one vertex: choose a vertex v with the minimum score (Eq. (6), Cai, Huang &
Jian, 2006) in NIðpÞ and insert it into the current permutation
p p � , v; i�ðvÞ; iþðvÞ. .

scoreðvÞ ¼ jdeg�ðvÞ þ degþðvÞj � k� jdeg�ðvÞ � degþðvÞj (6)

where deg�ðvÞ and degþðvÞ are the in-degree and the out-degree of v respectively, and k is
a parameter (k ¼ 0:3 according to Cai, Huang & Jian (2006)).

Figure 4 An example of reduction operation for the given graph G. (A) The given graph G;
(B) applying Rule 1 to delete g (in-degree = 0) and j (out-degree = 0); (C) applying Rule 2 to delete f (in-
degree = 1) and i (out-degree = 1); (D) Applying Rule 3 to delete h (self-loop).

Full-size DOI: 10.7717/peerj-cs.1245/fig-4
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(3) Update NIðpÞ: after inserting the vertex v into p, we only have to recalculate the
number of conflicts gðp� , u; i�ðuÞ; iþðuÞ. Þ of its neighbors u 2 NIðpÞ according to
Eq. (4). Any vertex satisfying gðp� , u; i�ðuÞ; iþðuÞ. Þ 6¼ 0 will be eliminated from

NIðpÞ. Thus, the complexity of this updating step is Oðd2maxÞ, where dmax is the largest

degree of a vertex in the graph. This process continues until no vertex can be inserted into
p, i.e., NIðpÞ ¼ [.

In this initialization, a legal conflict-free p with a certain quality can be obtained, and
further improved in the dynamic thresholding search stage of the algorithm.

To explain this process, we consider the reduced graph G ¼ ðV0;E0Þ in Fig. 4D (with
vertices fa; b; c; d; eg). For Fig. 4D, C0 ¼ fa; b; c; d; eg, U0 ¼ p ¼ [ and
gðp� , v; i�ðvÞ; iþðvÞ. Þ ¼ 0, 8v 2 C0. Figure 5 shows how the greedy procedure
works. Firstly we calculate NIðpÞ ¼ fa; b; c; d; eg. Then, it is detected that
scoreðaÞ ¼ 4:7; scoreðbÞ ¼ 4; scoreðcÞ ¼ 4; scoreðdÞ ¼ 4:7; scoreðeÞ ¼ 4 according to
Eq. (6). Finally, we select a vertex from NIðpÞ with the minimum score and insert it into p.
Suppose we select vertex e for insertion. NIðpÞ is updated to fa; c; dg. As shown in Fig. 5A,
the solution after the first greedy insertion is the permutation p ¼ feg. By repeating the
above steps until NIðpÞ ¼ [, we obtain the local optimal permutation p ¼ fe; cg (Fig. 5B).
Meanwhile, this process may unfortunately misclassify critical vertices in permutation p.
For example, the optimal permutation of Fig. 4D is fd; e; ag with the set of critical vertices
fb; cg, while the local optimal permutation of Fig. 5B is fe; cg with the set of critical
vertices fa; b; dg.

Local search
The local optimization aims to improve the initial permutation provided by the greedy
initialization, and it consists of two stages. The first stage (dynamic thresholding search)
brings diversity as it accepts equivalent or worse solutions (line 4 of Algorithm 3), and
the second stage applies a descent search that accepts only better solutions (line 5 of
Algorithm 3) to guarantee a concentrated and directed search. These two stages alternate
until the best found solution cannot be further improved for x local search rounds.

The dynamic thresholding search stage
There are many successful applications of dynamic thresholding search (Dueck & Scheuer,
1990;Moscato & Fontanari, 1990) (e.g., the frequency assignment (Diane & Nelson, 1996),

Figure 5 An example of greedy initialization. (A) The solution p ¼ feg and the set of critical vertices
C0 ¼ fa; b; c; dg after the first greedy insertion; (B) local optimal solution p ¼ fe; cg and the set of critical
vertices C0 ¼ fa; b; dg. Full-size DOI: 10.7717/peerj-cs.1245/fig-5
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quadratic multiple knapsack problem (Chen & Hao, 2015), heterogeneous fixed fleet
vehicle routing problem (Tarantilis, Kiranoudis & Vassiliadis, 2004), and others (Chen &
Hao, 2019; Lai et al., 2022; Zhou, Hao & Wu, 2021)).

In this work, three basic move operators (DROP, INSERT and SWAP) are adopted in
the thresholding search stage that accepts both equivalent and better solutions. DROP
deletes a vertex from the current permutation p and move it to C0; INSERT extends the
current permutation p by introducing a new vertex; SWAP deletes a vertex v from the
current permutation p and inserts a vertex u into p.

Based on these three move operators, dynamic thresholding search (DTS) adopts both
the vertex-based strategy and the prohibition mechanism to balance the exploration and
exploitation of the search space. In each search round at this stage, the algorithm first
randomly visits all vertices in V0 one by one. For each vertex v considered, the set of
candidate move operators is executed depending on whether the vertex is in or out of the

Algorithm 2: Greedy initialization for FVSP

Input: A reduced graph G ¼ ðV0; E0Þ
Output: A solution permutation π

1 p [

2 NIðpÞ  [

3 for each v 2 V0 do

4 Calculate NIðpÞ according to Eq. (5) /*Step 1*/

5 end

6 while NIðpÞ 6¼ [ do

7 Choose a vertex v 2 NIðpÞ with the minimum score according to Eq. (6) and insert it into π /*Step 2*/

8 Update NIðpÞ /*Step 3*/

9 end

10 return π

Algorithm 3: Local search

Input: Reduced graph G ¼ ðV0; E0Þ, solution π, best solution p?, search depth ω

Output: Improved solution π

1 NoImprove 0 /*Indicate the times of p? being improved*/

2 while NoImprove,x do

3 NoImprove NoImproveþ 1

4 ðp; p?;NoImproveÞ  Dynamic thresholding searchðp; p?;NoImproveÞ /*Section 3.4.1*/

5 ðp; p?;NoImproveÞ  Descent searchðp; p?;NoImproveÞ /*Section 3.4.2*/

6 end

7 return π
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permutation p. If the objective value of the obtained solution is not worse than the best
solution found ever to a certain threshold, the move operation on the vertex is executed.
Otherwise, the operation is rejected. Each time a move is taken, the concerned vertex is
marked as tabu and forbidden to be moved again during the next tt iterations (tt is the tabu
tenure). This process continues until all vertices of V0 are traversed.

(1) If v is outside p (i.e., v 2 C0), the candidate move operator set consists of INSERT
and SWAP. INSERT is applied first as it improves the solution quality. Then SWAP is
applied, which keeps the solution quality unchanged. If neither operator can be applied,
DTS just skips v. INSERT can be applied if the number of conflicts of v in p is 0 (i.e.,
gðp� , v; i�ðvÞ; iþðvÞ. Þ ¼ 0). SWAP is applied if v meets two conditions
simultaneously: (1) v is not involved in any SWAP operation already taken at the current
round; (2) v conflicts with just one vertex u in p (i.e., gðp� , v; i�ðvÞ; iþðvÞ. Þ ¼ 1, and
can only be swapped with u).

Similar to the INSERT operation in the greedy initialization, we adopt
gðp� , v; i�ðvÞ; iþðvÞ. Þ for quick computation during the DTS stage. That is, we

Algorithm 4: The dynamic thresholding search

Input: Reduced graph G ¼ ðV0; E0Þ, solution π, best solution p?, the iterations without improvement
NoImprove

Output: Solution π, best solution p?, the iterations without improvement NoImprove

1 Randomly shuffle all vertices in V0

2 for each v 2 V0 do

3 if v =2 p then

4 if the number of conflicts after inserting v into p is 0 then

5 Insert v into π /* INSERT operator */

6 if f ðpÞ. f ðp?Þ then
7 p?  p, NoImprove 0

8 end

9 else if v only conflicts with u 2 p and has not been involved in any SWAP operation then

10 Remove u from π and insert v into π /* SWAP operator */

11 else

12 Calculate NM(v) according to Eq. (7)

13 if NMðvÞ 6¼ [ and v has not been involved in any SWAP operation then

14 Randomly select a vertex u from NM(v)

15 Remove v from π and insert u into π /* SWAP operator */

16 else if f ðpÞ � 1. f ðp?Þ � d then

17 Remove v from π /* DROP operation */

18 end

19 end

20 return p; p?;NoImprove
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only have to update the number of conflicts of the operated vertex v and its neighbor
vertices after each move operation, i.e., the updated vertex set is fvg [ fu : ðu; vÞ 2
E and u 2 C0g. For the INSERT operation, we update the number of conflicts of the
vertices neighboring to v and not in p; for the SWAP operation, we update the number of
conflicts of v, u, and all vertices neighboring to u and v not in p. Thus, the time complexity
of INSERT and SWAP is Oðd2maxÞ, where dmax denotes the largest degree of a vertex in the
graph.

(2) If v belongs to p, DROP and SWAP are the two candidate operators. SWAP is
applied before DROP as SWAP does not degrade the solution quality while DROP does. If
neither operation can be applied, the algorithm just skips v. SWAP can be applied only if v
satisfies two conditions simultaneously: (1) v was not involved in any SWAP operation
already taken at the current round; (2) the set NMðvÞ � C0 of v is non-empty, which is
defined as

NMðvÞ ¼ fu : gðp nfvg � , u; i�ðuÞ; iþðuÞ. Þ ¼ 0; cðu; vÞ ¼ 1g: (7)

The vertex u that is to be swapped with v is a random vertex in NMðvÞ.
DROP can be applied if it makes the number of the vertices in p still above the threshold

determined by f ðp?Þ � d after the DROP operation, where p? is the best recorded solution
and d (a small positive integer) is a parameter. For the DROP operation, we need to update
the number of conflicts of v and all vertices neighboring to v and not in the solution p. The
time complexity of DROP is Oðd2maxÞ.

Figure 6 shows an example of the dynamic thresholding search stage. To explain this
stage, we consider the solution in Fig. 5B as the input solution. For Fig. 5B, C0 ¼ fa; b; dg,
U0 ¼ p ¼ fe; cg and V0 ¼ fa; b; c; d; eg. Suppose that the vertices in V0 are randomly
shuffled into fa; e; d; b; cg. As shown in Fig. 6A, since the first vertex a is outside p,
INSERT and SWAP are the two candidate operators. INSERT is chosen to be applied
before SWAP. The INSERT operator cannot be used since the number of conflicts of v is
not 0. However SWAP can be applied since c only conflicts with a and a is not in the tabu
list. As shown in Fig. 6B, for the second vertex e 2 p, SWAP and DROP are the two
candidate operators to be considered. SWAP is applied before DROP. SWAP can be
applied since in this case NMðeÞ ¼ fb; dg and v is not forbidden by the tabu list. Thus the
second vertex e is swapped with a random vertex in NMðeÞ, such as d. After that, the

Figure 6 An example of the dynamic thresholding search. (A) The solution p ¼ fe; ag and the set of
critical vertices C0 ¼ fc; b; dg after swapping c with a; (B) the solution p ¼ fd; ag and the set of critical
vertices C0 ¼ fc; b; eg after swapping e with d. Full-size DOI: 10.7717/peerj-cs.1245/fig-6
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remaining vertices in V0 are evaluated in the same way, while no operators can be applied
to them. As a result, the improved solution is p ¼ fd; ag.

The descent search stage
To complement the DTS stage where both equivalent and worse solutions are accepted, the
descent search stage is subsequently applied to perform a more intensified examination of
candidate solutions. Basically, this stage iteratively selects a conflict-free vertex and inserts
it into the solution until such a vertex does not exist anymore.

Figure 7 shows an example of the descent search stage. To explain this stage, we
consider the solution in Fig. 6B as the input solution, where C0 ¼ fc; b; eg,
U0 ¼ p ¼ fd; ag and V0 ¼ fa; b; c; d; eg. Through computation, NIðpÞ ¼ feg. As shown
in Fig. 7, the vertex e from NIðpÞ is directly inserted into p and the best solution p? is
updated to fd; e; ag.

Perturbation procedure
As described in “The Dynamic Thresholding Search Stage”, the threshold search accepts
worse solutions that are within a certain quality threshold from the current solution, which
relieves the search from the local optimum trap. However, there is a possibility that this
strategy may fail. Therefore, we introduce a perturbation strategy that comes into effect
when the search falls into a deep stagnation (i.e., the best solution does not change after x
consecutive local search runs). The perturbation strategy incorporates a learning

Algorithm 5: The descent search

Input: Reduced graph G ¼ ðV0; E0Þ, solution π, best solution p?, the iterations without improvement NoImprove

Output: Solution π, best solution p?, the iterations without improvement NoImprove

1 while NIðpÞ 6¼ [ do

2 Randomly select a vertex u from NIðpÞ and insert it into π

3 if f ðpÞ. f ðp?Þ then
4 p?  p, NoImprove 0

5 end

6 end

7 return p; p?;NoImprove

Figure 7 The local optimal solution p ¼ fd; e; ag and the set of critical vertices C0 ¼ fc; bg of the
descent search. Full-size DOI: 10.7717/peerj-cs.1245/fig-7
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mechanism that gathers move frequencies information from the local search, which is then
advantageously used to guide the perturbation.

Algorithm 6 displays the perturbation procedure, which is decomposed into two steps:
Step 1: Choose and sort L vertices in p. Choose L vertices in p with the highest move

frequencies and sort them in a non-increasing order of the frequencies (lines 1–3,
Algorithm 6). The move frequency of each vertex v is the number of times that v has been
moved during the local search, which is initially set to 0, and increases by 1 each time v is
moved from one set to another.

Step 2: Drop and insert the to-be-perturbed vertices. Each vertex v ðv 2 AÞ is dropped,
whose order j in A is recorded (line 6, Algorithm 6). If j. db1 � ðjpj þ 1Þe and
NIðpÞ 6¼ [, randomly select a vertex u from NIðpÞ and insert it into p (lines 8–9,
Algorithm 6). Recall that NIðpÞ represents the set of vertices in C0 satisfying the condition
gðp� , v; i�ðvÞ. ; iþðvÞ.Þ ¼ 0.

Figure 8 shows an example of the learning-based perturbation applied to a local optimal
solution as shown in Fig. 7, where C0 ¼ fc; bg and U0 ¼ p ¼ fd; e; ag. Suppose L ¼ 2
and the chosen vertices is sorted as A ¼ fe; ag according to the move frequencies. The first
vertex e is dropped, which leads to an intermediate perturbed solution p ¼ fd; ag. Then,
the second vertex a is also dropped. Since the order of a is 2, which is more than
db1 � ðjpj þ 1Þe ¼ 1 vertex, and NIðpÞ 6¼ [, the vertex b is selected randomly from NIðpÞ
and inserted into p, giving the perturbed solution p ¼ fb; dg.

Algorithm 6: Learning-based perturbation

Input: Solution π, the first and the second perturbation strength coefficients b1 and b2

Output: Perturbed solution π

// Step 1

1 L dðb1 þ b2Þ � jpje
2 A L vertices in π with the highest move frequencies

3 A sort A in non-increasing order of move frequencies

4 NIðpÞ  [

// Step 2

5 for each v 2 A do

6 Drop the vertex v from π and record its order j in A

7 Calculate NIðpÞ according to Eq. (5)

8 if j. db1 � ðjpj þ 1Þe and NIðpÞ 6¼ [ then

9 Randomly select a vertex u from NIðpÞ and insert it into π

10 end

11 end

12 return π

Sun et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1245 15/34

http://dx.doi.org/10.7717/peerj-cs.1245
https://peerj.com/computer-science/


Recovery procedure
This is a reversed procedure of the reduction procedure. It restores the original graph
G ¼ ðV ;EÞ from the reduced graph G ¼ ðV0;E0Þ by adding back the removed vertices Ur

and the critical vertices Cr . Levy & Low (1988) indicates that the FVS of the original G is
C ¼ C0 [ Cr . Figure 9 depicts an example that shows how the minimum FVS is
determined. In the reduction procedure, Cr ¼ fhg;Ur ¼ ff ; g; i; jg. After the search stage,
V0 ¼ fa; b; c; d; eg where C0 ¼ fb; cg;U0 ¼ fa; d; eg. After the recovery procedure, the
FVS of the original G is C ¼ C0 [ Cr ¼ fb; c; hg.

Figure 8 An example of the learning-based perturbation. (A) An intermediate perturbed solution
p ¼ fd; ag and the set of critical vertices C0 ¼ fb; c; eg; (B) a perturbed solution p ¼ fb; dg and the set of
critical vertices C0 ¼ fa; c; eg. Full-size DOI: 10.7717/peerj-cs.1245/fig-8

Figure 9 An example of recovery phase. (A) Feedback vertex set C0 ¼ fb; cg for the reduced graph
G ¼ ðV0; E0Þ; (B) recovered feedback vertex set C ¼ fb; c; hg.

Full-size DOI: 10.7717/peerj-cs.1245/fig-9
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Computational complexity and discussion
We consider first the greedy initialization procedure consisting of two stages. The first
stage is to initialize the array NIðpÞ, which can be realized in OðjV0jÞ. The complexity of
updating NIðpÞ is Oðd2maxÞ. The second stage is to construct the initial solution p, which is
bounded by Oðjpj � d2maxÞ, and jpj is the size of p. Therefore, the time complexity of the
greedy initialization procedure is OðjV0j þ jpj � d2maxÞ.

Next, the local search and perturbation procedures in the main loop of IDTS algorithm
are considered. In each iteration of the local search, the dynamic threshold search and the
descent search stages are performed alternately. The former is realized in
Oðjpj � dmax þ jV0jÞ, and the latter in OðjV0jÞ. Thus, the complexity of the local search
procedure is OðK1 � ðjpj � dmax þ jV0jÞÞ, where K1 is the number of iterations of the local
search. Then, the perturbation procedure can be achieved in Oðjpj � ðb1 þ b2 � d2maxÞÞ,
which is much smaller than that of the local search. Therefore, the complexity of one
iteration of the main loop of IDTS algorithm is OðK1 � ðjpj � dmax þ jV0jÞÞ, and that of
SA is OðK2 � ðd2max þ jV0jÞÞ, where K2 is the number of iterations during each
temperature period. Therefore, it can be seen that the two complexities are of the same
order of magnitude.

EXPERIMENTAL RESULTS AND COMPARISONS
We test the proposed IDTS algorithm for the FVSP on 71 commonly-used benchmark
instances in the literature and 30 large instances generated by this work (“Benchmark
Instances”) and compare its results with the state-of-the-art algorithms in “Comparison
with State-of-the-Art Results”. In addition to these directed instances, we also present
comparative results on directed graphs obtained by a slightly adapted version of the IDTS
algorithm (“Comparative Results on Undirected Graphs”). Below, we first present the 101
directed graphs as well as the experiment settings.

Benchmark instances
We use 101 benchmark instances, which are classified into five categories. No optimal
solutions are known for the instances of the first to forth categories, while optimal
solutions are known for the instances of the fifth category.

1. The first category consists of 40 instances that are randomly generated by Pardalos, Qian
& Resende (1998) using the FORTRAN random graph generator mkdigraph.f (http://
mauricio.resende.info/data/index.html). The name of these instances is in the form of P|V |
− |E|*, where jVj 2 f50; 100; 500; 1;000g is the number of vertices in the graph, and
jEj 2 ½100; 30;000� is the number of edges. Given the number of vertices and edges, a graph
is built by randomly selecting |E| pairs of vertices as two endpoints of a directed edge.
These instances are largely tested in the literature on the FVSP (Galinier, Lemamou &
Bouzidi, 2013; Zhou, 2016).

2. The second category is composed of 10 random directed graphs, which are generated in
the same way as the first category while the in-degree and out-degree of each vertex are no
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more than 10. These instances have R|V | − |E|* in their names. The number of vertices |V |
is in the interval [100, 3,000], and the number of edges |E| in [500, 15,000].

3. The third category contains 10 artificially generated scale-free instances. These instances
are generated by this work through the “powerlaw_cluster_graph” function of the
“NetworkX” package, which is based on the algorithm proposed by Holme & Kim (2002).
These instances are named as S|V | − |E|*, where |V | is in the interval [500, 3,000] and |E| is
in [4,900, 29,900].

4. The fourth category is composed of 10 real-world instances from the Stanford large
network dataset collection (http://snap.stanford.edu/data/). Nine of these instances are
snapshots of the Gnutella peer-to-peer file sharing network. The remaining instance is a
temporal network representing Wikipedia users editing each other’s Talk page. The
number of vertices |V | is in the interval [6,301, 1,140,149], and the number of edges |E| in
[20,777, 7,833,140].

5. The fifth category is composed of the 31 classical (easy) ISCAS89 benchmark instances
which are from digital sequential circuits (Brglez, Bryan & Kozminski, 1989). These
instances have s* in their names, where the number of vertices is in the range of [3, 1,728],
and the number of edges in the range of [4, 32,774]. These instances, whose optima are
known, are largely tested in the literature on the FVSP (Levy & Low, 1988; Lin & Jou, 1999;
Orenstein, Kohavi & Pomeranz, 1995).

Experiment settings
The IDTS algorithm is programmed in C++ and compiled by GNU g++ 4.1.2 with the -O3
flag. Experiments are carried out on a computer with an Intel(R) Core(TM)2 Duo CPU
T7700 2.4 GHz processor with 2 GB RAM running Ubuntu CentOS Linux release 7.9.2009
(Core).

Parameters
The IDTS algorithm requires five parameters: the maximum non-improving iteration
depth x of local search, the tabu tenure tt, the first perturbation strength coefficient b1, the
second perturbation strength coefficient b2 and the thresholding coefficient d. To tune
these parameters, the “IRACE” package (López-Ibáñez et al., 2016) was adopted to
automatically recognize a group of appropriate values for eight representative instances
(with 50–30,000 vertices), and its budget was set to 200 runs under a cutoff time described
in “Stopping Conditions”. Table 1 presents both considered values and final tuned values
of these parameters.

These parameter values can be considered to form the default setting of the IDTS
algorithm and were consistently used for our experiments to ensure a meaningful
comparative study. By fine-tuning some parameters on an instance-by-instance basis, it
would be possible to obtain better results.

Reference algorithms
Three state-of-the-art FVSP algorithms are adopted as reference methods to evaluate the
IDTS algorithm for directed graphs.
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(1) Simulated annealing algorithm (SA) for the first category (Galinier, Lemamou &
Bouzidi, 2013);

(2) Algorithm combining the reduction procedure and the simulated annealing algorithm
(Red+SA) for the first category (Galinier, Lemamou & Bouzidi, 2013), the re-implemented
Red+SA (Re-Red+SA) for the categories two to five;

(3) Belief propagation-guided decimation algorithm (BPD) (Zhou, 2016).

Among them, the codes of BPD were kindly provided by its author, and were run by us
under the same experimental conditions as for the IDTS algorithm for a fair comparison.
We also carefully re-implemented the Red+SA algorithm (Galinier, Lemamou & Bouzidi,
2013), since its codes are unavailable. We used the re-implemented Red+SA algorithm (Re-
Red+SA) to solve the instances of categories two to fifth and cited the results in Galinier,
Lemamou & Bouzidi (2013) for the first category. Galinier, Lemamou & Bouzidi (2013)
used a computer (Intel(R) Core(TM)) 2 CPU T8300 2.4 GHz with 2 GB of RAM, which is
comparable to our Intel computer running at 2.40 GHz.

Stopping conditions
Cutoff time of each run. Reference algorithms BPD (Zhou, 2016) and SA (Galinier,
Lemamou & Bouzidi, 2013) have different stopping conditions. Thus, we adopted these
average computation times as the cutoff times for our IDTS algorithm for fairness.
Following Galinier, Lemamou & Bouzidi (2013), for the instances of the first category, the
cutoff time is set to 0.03 to 0.07 s for n ¼ 50, 0.06 to 0.34 s for n ¼ 100, 1.8 to 5.2 s for
n ¼ 500, 11 to 25.5 s for n = 1,000. For the second and third categories, the cutoff time is
set to 1,200 s. For the fourth category, the cutoff time is set to 6,000 s for all compared
algorithms. For the easy fifth category, the cutoff time is set to 15 s.

Normal test. Following Galinier, Lemamou & Bouzidi (2013), we firstly ran our IDTS
algorithm 30 times per instance with the above cutoff time.

Relaxed test. The SA algorithm (the Red+SA algorithm without the reduction
procedure) (Galinier, Lemamou & Bouzidi, 2013), was run 1,000 times on each instance.
Under this condition, it reported the currently best objective values for the benchmark

Table 1 Settings of important parameters.

Parameters Section Description Considered value Final value

x 3.4 Search depth of the local search {10, 20, 30, 40, 50, 60, 70} 20

tt 3.4.1 Tabu tenure {1, 2, 3, 4, 5, 6} 1

d 3.4.1 Thresholding coefficient (50 � jV j � 100) {1, 2, 3, 4, 5, 6} 1

Thresholding coefficient (500 � jVj � 1,000) {1, 2, 3, 4, 5, 6} 4

Thresholding coefficient (1,000 , jVj � 3,000) {5, 10, 15, 20, 25, 30} 10

Thresholding coefficient (3,000 , jVj) {5, 10, 15, 20, 25, 30} 20

b1 3.5 The first perturbation strength coefficient {0.02, 0.04, 0.06, 0.08, 0.1, 0.2} 0.04

b2 3.5 The second perturbation strength coefficient {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} 0.3
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instances of the first category. Like Galinier, Lemamou & Bouzidi (2013), we also ran IDTS
1,000 times on each instance of the first category under the same stopping conditions.

Comparison with state-of-the-art results
Comparison of the results on the first-category instances
Table 2 displays the results of the Red+SA, BPD, and IDTS algorithms on the commonly-
used 40 instances of the first category in the literature. The first three columns reveal the
name, the number of vertices and the number of edges of each instance. Columns 4–7
provide the results of the Red+SA on each instance: the best objective value (Best) over 30
independent runs, the worst result (Worst), the average result (Avg), and the cutoff time
(in seconds). Columns 8–15 report the results of the the BPD and IDTS algorithm: the best,
worst, average objective values and the average computation time (in seconds) to obtain
the best result (tðsÞ). The last two columns (D1 and D2) indicate the difference between our
best results (Best) and those of Red+SA and BPD (a negative value indicates an improved
result). The row “p-value” is given to verify the statistical significance of the comparison
between IDTS and the reference algorithms, which came from the non-parametric
Friedman test applied to the best, worst and average values of IDTS and reference
algorithms. A p-value less than 0.05 indicates a statistically significant difference.

Moreover, the rows #Better, #Equal, and #Worse indicate the number of instances for
which Red+SA and BPD obtained a better, equal, and worse result compared to the IDTS
algorithm for each performance indicator. The bold entries highlight the dominating
results between the compared algorithms in terms of Best, Worst and Avg values.

We notice from Table 2 that IDTS performs satisfactorily and dominates the Red+SA
algorithm by obtaining better results (Best) for 10 instances (see negative entries in column
D1) and equally-good results for the rest 30 instances. IDTS also gets better results in terms
of the worst and average results. As for BPD, in terms of the best results, IDTS obtains 16
better (see negative entries in column D2) and 24 equal values; in terms of the worst and
average results, IDTS obtains better values for all instances. The small p-values (<0.05)
confirm the statistical significance of the reported differences between IDTS and the
reference algorithms.

In Galinier, Lemamou & Bouzidi (2013), SA (i.e., the Red+SA algorithm without the
reduction procedure) reported several improved results over 1,000 runs compared to the
results of Red+SA in Table 2. Similarly, the IDTS algorithm was run 1,000 times, and the
comparative results of SA and IDTS are shown in Table 3, where the last column (D) shows
the difference between the best results of IDTS (Best) and those of SA (a negative value
indicates a better result). It reveals that IDTS further improves the results of SA and
discovers six record-breaking results (indicated in bold) for the instances P500-2000,
P500-2500, P1000-3000, P1000-3500, P1000-4000 and P1000-5000.

Comparison of the results on the second-category instances

Table 4 shows the comparative results between IDTS and the reference algorithms on the
10 instances of the second-category. In terms of the best results, IDTS dominates Re-Red
+SA by obtaining better values for all instances, and BPD by obtaining 7 better, and 3 equal
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Table 2 Comparative results of IDTS with state-of-the-art algorithms on the 40 benchmark instances of the first category in normal test (30
independent runs).

Instance |V | |E| Red+SA (Galinier, Lemamou &
Bouzidi, 2013)

BPD (Zhou, 2016) IDTS D1 D2

Best Worst Avg cutoff ðsÞ Best Worst Avg tðsÞ Best Worst Avg tðsÞ
P50-100 50 100 3 3 3 0.03 3 4 3.2 0.01 3 3 3 0.01 0 0

P50-150 50 150 9 9 9 0.03 9 11 9.2 0.02 9 9 9 0.01 0 0

P50-200 50 200 13 13 13 0.03 13 14 13.1 0.04 13 13 13 0.01 0 0

P50-250 50 250 17 17 17 0.04 17 19 17.5 0.06 17 17 17 0.01 0 0

P50-300 50 300 19 19 19 0.04 19 22 19.5 0.08 19 19 19 0.01 0 0

P50-500 50 500 28 28 28 0.05 28 31 29.3 0.16 28 28 28 0.01 0 0

P50-600 50 600 31 32 31.4 0.07 31 34 32.6 0.20 31 31 31 0.01 0 0

P50-700 50 700 33 33 33 0.05 33 34 33.3 0.24 33 33 33 0.01 0 0

P50-800 50 800 34 35 34.1 0.07 34 38 35.4 0.29 34 34 34 0.01 0 0

P50-900 50 900 36 36 36 0.04 36 38 36.4 0.32 36 36 36 0.01 0 0

P100-200 100 200 9 9 9 0.06 9 11 10.0 0.03 9 9 9 0.01 0 0

P100-300 100 300 17 17 17 0.08 17 18 17.3 0.11 17 17 17 0.01 0 0

P100-400 100 400 23 23 23 0.1 23 25 23.5 0.18 23 23 23 0.01 0 0

P100-500 100 500 32 33 32.3 0.14 33 37 34.4 0.33 32 32 32 0.03 0 −1

P100-600 100 600 37 37 37 0.15 37 41 38.9 0.45 37 37 37 0.56 0 0

P100-1000 100 1,000 53 54 53.2 0.27 54 57 55.5 1.07 53 53 53 0.15 0 −1

P100-1100 100 1,100 54 55 54.8 0.23 55 59 55.8 1.26 54 55 54.7 0.11 0 −1

P100-1200 100 1,200 57 57 57 0.29 58 62 59.4 1.40 57 57 57 0.23 0 −1

P100-1300 100 1,300 60 60 60 0.31 61 66 62.7 1.55 60 60 60 0.02 0 −1

P100-1400 100 1,400 61 61 61 0.34 62 65 63.0 1.80 61 61 61 0.09 0 −1

P500-1000 500 1,000 31 33 32.1 1.78 31 35 32.3 0.93 31 31 31 0.05 0 0

P500-1500 500 1,500 63 66 65.1 2.35 65 69 66.9 3.44 63 64 63.8 1.36 0 −2

P500-2000 500 2,000 102 106 104 2.53 104 108 105.5 7.27 101 105 102.8 0.39 −1 −3

P500-2500 500 2,500 133 138 135.5 2.62 137 142 140.0 12.88 132 137 135.1 1.62 −1 −5

P500-3000 500 3,000 163 168 165.4 2.94 165 172 168.2 19.04 163 169 164.9 1.91 0 −2

P500-5000 500 5,000 237 241 239.2 3.95 240 247 243.8 54.91 237 242 240.1 0.87 0 −3

P500-5500 500 5,500 252 256 253.8 4.04 254 260 256.8 68.20 252 257 254.7 2.68 0 −2

P500-6000 500 6,000 265 270 267.6 4.64 268 273 270.2 81.39 264 270 267.6 2.62 −1 −4

P500-6500 500 6,500 277 283 278.9 4.79 279 287 283.0 93.33 276 282 278.5 2.91 −1 −3

P500-7000 500 7,000 287 292 288.9 5.2 288 297 292.5 109.96 287 292 288.7 5.15 0 −1

P1000-3000 1,000 3,000 128 135 131.2 11.53 130 136 133.4 12.84 128 132 129.9 10.98 0 −2

P1000-3500 1,000 3,500 163 169 166.5 12.34 163 172 167.4 20.10 162 167 164.3 5.44 −1 −1

P1000-4000 1,000 4,000 194 201 197.3 12.93 195 203 199.3 29.03 193 198 195.5 9.27 −1 −2

P1000-4500 1,000 4,500 230 237 233.5 12.21 230 238 233.2 40.14 229 237 231.5 8.26 −1 −1

P1000-5000 1,000 5,000 263 269 265.7 11.7 261 268 263.8 52.53 261 267 263.2 6.79 −2 0

P1000-10000 1,000 10,000 472 479 475.4 13.45 474 483 478.0 243.24 472 479 475.1 11.41 0 −2

P1000-15000 1,000 15,000 582 588 584.9 16.73 584 597 589.4 508.33 580 589 585.6 15.31 −2 −4

P1000-20000 1,000 20,000 652 660 656.1 20.29 654 665 660.0 840.20 652 660 657.3 13.06 0 −2

P1000-25000 1,000 25,000 701 707 704.5 24.76 704 716 710.0 1,224.58 700 708 704.4 18.73 −1 −4

(Continued)
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Table 2 (continued)

Instance |V | |E| Red+SA (Galinier, Lemamou &
Bouzidi, 2013)

BPD (Zhou, 2016) IDTS D1 D2

Best Worst Avg cutoff ðsÞ Best Worst Avg tðsÞ Best Worst Avg tðsÞ
P1000-30000 1,000 30,000 741 747 744 25.47 745 754 749.9 1,698.77 741 747 744.1 19.82 0 −4

#Better 0 5 2 0 0 0

#Equal 30 20 14 16 0 0

#Worse 10 15 24 24 40 40

p-value 1.73E
−03

1.63E
−02

1.72E
−02

9.63E
−07

2.54E
−10

2.54E
−10

Note: The bold numbers in the table highlight the dominating results between the compared algorithms in terms of Best, Worst and Avg values.

Table 3 Comparative results of IDTS with state-of-the-art algorithm on the 40 benchmark instances
of the first category in relaxed test (1,000 independent runs).

Instance |V | |E| SA IDTS D

Best tðsÞ Best tðsÞ
P500-2000 500 2,000 102 – 100 1.07 −2

P500-2500 500 2,500 133 – 131 1.74 −2

P1000-3000 1,000 3,000 128 – 127 8.39 −1

P1000-3500 1,000 3,500 163 – 161 7.72 −2

P1000-4000 1,000 4,000 194 – 191 7.61 −3

P1000-5000 1,000 5,000 259 – 258 9.81 −1

Note: The bold numbers in the table highlight the dominating results between the compared algorithms in terms of Best,
Worst and Avg values.

Table 4 Comparative results of IDTS with state-of-the-art algorithms on the 10 benchmark instances of the second category in normal test (30
independent runs).

Instance |V | |E| Re-Red+SA BPD (Zhou, 2016) IDTS D1 D2

Best Worst Avg tðsÞ Best Worst Avg tðsÞ Best Worst Avg tðsÞ
R100-500 100 500 34 41 36.6 0.00 30 33 31.0 0.32 30 30 30.0 0.03 −4 0

R200-1000 200 1,000 66 74 70.3 0.01 58 62 60.2 2.04 57 57 57.0 0.37 −9 −1

R500-2500 500 2,500 143 167 156.8 3.09 139 144 141.1 13.86 136 138 136.7 15.67 −7 −3

R800-4000 800 4,000 264 287 274.8 0.47 220 227 224.1 35.78 216 218 217.1 37.9 −48 −4

R1000-5000 1,000 5,000 302 332 319.0 11.64 262 276 267.6 59.05 262 267 264.7 30.14 −40 0

R1250-7500 1,250 7,500 474 518 500.5 40.74 406 411 409.1 139.70 403 411 406.6 98.62 −71 −3

R1500-9000 1,500 9,000 578 625 599.6 68.17 480 490 484.3 200.43 477 486 481.7 169.66 −101 −3

R1750-10500 1,750 10,500 658 727 694.9 131.02 561 570 566.0 270.63 561 569 564.2 287.72 −97 0

R2000-12000 2,000 12,000 726 808 763.6 163.09 640 650 644.5 351.42 638 648 643.5 340.99 −88 −2

R3000-15000 3,000 15,000 835 874 850.9 508.32 786 801 791.5 326.78 785 801 792.7 567.09 −50 −1

#Better 0 0 0 0 0 1

#Equal 0 0 0 3 2 0

#Worse 10 10 10 7 8 9

p-value 1.60E
−03

1.60E
−03

1.60E
−03

8.20E
−03

4.70E
−03

1.14E
−02

Note: The bold numbers in the table highlight the dominating results between the compared algorithms in terms of Best, Worst and Avg values.
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results. On the other hand, IDTS significantly outperforms Re-Red+SA and BPD in terms
of the worst and average results by obtaining better or equal results for all instances (except
for R3000-15000). The small p-values (<0.05) indicate that there are significant differences
between our best results and those of the two reference algorithms Re-Red+SA (p-value =
1.60E−3) and BPD (p-value = 8.20E−03).

Furthermore, Fig. 10 summarizes the performance of the IDTS algorithm with that of
the Re-Red+SA and BPD algorithms on these instances. Figure 10A presents the
relationship between the number of vertices and the best FVS size (the best objective value
over 30 runs). Figure 10B shows the relationship between the number of vertices and the
average computation time. One observes that the FVS size increases linearly while the
average computation time increases exponentially with the increase of the number of
vertices.

Comparison of the results on the third-category instances
Table 5 presents the comparative results of IDTS with the reference algorithms Re-Red+SA
and BPD for the instances of the third category. As shown in Table 5, IDTS outperforms
Re-Red+SA by obtaining better results for all instances in terms of the best, worst and
average results. Compared with BPD, IDTS obtains seven better, two equal, and one worse
values in terms of the best results; seven better, one equal, and two worse values in terms of
the worst results; six better, one equal, and three worse values in terms of the average
results. Finally, the p-values smaller than 0.05 indicate IDTS significantly dominates each
reference algorithm in terms of the best results.

Comparison of the results on the fourth-category instances

The comparative results of IDTS and the reference algorithms Re-Red+SA and BPD on the
fourth category are summarized in Table 6. It can be seen that IDTS outperforms the
reference algorithms for the instances of the fourth-category. Compared with Re-Red+SA,
IDTS obtains nine better and one equal results in terms of the best results, and better worst
and average values for all instances. Compared with BPD, IDTS obtains five better, four
equal, and one worse values in terms of the best results; four better, one equal and five
worse values in terms of the worst and average results. The p-value of 2.70E−03 between

Figure 10 Comparisons of IDTS (in red) with BPD (in black) and SA (in blue). (A) The best objective
value; (B) the average computation time. Full-size DOI: 10.7717/peerj-cs.1245/fig-10
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Table 6 Comparative results of IDTS with state-of-the-art algorithms on the 10 benchmark instances of the forth category in normal test (30
independent runs).

Instance |V | |E| Re-Red+SA BPD (Zhou, 2016) IDTS D1 D2

Best Worst Avg tðsÞ Best Worst Avg tðsÞ Best Worst Avg tðsÞ
p2p-Gnutella04 10,879 39,994 573 583 577.1 2,078.25 557 569 563.4 283.23 557 571 565.3 858.71 −16 0

p2p-Gnutella05 8,846 31,839 367 380 371.8 1,077.66 367 374 370.6 212.56 365 370 368.0 215.36 −2 −2

p2p-Gnutella06 8,717 31,525 406 416 410.9 1,080.73 401 409 404.6 229.35 400 405 402.9 235.74 −6 −1

p2p-Gnutella08 6,301 20,777 193 201 197.9 357.42 196 202 198.8 216.42 193 198 196.4 223.64 0 −3

p2p-Gnutella09 8,114 26,013 260 268 265.4 611.79 261 266 262.9 184.28 259 263 261.0 195.57 −1 −2

p2p-Gnutella24 26,518 65,369 797 811 803.1 5,646.59 784 797 790.2 304.86 783 799 793.1 811.81 −14 −1

p2p-Gnutella25 22,687 54,705 621 638 626.1 4,676.26 607 621 614.6 234.32 607 623 617.0 723.31 −14 0

p2p-Gnutella30 36,682 88,328 950 970 961.4 5,830.20 910 926 916.7 374.05 913 931 924.7 1,538.83 −37 3

p2p-Gnutella31 62,586 147,892 1,416 1,443 1,429.2 5,739.32 1,247 1,264 1,254.9 522.33 1,247 1,280 1,262.6 3,160.59 −169 0

wiki-talk-
temporal

1,140,149 7,833,140 179,486 179,503 179,494.5 3.25 179,472 179,472 179,472.0 5,138.57 179,472 179,472 179,472.0 3.02 −14 0

#Better 0 0 0 1 5 5

#Equal 1 0 0 4 1 1

#Worse 9 10 10 5 4 4

p-value 2.70E
−03

1.60E
−03

1.60E−03 1.03E
−01

7.39E
−01

7.39E−01

Note: The bold numbers in the table highlight the dominating results between the compared algorithms in terms of Best, Worst and Avg values.

Table 5 Comparative results of IDTS with state-of-the-art algorithms on the 10 benchmark instances of the third category in normal test (30
independent runs).

Instance |V | |E| Re-Red+SA BPD (Zhou, 2016) IDTS D1 D2

Best Worst Avg tðsÞ Best Worst Avg tðsÞ Best Worst Avg tðsÞ
S500-4900 500 4,900 177 184 179.6 27.11 175 182 178.7 40.02 172 175 173.5 45.26 −5 −3

S1000-9900 1,000 9,900 339 349 343.6 30.08 328 335 331.0 174.32 325 329 329.5 93.55 −14 −3

S1250-12400 1,250 12,400 405 412 408.0 115.44 397 405 400.2 273.29 394 399 396.5 233.10 −11 −3

S1500-14900 1,500 14,900 487 497 492.9 92.03 479 489 484.8 381.63 476 485 480.9 374.39 −11 −3

S1750-17400 1,750 17,400 567 582 573.6 184.90 556 563 559.7 542.47 553 561 556.0 537.69 −14 −3

S2000-19900 2,000 19,900 658 674 664.7 261.05 630 639 633.4 698.89 627 640 635.3 627.08 −31 −3

S2250-22400 2,250 22,400 723 734 730.2 321.75 703 713 707.3 634.98 700 709 704.2 546.53 −23 −3

S2500-24900 2,500 24,900 810 825 817.0 374.91 783 792 788.1 691.97 783 792 788.1 673.39 −27 0

S2750-27400 2,750 27,400 887 906 896.6 535.72 855 863 857.9 804.53 855 862 859.3 700.99 −32 0

S3000-29900 3,000 29,900 981 1,004 991.5 650.09 934 945 940.8 895.73 938 950 948.0 1,111.52 −43 4

#Better 0 0 0 1 2 3

#Equal 0 0 0 2 1 1

#Worse 10 10 10 7 7 6

p-value 1.60E
−03

1.60E
−03

1.60E
−03

3.39E
−02

9.56E
−02

3.17E
−01

Note: The bold numbers in the table highlight the dominating results between the compared algorithms in terms of Best, Worst and Avg values.
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IDTS and Re-Red+SA in terms of the best results indicate that there are significant
differences between their results.

Results on the ISCAS89 benchmark instances
Table 7 shows the results of IDTS on the classical ISCAS89 benchmark instances. The
instances with known optimal values were solved exactly by the branch and bound
algorithm (H8WR) combined with eight reduction operations (Lin & Jou, 1999) and

Table 7 Results of IDTS on the ISCAS89 benchmark instances.

Instance |V | |E| Optimal value Re-Red+SA BPD (Zhou, 2016) IDTS

Best tðsÞ Best tðsÞ Best tðsÞ
s1196* 18 20 0 0 0.01 0 0.01 0 0.01

s1238* 18 20 0 0 0.01 0 0.01 0 0.01

s13207* 669 3,406 59 59 0.01 59 10.17 59 0.4

s1423* 74 1,694 21 21 0.01 21 2.02 21 0.02

s1488* 6 30 5 5 0.01 5 0.01 5 0.01

s1494* 6 30 5 5 0.01 5 0.01 5 0.01

s15850* 597 14,925 88 88 0.09 88 284.25 88 0.11

s208* 8 28 0 0 0.01 0 0.01 0 0.01

s27* 3 4 1 1 0.01 1 0.01 1 0.01

s298* 14 56 1 1 0.01 1 0.01 1 0.01

s344* 15 74 5 5 0.01 5 0.01 5 0.01

s349* 15 74 5 5 0.01 5 0.01 5 0.01

s35932* 1,728 4,475 306 306 0.01 306 37.94 306 6.41

s382* 21 131 9 9 0.01 9 0.01 9 0.01

s38417* 1,636 32,774 374 375 1.49 380 1,384.78 374 5.24

s38584* 1,452 16,880 292 294 6.02 293 569.37 292 14.9

s386* 6 30 5 5 0.01 5 0.01 5 0.01

s400* 21 131 9 9 0.01 9 0.01 9 0.01

s420* 16 72 0 0 0.01 0 0.01 0 0.01

s444* 21 131 9 9 0.01 9 0.01 9 0.01

s510* 6 30 5 5 0.01 5 0.01 5 0.01

s526* 21 123 3 3 0.01 3 0.01 3 0.01

s526n* 21 123 3 3 0.01 3 0.01 3 0.01

s5378* 179 1,200 30 30 0.01 30 0.93 30 0.01

s641* 19 100 7 7 0.01 7 0.01 7 0.01

s713* 19 100 7 7 0.01 7 0.01 7 0.01

s820* 5 20 4 4 0.01 4 0.01 4 0.01

s832* 5 20 4 4 0.01 4 0.01 4 0.01

s838* 32 160 0 0 0.01 0 0.01 0 0.01

s9234* 228 2,680 53 53 0.01 53 3.77 53 0.02

s953* 29 150 5 5 0.01 5 0.01 5 0.01

Note: The bold numbers in the table highlight the dominating results between the compared algorithms in terms of Best,
Worst and Avg values; the instances with known optimal values are indicated by asterisks (*).
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indicated by asterisks (�). It can be observed that IDTS can easily reach the optimal
solutions for these instances, while Re-Red+SA and BPD miss the two optimal solutions
indicated in boldface.

Comparative results on undirected graphs
To make our IDTS algorithm applicable to undirected graphs, we modified the
neighborhood condition that the number of conflicts equals 0 (as described in
“Preliminaries”) to the constraint that for any vertex v 2 p, there is at most one neighbor
vertex u 2 p of v in front of v.

For our comparative study, we carefully re-implemented the SALS algorithm (Qin &
Zhou, 2014) as its codes are unavailable. We regenerated 20 instances of the same
characteristics using the generation method of Qin & Zhou (2014). These instances have
ER* or RR* in their names, where the number of vertices is 100,000, and the number of
edges is in the range of [100,000, 1,000,000]. The cutoff time is set to 6,000 s and both
algorithms were run 30 times per instance.

Table 8 displays the results of the SALS and IDTS algorithms on the 20 regenerated
instances. Columns 1–3 show the name, the number of vertices and the number of edges of
each instance. Columns 4–11 respectively provide the results of the SALS and the IDTS on
each instance: the best objective value (Best) over 30 independent runs, the worst result
(Worst), the average result (Avg), and the average computation time (in seconds) to obtain
the best result (tðsÞ). The last column (D) indicates the differences between our best results
(Best) and those of SALS (a negative value indicates an improved result). The row “p-
value” is given to verify the statistical significance of the comparison between IDTS and the
reference algorithm, which came from the non-parametric Friedman test applied to the
best, worst and average values of the two compared algorithms.

Moreover, the rows #Better, #Equal, and #Worse indicate the number of instances for
which SALS obtained a better, equal, and worse result compared with the IDTS algorithm
for each performance indicator. The bold entries highlight the dominating results between
the compared algorithms in terms of the Best, Worst and Avg values.

The results indicate that our algorithm dominates the SALS algorithm (Qin & Zhou,
2014) by obtaining 19 better and one equal value in terms of the best, worst and average
results. The small p-values (< 0.05) indicate that there are significant differences between
our results and those of the reference algorithm SALS. This experiment demonstrates that
the proposed algorithm is not only competitive for directed graphs, but performs very well
for the undirected case of the problem as well.

ANALYSIS
This section conducts extra tests to analyze the advantages of two important components
of the proposed IDTS algorithm: the thresholding coefficient and the perturbation strategy.

Effects of the thresholding coefficient
IDTS adopts the thresholding strategy illustrated in “The Dynamic Thresholding Search
Stage” to search both equivalent and better solutions. The oscillation between equivalent
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and better zones follows the increasing/decreasing of the thresholding coefficient d ð	 1Þ
with an adjustment value. Thus, we analyze the effects of the thresholding coefficient by
testing five candidate adjustment values: 1, 2, 3, 4, 5 for the instances with jV j � 1,000 and
5, 10, 15, 20, 25 for the instances with jV j. 1,000 (the higher the value, the larger the
oscillation between equivalent and better solutions).

Figure 11 shows the Box and whisker plots of the results on eight representative
instances with different number of vertices. Where the X-axis refers to the tested
adjustment values and the Y-axis stands for the best objective values obtained. As a
complement, we also calculate the p-values for each tested instance. Results are from 20
independent runs of each instance with a cutoff time as described in “Stopping
Conditions” per run. We observe that the adjustment values affect the performance of
IDTS algorithm greatly for most instances except two instances (P500-7000 and p2p-
Gnutella25). Moreover, then IDTS algorithm with the adjustment value 1 performs the

Table 8 Comparative results of IDTS with state-of-the-art algorithm SALS (Qin & Zhou, 2014) on the 20 undirected instances in normal test
(30 independent runs).

Instance |V | |E| SALS IDTS D

Best Worst Avg tðsÞ Best Worst Avg tðsÞ
ER1 100,000 100,000 12,105 12,178 12,149.8 3,473.67 7,534 7,658 7,593.0 5,041.77 −4,571

ER2 100,000 200,000 43,580 43,756 43,682.1 3,037.78 25,185 25,633 25,374.3 5,456.73 −18,395

ER3 100,000 300,000 59,755 59,886 59,821.1 3,035.21 38,075 38,325 38,176.3 6,000.83 −21,680

ER4 100,000 400,000 68,915 69,066 68,985.3 2,957.06 47,447 47,640 47,537.8 5,589.16 −21,468

ER5 100,000 500,000 74,774 74,873 74,828.0 3,132.84 54,050 54,403 54,221.0 5,501.83 −20,724

ER6 100,000 600,000 78,799 78,883 78,854.9 3,512.93 58,929 59,389 59,231.0 5,433.78 −19,870

ER7 100,000 700,000 81,719 81,809 81,770.0 3,535.40 63,269 63,352 63,323.7 6,000.12 −18,450

ER8 100,000 800,000 83,910 84,034 83,994.2 2,593.17 66,304 66,912 66,502.3 5,652.81 −17,606

ER9 100,000 900,000 85,646 85,765 85,723.5 3,352.80 69,031 69,562 69,208.5 5,760.04 −16,615

ER10 100,000 1,000,000 87,082 87,153 87,123.8 3,564.80 71,311 71,707 71,503.5 5,816.93 −15,771

RR1 100,000 100,000 4 4 4.0 610.92 4 4 4.0 1,343.69 0

RR2 100,000 200,000 49,228 49,331 49,294.4 2,874.34 35,081 35,350 35,214.8 5,439.20 −14,147

RR3 100,000 300,000 64,327 64,389 64,357.5 3,167.82 47,042 47,578 47,264.5 5,461.19 −17,285

RR4 100,000 400,000 72,185 72,306 72,255.7 2,607.66 54,771 55,606 55,041.5 5,578.65 −17,414

RR5 100,000 500,000 77,136 77,250 77,221.6 3,085.60 60,253 60,776 60,489.8 5,533.04 −16,883

RR6 100,000 600,000 80,583 80,691 80,653.8 3,591.49 64,484 64,971 64,695.0 5,660.65 −16,099

RR7 100,000 700,000 83,152 83,208 83,180.6 3,382.05 67,609 67,634 67,624.7 5,905.53 −15,543

RR8 100,000 800,000 85,065 85,134 85,108.8 3,347.80 70,292 70,394 70,342.3 5,564.86 −14,773

RR9 100,000 900,000 86,608 86,665 86,635.4 3,355.52 72,243 72,938 72,610.5 5,616.01 −14,365

RR10 100,000 1,000,000 87,829 87,907 87,881.2 3,527.91 74,250 74,828 74,580.0 5,553.27 −13,579

#Better 0 0 0

#Equal 1 1 1

#Worse 19 19 19

p-value 1.31E−05 1.31E−05 1.31E−05

Note: The bold numbers in the table highlight the dominating results between the compared algorithms in terms of Best, Worst and Avg values.
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Figure 11 Effects of the increase/decrease value of the thresholding coefficient. (A) P50-600 (p-value
= 1.68E−02); (B) P100-1100 (p-value = 9.37E−05); (C) P500-7000 (p-value = 2.71E−01); (D) P1000-
30000 (p-value = 4.35E−05); (E) R1250-7500 (p-value = 4.53E−03); (F) S1250-12400 (p-value = 4.05E
−04); (G) p2p-Gnutella24 (p-value = 1.37E−02); (H) p2p-Gnutella25 (p-value = 9.11E−01).

Full-size DOI: 10.7717/peerj-cs.1245/fig-11
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best on instances with a number of vertices (50 � jV j � 100), with the adjustment value 4
on instances with a number of vertices (500 � jVj � 1,000), with the adjustment value 10
on instances with a number of vertices (1; 000, jV j � 3,000), and with the adjustment
value 20 on instances with a number of vertices (jVj. 3,000). Finally, it is noted that the
results of this experiment are consistent with the intuitive understanding that the higher
the adjustment value, the more frequent the oscillation of the search between current
configuration and new configuration. That is, large instances require large adjustment
values to explore more new areas, while small instances require small adjustment values to
fully explore each search area.

Effects of the perturbation operation
To evaluate the perturbation strategy of the proposed algorithm, we create two algorithmic
variants (IDTS1 and IDTS2) where the perturbation strategy visits only feasible solutions.
For IDTS, the perturbation first drops b1 � jpj vertices with the highest move frequency,

Table 9 Evaluation of the perturbation strategy.

Instance IDTS IDTS1 IDTS2 D1 D2

Best Worst Avg tðsÞ Best Worst Avg tðsÞ Best Worst Avg tðsÞ
P100-1100 54 55 54.7 0.13 54 55 54.8 0.06 54 55 54.8 0.04 0 0

P500-1500 63 64 63.8 0.79 63 64 63.9 0.56 63 64 63.9 0.67 0 0

P500-2000 102 104 102.7 1.36 102 104 102.9 1.67 102 104 102.6 1.22 0 0

P500-2500 132 136 134.7 1.37 133 136 134.8 1.23 134 136 135.4 1.51 −1 −2

P500-3000 163 167 164.7 1.87 163 166 164.8 1.84 163 166 164.9 1.21 0 0

P500-5000 237 242 240.4 2.52 239 242 240.1 2.11 237 241 239.1 2.68 −2 0

P500-5500 252 256 253.8 2.46 253 258 255.5 2.85 252 256 253.8 2.67 −1 0

P500-6000 264 270 267.7 2.64 266 270 267.7 2.79 265 269 267.0 3.22 −2 −1

P500-6500 278 281 279.6 1.46 278 281 279.3 2.86 278 280 278.6 3.03 0 0

P500-7000 287 291 289.4 2.72 287 292 289.8 4.64 288 291 289.6 2.63 0 −1

P1000-3000 128 131 129.3 3.79 128 131 129.5 3.13 128 131 130.5 6.41 0 0

P1000-3500 162 164 163.3 9.80 163 166 164.3 9.51 163 167 165.6 6.33 −1 −1

P1000-4000 194 197 194.7 7.48 194 196 195.3 3.96 195 197 196.4 9.34 0 −1

P1000-4500 228 234 231.2 5.57 228 236 232.1 10.89 228 234 231.4 7.62 0 0

P1000-5000 263 265 264.0 9.93 263 266 263.9 11.19 264 267 265.1 7.72 0 −1

P1000-10000 473 479 475.8 12.72 474 483 477.7 10.87 474 480 476.2 8.92 −1 −1

P1000-15000 582 589 586.6 15.43 585 591 588.5 15.56 585 592 587.0 9.56 −3 −3

P1000-20000 653 661 658.2 14.03 657 660 658.4 12.21 653 658 656.0 7.68 −4 0

P1000-25000 702 708 704.8 18.54 704 710 707.4 17.95 703 708 705.2 13.68 −2 −1

P1000-30000 741 747 744.6 19.95 744 750 746.9 23.98 741 746 743.5 19.97 −3 0

#Better – – – 0/20 3/20 3/20 0/20 6/20 4/20

#Equal – – – 10/20 8/20 1/20 11/20 10/20 1/20

#Worse – – – 10/20 9/20 16/20 9/20 4/20 15/20

p-value – – – 2.09E−3 1.93E−2 3.31E−3 4.04E−3 8.74E−1 5.85E−1

Note: The bold numbers in the table highlight the dominating results between the compared algorithms in terms of Best, Worst and Avg values.
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and then applies both DROP and INSERT moves to the next b2 � jpj most frequently
displaced vertices. For IDTS1, the perturbation strategy is disabled (i.e., by removing the
line 7 in Algorithm 1). For IDTS2, the perturbation strategy only adopts the DROP move
(by disabling lines 8–10 in Algorithm 6). A total of 20 relatively difficult instances are
selected as per the results provided in Tables 2 and 3, that is, their best results could not be
achieved by all algorithms. We ran IDTS, IDTS1 and IDTS2 10 times to solve each selected
instance under the same stopping conditions as before.

Table 9 displays the experimental results. The rows #Better, #Equal, and #Worse show
the number of instances for which IDTS1 and IDTS2 achieved a better, equal, or worse
result than the IDTS algorithm for each performance indicator.

Even though both IDTS and IDTS1 obtain 10 equal results, the former can achieve 10
better results (against 0 for IDTS1). The small p-values (<0.05) in terms of Best and Avg
confirm that the reported differences between IDTS and IDTS1 were statistically
significant. This experiment proves that the perturbation strategy adopted is an important
way of diversification that makes the algorithm able to better explore the search space.
Both IDTS and IDTS2 obtain 11 equal results while the former achieves nine better results
than the latter. The small p-value (<0.05) indicates that IDTS is better than IDTS2. The
above indicates that adopting DROP and INSERT operations in the perturbation
procedure can enable the algorithm to reach a better performance.

CONCLUSIONS
An efficient stochastic local search algorithm IDTS was proposed to find the minimum set
of feedback vertices in graphs. It begins with a low-complexity greedy initialization
procedure, and alternates between a thresholding search stage and a descent stage. The
IDTS algorithm has two innovative components, the solution-accepting strategy used in
the thresholding search stage and the frequency-guided strategy in its perturbation
procedure. The thresholding search stage involves an adjustable thresholding parameter d
that controls the search behavior and algorithm performance. Since fine-adjusting this
parameter for a given problem instance can bring better solutions, it will be meaningful to
study self-adaptive mechanisms to automatically adjust this parameter during the search.

Experimental evaluations on 101 diverse graphs proved the dominance of IDTS over the
state-of-the-art SA (Galinier, Lemamou & Bouzidi, 2013) and BPD (Zhou, 2016)
algorithms. Particularly, it discovered 24 new best-known results (improved upper
bounds), and reached the best-known or known optimal results of 75 other graphs. We
also applied our algorithm to the case of undirected graph of the problem and showed its
competitiveness against the SALS algorithm (Qin & Zhou, 2014). Besides, we conducted
experiments to understand how each ingredient of IDTS (the thresholding and the short
term learning-based perturbation) contributes to the algorithm performance.

Finally, it will be of interest to study the proposed framework for other critical vertex
problems, such as the critical node detection (Béczi & Gaskó, 2021) and finding the nodes
with the highest betweenness-centrality scores (Mirakyan, 2021).
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