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Tensor eigenproblems have wide applications in blind source separation, magnetic
resonance imaging, and molecular conformation. In this study, we explored an alternating
direction method for computing the largest or smallest Z-eigenvalue and corresponding
eigenvector of an even-order symmetric tensor. The method decomposes a tensor Z-
eigenproblem into a series of matrix eigenproblems that can be readily solved using off-
the-shelf matrix eigenvalue algorithms. Our numerical results show that, in most cases,
the proposed method, called alternating direction method (ADM), converged much faster
than a classical power method-based approach and could determine extreme Z-
eigenvalues with a significantly higher probability.
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Abstract 14 

Tensor eigenproblems have wide applications in blind source separation, magnetic resonance 15 

imaging, and molecular conformation. In this study, we explored an alternating direction method 16 

for computing the largest or smallest Z-eigenvalue and corresponding eigenvector of an even-order 17 

symmetric tensor. The method decomposes a tensor Z-eigenproblem into a series of matrix 18 

eigenproblems that can be readily solved using off-the-shelf matrix eigenvalue algorithms. Our 19 

numerical results show that, in most cases, the proposed method, called alternating direction 20 

method (ADM), converged much faster than a classical power method-based approach and could 21 

determine extreme Z-eigenvalues with a significantly higher probability. 22 

 23 

1 Introduction 24 

The tensor eigenproblem has been of great interest since the seminal works of Qi (2005) and Lim 25 

(2005). In this study, we considered a Z-eigenvalue problem for a real symmetric tensor. 26 

Eigenvalues of symmetric tensors have seen numerous applications in several areas, including 27 

automatic control (Ni et al., 2008), magnetic resonance imaging (Qi et al., 2010; 2013; Schultz & 28 

Seidel, 2008), statistical data analysis (Zhang & Golub, 2001), image analysis (Zhang et al., 2013), 29 

signal processing (Kofidis & Regalia, 2001), and higher order Markov chains (Li & Ng, 2014). 30 

An mth order n-dimensional real tensor consisting of Ąă entries in ℝ, 31 

is called symmetric if the value of �ÿ1ÿ2⋯ÿ�  is invariant under any permutation of its indices 32 ÿ1, ÿ2, ⋯ , ÿă. For convenience, we will use �[ă,Ą] to denote the set of all mth order n-dimensional 33 

real symmetric tensors. Using the definition of a tensor product, an mth degree homogeneous 34 

polynomial function ÿ(ý) with real coefficients can be represented by a symmetric tensor, that is, 35 

ý = (�ÿ1ÿ2⋯ÿ�), �ÿ1ÿ2⋯ÿ� ( ℝ, 1 f ÿ1, ÿ2 ,   ⋯ , ÿă f Ą,  
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We call ý positive definite tensor if ýýă g 0 for all ý ( ℝĄ\{0}. It is easy to understand that ă 36 

must be even in this case. 37 

Throughout this paper, we use ýýă2ā (1 f ā f ă 2 1) to simply denote a kth order n-38 

dimensional tensor defined by 39 

Obviously, ýýă21 is a vector and ýýă22 is a matrix. It is also not difficult to obtain ýýă =40 ý�(ýýă21) = ý�(ýýă22)ý. Using (2), the result of ýýý  can be computed by ýýă2(ă2ý) , 41 

where ă is the order of the tensor ý, and 1 f Ć f ă. For brevity, let ýýýþþ denote the result of 42 (ýýý)þþ = (ýýă2(ă2ý))þă2ý2(ă2ý2þ) , where 1 f Ć, ć, Ć + ć f ă , and ýý1ý1ý2ý2 ⋯ ý2ý� 43 

can be computed in a similar way, where 1 f Ć1, Ć2, ⋯ , Ćā f ă, and ā is an arbitrary integer 44 

such that 1 f Ć1 + Ć2 + ⋯ + Ćā f ă. 45 

It is well known that matrix eigenpairs play a significant role in numerous engineering 46 

applications and numerical linear algebra. There are analogous eigenproblems in numerical 47 

multilinear algebra. For example, Qi (2005) proposed the definition of a H-eigenvalue and Z-48 

eigenvalue as being equivalent to the Ăă-eigenvalue and Ă2-eigenvalue in Lim (2005), respectively. 49 

In Chang et al. (2009), these definitions were unified by employing a positive definite tensor - 50 

while ă was even. In this work, we mainly focused on computing Z-eigenvalues of symmetric 51 

tensors defined as follows. 52 

Definition 1. Let ý be an mth order n-dimensional symmetric real tensor. If there exists a 53 

nonzero vector ý ( ℝĄ and a scalar � ( ℝ satisfying  54 

then we call the scalar λ a Z-eigenvalue of ý, and the vector x a Z-eigenvector associated with the 55 

Z-eigenvalue λ. We also say the pair (λ, x) is a Z-eigenpair of ý. 56 

In general, the calculation of all eigenvalues of a higher order tensor is very difficult due to the 57 

NP-hardness of deciding tensor eigenvalues over ℝ (Hillar & Lim, 2013). Fortunately, one only 58 

needs to compute the largest or smallest eigenvalue of a tensor in certain scenarios. For instance, 59 

to guarantee the positive definiteness of the diffusivity function in higher order diffusion tensor 60 

imaging, we just need to compute the smallest Z-eigenvalue of the tensor and make sure it is 61 

nonnegative. In automatic control (Ni et al., 2008), the smallest Z-eigenvalue of a tensor is used 62 

to determine whether a nonlinear autonomous system is stable or not. According to the Perron-63 

ÿ(ý) = ýýă = ∑ �ÿ1ÿ2⋯ÿ�ýÿ2 ⋯ ýÿ�
Ą

ÿ1,ÿ2,⋯,ÿ�=1 , ý ( ℝĄ. (1) 

(ýýă2ā)ÿ1ÿ2⋯ÿ� = ∑ �ÿ1ÿ2⋯ÿ�ÿ�+1⋯ÿ�ýÿ�+1 ⋯ ýÿ�
Ą

ÿ�+1,⋯,ÿ�=1 , 
 ÿąĈ �ĂĂ 1 f ÿ1, ÿ2, ⋯ , ÿā f Ą �Ą� 1 f ā f ă. 

(2) 

{ýýă21 = �ý,ý�ý = 1,       (3) 
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Frobenius theory, the spectral radius of a nonnegative tensor is the largest Z-eigenvalue of the 64 

tensor (Chang et al., 2008). 65 

Iterative algorithms to find extreme eigenvalues and corresponding eigenvectors are usually 66 

designed to solve a nonlinearly constrained optimization problem 67 

where �Ą21 denotes the unit sphere in the Euclidean norm, i.e., �Ą21 = {ý ( ℝĄ|‖ý‖2 = 1}. We 68 

can determine the gradient and Hessian of the objective function of (4) through some simple 69 

calculations, as follows: 70 

and 71 

From Theorem 3.2 of Kolda & Mayo (2011), the pair (�, ý) is an eigenpair of ý if and only if 72 ý is a constrained stationary point of (4); that is, a solution of the system (3) corresponds to a KKT 73 

point of the problem (4), and vice versa. To solve (4), De Lathauwer et al. (2000) introduced a 74 

symmetric higher-order power method (S-HOMP). However, it was pointed out in Kofidis & 75 

Regalia (2002) that the S-HOMP method is not guaranteed to converge while the function ÿ(ý) =76 ýýă is not convex. To address this problem, Kolda and Mayo (2011) presented a shifted S-HOMP 77 

(SS-HOMP) for solving the problem (4), which is guaranteed to converge to a tensor eigenpair. A 78 

major limitation of SS-HOMP is the difficulty in selecting an appropriate shift. Hence, Kolda and 79 

Mayo (2014) further extended the SS-HOMP method to an adaptive version for computing 80 

extreme eigenvalues, called GEAP, which chooses the shift automatically. 81 

Over the past few years, there has been extensive work on handling the extreme eigenvalue 82 

problem of symmetric tensors by solving different nonlinearly constrained models. Hu et al. (2013) 83 

proposed a sequential semidefinite relaxations approach to compute extreme Z-eigenvalues. Han 84 

(2012) employed the BFGS method to solve an unconstrained optimization problem for finding 85 

real eigenvalues of even-order symmetric tensors. Cui et al. (2014) computed all of the real Z-86 

eigenvalues of symmetric tensors using a Jacobian semidefinite relaxation technique. Using the 87 

method proposed by Qi et al. (2009) in which Z-eigenpairs are computed directly in a lower 88 

dimensional case, a sequential subspace projection method (SSPM) (Hao et al., 2015) was 89 

proposed to obtain the extreme Z-eigenvalues of symmetric tensors. All the methods mentioned 90 

above converge linearly or superlinearly. To speed up convergence, Jaffe et al. (2018) presented a 91 

fast iterative Newton-based method that converges at a locally quadratic rate. Based on the idea of 92 

the SSPM method (Hao et al., 2015), Yu et al. (2016) proposed an adaptive gradient (AG) method 93 

in which an inexact line search, rather than an optimal stepsize, was adopted. The experimental 94 

results presented in Yu et al. (2016) showed that the AG method converges much faster and finds 95 

the extreme eigenvalues with a higher probability than those methods using power algorithms. For 96 

max ÿ(ý) = ýýă ĉ. Ċ.  ý ( �Ą21, (4) 

Ā(ý) ≡ 'ÿ(ý) = ăýýă21 (5) 

�(ý) ≡ '2ÿ(ý) = ă(ă 2 1) ýýă22 (6) 
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more related work, we refer readers to Benson & Gleich (2019), Chen et al. (2016), Sheng & Ni 97 

(2021), Xiong et al. (2022), and references therein. 98 

Despite the fact that the extreme eigenvalue problem has drawn a lot of attention in recent 99 

years, there are still some issues to address. For example, all algorithms mentioned above are not 100 

guaranteed to converge to the largest or smallest eigenvalue, which is exactly what we want to 101 

obtain in some applications (Chang et al., 2008; Ni et al., 2008), and instead only converge to an 102 

arbitrary eigenvalue of ý depending on the initial conditions. However, in the case of symmetric 103 

matrices, those counterpart algorithms can always converge to the largest or smallest eigenvalue. 104 

Motivated by this, we propose to determine extreme eigenvalues by combining the method of 105 

solving matrix eigenvalue problems and tensor optimization techniques. To this end, we adopted 106 

a variable splitting strategy in which we introduce some superfluous variables and equality 107 

constraints over these variables. Specifically, the term ýýă with even number ă is rewritten as 108 ýý12ý22 ⋯ ýý2, where Ć = ă/2, with the equality constraints ýÿ = ýĀ  (ÿ, Ā = 1, 2, ⋯ , Ć). Therefore, 109 

problem (4) is transformed into the following model: 110 

When ý  is symmetric and conditions ýÿ = ýĀ = ý(ÿ, Ā = 1, 2, ⋯ , Ć)  hold, we can obtain 111 ýý12ý22 ⋯ ýý2 = ýýă. Using this fact, the equivalence between problems (4) and (7) can be easily 112 

checked. It is also worthwhile to note that if all variables except ýÿ are available and those equality 113 

constraints are not considered, the problem (7) reduces to the standard matrix eigenproblem for 114 

the matrix ýý12 ⋯ ýÿ212 ýÿ+12 ⋯ ýý2.  115 

The major contributions of this paper are the introduction of the new proposed model (7) to 116 

compute extreme Z-eigenvalues and corresponding eigenvectors, and the demonstration of its 117 

usefulness in getting the desired results by designing an efficient algorithm for the problem (7). 118 

Due to the fact that the matrix eigenproblem has been extremely studied, employing related 119 

algorithms for solving the tensor eigenproblem (7) holds much promise. 120 

The remainder of the paper is organized as follows. In the next section, we first present some 121 

classical methods for tensor Z-eigenvalue problems. Also, a simple and efficient algorithm for 122 

solving the proposed model (7) is introduced, and its convergence property is analyzed. In the 123 

Results section, we report some experimental results to show the efficiency of our proposed 124 

method. Finally, we conclude this paper in the last section. 125 

 126 

2 Methods 127 

2.1 Some existing methods for Z-eigenproblems 128 

max ÿ̃(ý) = ýý12ý22 ⋯ ýý2           ĉ. Ċ.   ýÿ = ýĀ , ÿ, Ā = 1, 2, ⋯ , Ć               ýÿ ( �Ą21, ÿ = 1, 2, ⋯ , Ć. (7) 
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In this subsection, we introduce some typical methods for computing Z-eigenpairs by solving the 129 

problem (4) or its variants. From Theorem 3.2 of Kolda & Mayo (2011) we know that (�, ý) is a 130 

Z-eigenpair of ý if and only if ý is a constrained stationary point of (4) and � = ýýă/‖ý‖. Based 131 

on the theorem, De Lathauwer et al. (2000) proposed the S-HOPM method for solving the problem 132 

(4) to find the best symmetric rank-1 approximation of a symmetric tensor ý ( �[ă,Ą], which is 133 

equivalent to finding the largest Z-eigenvalue of ý (Qi 2005). The main step of the S-HOPM 134 

algorithm is  135 

 136 

Algorithm 1. GEAP method for the problem (4) with the objective function (9) 

Initialization: Given a tensor ý ( �[ă,Ą], an initial vector ý0 ( ℝĄ, and a tolerance � > 0. Let Ā = 1 if we want to compute the largest Z-eigenvalue, and let Ā = 21 if we want to compute 

the smallest Z-eigenvalue. Let � be the tolerance on being positive/negative definite. 

1: ý0 ← ý0/‖ý0‖, and �0 ← ýý0ă 

For k=0, 1, ⋯ do 

2: �ā ← ă(ă 2 1) ýýāă22 

3: ÿā ← Ā max{0, (� 2 �ăÿĄ(Ā�ā))/ă} 

4: ýā+1 ← Ā(ýýāă21 + ÿýā) 

5: ýā+1 = ýā+1/‖ýā+1‖ 

6: �ā+1 ← ýýā+1ă   

7: Break if |�ā+1 2 �ā| < � 

End for 

Output: Z-eigenvalue � and its associated Z-eigenvector ý. 

 137 

Under the assumption of convexity on ýýă, S-HOPM could be convergent for even-order 138 

tensors. However, it has been pointed out that S-HOPM can not guarantee to converge globally 139 

(Kofidis & Regalia, 2002). To address this issue, Kolda & Mayo (2011) modified the objective 140 

function to 141 

and proposed the SS- HOPM for solving (4) with the objective function (9). SS- HOPM has a 142 

similar iterative scheme to S-HOPM, but at the same time has a shortcoming in the choice of the 143 

shift ÿ. To overcome the limitation, the same authors proposed an adaptive method, called GEAP, 144 

which is monotonically convergent and much faster than the SS-HOPM method due to its adaptive 145 

shift choice of the shift. GEAP was originally designed to calculate generalized eigenvalues 146 

(Chang et al., 2009) with a positive definite tensor -. The authors also presented a specialization 147 

of the method to the Z-eigenvalue problem, which is equivalent to SS-HOPM except for the 148 

adaptive shift. The details of the GEAP specialization are briefly summarized in Algorithm 1.  149 

ýā+1 = ýýāă21‖ýýāă21‖ , �ā+1 = ýýā+1ă . (8) 

ÿ̂(ý) = ýýă + ÿ‖ý‖ă, (9) 
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GEAP is a simple and effective approach for computing Z-eigenvalues of a symmetric tensor, 150 

but it is not guaranteed to determine the largest eigenvalue or the smallest one, which is exactly 151 

the goal in some applications. To obtain these extreme eigenvalues with a higher probability, we 152 

will introduce a new algorithm for solving the problem (7) that is an equivalent form of the problem 153 

(4) in the next subsection. 154 

2.2 An alternating direction method for Z-eigenproblems 155 

This subsection presents an overview of the algorithm for problem (7). Directly solving the 156 

problem (7) may be inefficient because its special structure is not considered, and in doing so, it is 157 

easy to converge to a locally optimal point, thus the largest or smallest eigenvalue could not be 158 

determined. On the other hand, it is comparatively easy to compute extreme eigenvalues for the 159 

matrix cases. In (7), if all variables except ýÿ are known and those equality constraints are not 160 

considered, solving (7) can exactly get the largest eigenvalue and the corresponding eigenvector 161 

of the matrix ýý12 ⋯ ýÿ212 ýÿ+12 ⋯ ýý2. Motivated by this observation and the fact that there are many 162 

efficient algorithms available for tackling eigenproblems in matrix cases, we proposed a design 163 

for a simple alternating direction scheme between solving different matrix eigenproblems. The 164 

details of this method are given in Algorithm 2. 165 

 166 

 167 

2.3 Specialization of ADM to fourth-order tensors 168 

 The proposed ADM transforms the tensor eigenvalue problem (4) into a series of matrix 169 

eigenvalue problems that are easy to solve. For fourth-order tensors, there are two related variables 170 

Algorithm 2 Alternating direction method (ADM) for (7) 

Initialization: Given an even-order tensor ý ( �[ă,Ą] , initial unit vectors ýÿ ( ℝĄ, ÿ =1, 2, ⋯ , Ć, where Ć = ă/2, and � > 0 is the tolerance. Set ý = ýý, � = ýýă , and � as the 

absolute difference between successive values of �. 

While � > � 

For ÿ = 1, 2, ⋯ , Ć do 

1: Compute the matrix � = ýý12 ⋯ ýÿ212 ýÿ+12 ⋯ ýý2.  

2: Find the largest or smallest eigenvalue �̃ and the corresponding unit eigenvector � 

of � using any eigenvalue algorithm for matrices. 

3: Update the variable ýÿ = �. 

End for 

4: Set ý = ýý and � = ýýă. 

End while 

Output: Z-eigenvalue � and its associated Z-eigenvector ý. 
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of ý1 and ý2, and the inner iteration can be omitted because Ć = 1. According to the symmetry 171 

property of ý, we also have ýý12ý22 = ýý22ý12. Therefore, it is not necessary to explicitly write 172 

out the variable ý2 , and the procedure of Algorithm 2 can be simply described, as shown in 173 

Algorithm 3, for fourth-order tensors. To better describe the iterative steps, we use ýā to denote a 174 āth iterate in Algorithm 3, rather than the splitting variable as in Algorithm 2. 175 

 176 

Algorithm 3 Specialization of the ADM to fourth-order tensors 

Initialization: Given a tensor ý ( �[4,Ą], initial unit vectors ý0 ( ℝĄ, and � > 0 is the tolerance. Set �0 = ýý0ă, ā ≔ 0, and � as the absolute difference between successive values of �. 

For ā = 0, 1, 2 ⋯ do 

1: Compute the matrix �ā = ýýā2.  

2: Find the largest or smallest eigenvalue �̃ and the corresponding unit eigenvector � of �ā using 

any eigenvalue algorithm for matrices. 

3: Update the variable ýā+1 = � and the eigenvalue �ā+1 = �̃. 

4: Break if |�ā+1 2 �ā| < �, set ā = ā + 1. 

End for 

Output: Z-eigenvalue �ā+1 and its associated Z-eigenvector ýā+1. 

 177 

2.4 Convergence analysis 178 

As shown in the main steps of Algorithm 2 and Algorithm 3, the equality constraints in (7) are 179 

not considered in the process of calculation. A natural question arises about whether the algorithms 180 

can converge, and furthermore, whether the algorithms can converge to a Z-eigenvalue of ý. In 181 

this subsection, we handle these issues using properties of extreme eigenvalues and corresponding 182 

eigenvectors of matrices. For simplicity, only the convergence property of Algorithm 3 was 183 

analyzed. The convergence property of Algorithm 2 can be analyzed in a similar way. 184 

Let ýā denote the āth iterate generated by Algorithm 3. According to Steps 2 and 3, in the case 185 

of computing the largest Z-eigenvalue of ý, ýā+1 is the largest eigenvalue of the matrix ýýā2. 186 

Therefore, the quadratic function ć(þ) = þ�(ýýā2)þ = ýýā2þ2 reaches a maximum value �ā+1 187 

at the point þ = ýā+1 over the unit sphere �Ą, i.e., �ā+1 = ýýā2ýā+12 g ýýā2þ2 for all þ ( �Ą. At 188 

the same time, ýā is the largest eigenvalue of the matrix ýýā212 . These results give 189 

Here, the second equality holds because of the symmetric property of ý. From (10), we know that 190 

the sequence {�ā} generated by Algorithm 3 is nondecreasing. On the other side, �ā is computed 191 

by �ā = ýýā212 ýā2, where ýā ( �Ą. Due to the compactness of the unit sphere �Ą, we also know 192 

that the sequence {�ā} is bounded above. Consequently, {�ā} has a unique limit, and we can 193 

readily conclude by posing this as a theorem. 194 

�ā+1 = ýýā2ýā+12 g ýýā2ýā212 = ýýā212 ýā2 = �ā. (10) 
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Theorem 1. Let {�ā} be a sequence generated by Algorithm 3. Then the sequence {�ā} is 195 

nonincreasing and there exists �∗ such that �ā → �∗. 196 

While Theorem 1 ensures that Algorithm 3 always terminates in finitely many iterations, 197 

theoretically, it cannot ensure that the sequence {�ā} converges to a Z-eigenvalue of ý because 198 

the equality constraints in (7) are omitted in the implementation of Algorithm 3. One possible 199 

result is the occurrence of cyclic solutions, that is, two consecutive iterates ýā and ýā+1 that satisfy 200 ýýā2ýā+1 = �āýā+1 , ýýā+12 ýā = �ā+1ýā , and �ā = �ā+1 . However, this situation is rarely 201 

encountered in the numerical experiments presented in the next section. Additionally, how to 202 

theoretically avoid this situation is the subject for future research. 203 

3 Results 204 

In this section, we present some numerical results of the ADM for computing the largest or 205 

smallest Z-eigenvalues of tensors. The proposed ADM was compared with the GEAP method, 206 

which is an adaptive shifted power method first proposed by Kolda and Mayo (2014). All 207 

experiments were performed in MATLAB R2017a and the Tensor Toolbox (Bader et al., 2012) 208 

under a Windows 10 operating system on a laptop with an Intel(R) Core (TM) i7-10510U CPU 209 

and 12 GB RAM. In all numerical experiments, we terminated the computation when the absolute 210 

difference between successive eigenvalues was less than 10210, i.e., |�ā+1 2 �ā| f 10210, or the 211 

number of iterations exceeded the maximum number 500. 212 

In our experiments, we used some typical examples from references (Cui et al., 2014; Kofidis 213 

& Regalia, 2002; Nie & Wang, 2014) to assess the performance of the proposed method in finding 214 

the largest or smallest Z-eigenvalue of a symmetric tensor. All of the largest or smallest Z-215 

eigenvalues in these examples were given in the original literature. Therefore, those desired values 216 

were known in advance. 217 

Example 1 (Kofidis & Regalia, 2002) Let ý ( �[4,3] be the symmetric tensor with entries 218 �1111 = 0.2883, �1112 = −0.0031, �1113 = 0.1973, �1122 = −0.2485, �1223 = 0.1862, �1133 = 0.3847, �1222 = 0.2972, �1123 = −0.2939, �1233 = 0.0919, �1333 = −0.3619, �2222 = 0.1241, �2223 = −0.3420, �2233 = 0.2127, �2333 = 0.2727, �3333 = −0.3054.  

 

The largest and smallest Z-eigenvalue of the tensor ý were respectively 219 �ă�� = 0.8893, �ă�� = (0.6672, 0.7160, 0.9073)�; �ăÿĄ = 21.0954, �ăÿĄ = (20.6447, 20.3357, 0.3043)� .  

We first tested the convergence performance of the proposed ADM in comparison to GEAP. 220 

Figure 1 shows the convergence trajectories of the two methods for computing extreme Z-221 

eigenvalues of ý from Example 1, with the starting point ý0 = (0.0417, 20.5618, 0.6848)�. As 222 

shown on the left in Figure 1, both GEAP and ADM can find the largest Z-eigenvalue 0.8893. 223 
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Until the stopping criterion is met, GEAP runs 63 iterations in 0.2188 seconds, while the proposed 224 

ADM runs only 26 iterations in 0.0313 seconds. When computing the smallest Z-eigenvalue with 225 

the same starting point (right in Figure 1), although ADM runs longer than GEAP, the ADM found 226 

the desired value of -1.0954, while GEAP failed. 227 

To test the performance of the proposed algorithm in finding extreme eigenvalues, we used 228 

1,000 random starting guesses drawn uniformly from [-1, 1]. Both GEAP and ADM were 229 

implemented 1,000 times, each with the same initial point. We listed the number of occurrences 230 

of extreme eigenvalues (#Occu.), the average number of iterations (Iterave), and the average 231 

running time in seconds (CPUave) for the two types of Z-eigenvalues in Tables 1-6. As shown in 232 

Tables 1-6, for the cases of computing the largest eigenvalues, the proposed ADM ran a similar or 233 

slightly larger number of iterations but in a similar or shorter time compared to GEAP. For the 234 

case of computing the smallest Z-eigenvalue, ADM ran slower for Example 1 but ran much faster 235 

for the other examples. It can also be seen from the fourth columns of Tables 1-6 that GEAP can 236 

only obtain the largest Z-eigenvalues with a probability of about 0.55, and the smallest Z-237 

eigenvalue with a probability of about 0.65. By contrast, the proposed ADM could reach the largest 238 

Z-eigenvalues for Examples 2-5 and the smallest Z-eigenvalues for all examples with a probability 239 

of 1. 240 

Example 2 (Nie & Wang, 2014). Consider the symmetric tensor ý ( �[4,Ą] such that 241 �ÿĀāĂ = sin(ÿ + Ā + ā + Ă) , 1 f ÿ, Ā, ā, Ă f Ą.  

In the case of Ą = 5, the largest and smallest Z-eigenvalues of the tensor ý are respectively 242 �ă�� = 7.2595, �ă�� = (0.2686, 0.6150, 0.3959, 20.1872, 20.5982)�; �ăÿĄ = 28.8463, �ăÿĄ = (20.5809, 20.3563, 0.1959, 0.5680, 0.4179)� .  

 243 

Table 2. Comparison results for computing the extreme Z-eigenvalues of ý from Example 2 (Ą = 5). 244 

 245 

Example 3 (Cui et al., 2014). Consider the symmetric tensor ý ( �[4,Ą] such that 246 �ÿĀāĂ = tan(ÿ) + tan(Ā) + tan(ā) + tan (Ă), 1 f ÿ, Ā, ā, Ă f Ą.  

In the case of Ą = 5, we can obtain the largest and smallest Z-eigenvalues of the tensor ý from 247 

the reference as follows. 248 �ă�� = 34.5304, �ă�� = (0.6665, 0.1089, 0.4132, 0.6070, 20.0692)�; �ăÿĄ = 2101.1994, �ăÿĄ = (0.2248, 0.5541, 0.3744, 0.2600, 0.6953)� .  

 249 

Table 3. Comparison results for computing the extreme Z-eigenvalues of ý from Example 3 (Ą = 5). 250 

 251 

Example 4 (Nie & Wang, 2014). Let ý ( �[4,Ą] be a symmetric tensor with 252 �ÿĀāĂ = arctan ((21)ÿ ÿĄ) + arctan ((21)Ā ĀĄ)  + arctan ((21)ā āĄ)  + arctan ((21)Ă ĂĄ).  
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In the case of Ą = 5, the largest and smallest Z-eigenvalues of the tensor ý are respectively 253 �ă�� = 13.0779, �ă�� = (0.3174, 0.5881, 0.1566, 0.7260, 0.0418)�; �ăÿĄ = 223.5740, �ăÿĄ = (0.4403, 0.2382, 0.5602, 0.1354, 0.6459)� . 
 

 

Table 4. Comparison results for computing the extreme Z-eigenvalues of ý from Example 4 (Ą = 5). 254 

 255 

Example 5 (Nie & Wang, 2014). Let ý ( �[4,Ą] be a symmetric tensor with 256 �ÿĀāĂ = (21)ÿÿ + (21)ĀĀ + (21)āā + (21)ĂĂ , 1 f ÿ, Ā, ā, Ă f Ą.  

For Ą = 5, we can get the largest and smallest Z-eigenvalue of the tensor ý with 257 �ă�� = 9.5821, �ă�� = (20.1125, 0.7048, 0.2507, 0.5685, 0.3233)�; �ăÿĄ = 227.0429, �ăÿĄ = (20.6900, 20.1987, 20.4717, 20.2806, 20.4280)� . 
 

 

Table 5. Comparison results for computing the extreme Z-eigenvalues of ý from Example 5 (Ą = 5). 258 

 259 

Besides the point �1 = 9.5821 of the largest Z-eigenvalue, the tensor ý has another stable 260 

eigenvalue �2 = 0. As shown in Figure 2 and Table 5, GEAP will fall into the latter point with a 261 

probability of around 0.4, while ADM can always converge to the previous point. 262 

Example 6 (Sheng & Ni, 2021). Let ý ( �[6,3] be a tensor with 263 �111122 = 115 , �112222 = 115 , �112233 = 2 130 , �333333 = 1, 264 

and �ÿ1⋯ÿ6=0 if (ÿ1, ⋯ ÿ6) is not a permutation of an index in the above. We can get the largest Z-265 

eigenvalue �ă�� = 1 and smallest Z-eigenvalue �ăÿĄ = 0, and these corresponding eigenvectors 266 

are not unique. The comparison results are shown in Table 6, from which we find that GEAP 267 

converges very slowly when computing the smallest eigenvalue of ý. In contrast, ADM reaches 268 

the smallest eigenvalue with only about 12 iterations for each execution. 269 

4 Discussion 270 

In general, algorithms for computing the largest or smallest eigenvalue of a higher order tensor are 271 

prone to getting stuck in local extrema and then converging to an arbitrary eigenvalue of the tensor 272 

depending on the initial conditions. However, the counterpart for symmetric matrices can always 273 

converge to the largest or smallest one. Motivated by this, we proposed combining algorithms for 274 

matrix eigenproblem and tensor optimization techniques in order to obtain extreme eigenvalues. 275 

Specifically, the tensor eigenproblem was split into a series of matrix eigenvalue problems using 276 

a variable splitting method, and then an alternating scheme was proposed to solve the problem. 277 
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To solve the tensor eigenproblems, many algorithms for matrix eigenproblems were extended 278 

to the tensor case. However, these generalizations cannot guarantee the low complexity of these 279 

algorithms, and the global convergence to the extreme eigenvalues is also not ensured. In this paper, 280 

the tensor eigenvalue problem was directly transformed into a series of matrix eigenvalue problems 281 

so that its algorithms could be directly used to solve the original tensor eigenvalue problem. This 282 

method not only overcomes local minima problems existing in direct generalizations, but also has 283 

great potential to speed up the convergence. The experimental results verified the effectiveness 284 

and advancement of the proposed algorithm, which converges rapidly in most cases and reaches 285 

extreme Z-eigenvalues with a significantly higher probability. In many cases, we determined the 286 

extreme eigenvalue with a probability of 1, indicating that we can obtain the extreme eigenvalue 287 

under any given initial value in these cases. This demonstrates the significant robustness of the 288 

proposed method. 289 

However, the proposed algorithm cannot guarantee global convergence for each type of tensor. 290 

For Examples 1 and 6, we could only obtain the largest eigenvalue with a probability of about 0.6. 291 

In future research, the question of why this kind of tensor cannot obtain the extreme eigenvalue 292 

under any initial point will be discussed in more detail. 293 

5 Conclusion 294 

In this paper, we transformed a tensor Z-eigenvalue problem into a series of matrix eigenvalue 295 

problems using a variable splitting method and proposed an alternating scheme for computing the 296 

largest or smallest Z-eigenvalue of symmetric tensors. Just like the classical power method, which 297 

constantly uses the intermediate iterates to construct a vector, the proposed algorithm uses them to 298 

construct a matrix and computes the eigenvalues and corresponding eigenvectors of the matrix. 299 

We proved the convergence of the proposed method and pointed out a theoretical defect, which 300 

we intend to study in-depth in future work. The numerical results were reported for some testing 301 

examples, which showed that the proposed method converged much faster than GEAP in most 302 

cases and could reach the extreme Z-eigenvalues with a significantly higher probability. 303 

 304 

 305 
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Figure 1
Convergence comparison of the GEAP method and the proposed method for computing
the largest and smallest Z-eigenvalue of A from Example 1.

PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77860:0:1:NEW 26 Oct 2022)

Manuscript to be reviewedComputer Science



PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77860:0:1:NEW 26 Oct 2022)

Manuscript to be reviewedComputer Science



Figure 2
The largest Z-eigenvalues computed by GEAP and ADM in the 100 runs on the tensor A
from Example 5.
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Table 1(on next page)

Comparison results for computing extreme Z-eigenvalues of A from Example 1.
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1

2 Table 1. Comparison results for computing extreme Z-eigenvalues of  from Example 1.�
Type of 

Z-eigenvalue
Method � #Occu. Iterave CPUave

GEAP 0.8893 51.00% 27.59 0.0356����
ADM 0.8893 57.10% 28.96 0.0165

GEAP -1.0953 41.10% 12.18 0.0121����
ADM -1.0953 100.00% 43.52 0.0258

3
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Table 2(on next page)

Comparison results for computing the extreme Z-eigenvalues of A from Example 2
(n=5).
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1

2 Table 2. Comparison results for computing the extreme Z-eigenvalues of  from Example 2 .� (�= 5)
Type of 

Z-eigenvalue
Method � #Occu. Iterave CPUave

GEAP 7.2595 49.80% 49.30 0.0701����
ADM 7.2595 100.00% 117.20 0.0806

GEAP -8.8463 51.60% 49.85 0.0692����
ADM -8.8463 100.00% 57.41 0.0389

3

4
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Table 3(on next page)

Comparison results for computing the extreme Z-eigenvalues of A from Example 3
(n=5).

PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77860:0:1:NEW 26 Oct 2022)

Manuscript to be reviewedComputer Science



1

2 Table 3. Comparison results for computing the extreme Z-eigenvalues of  from Example 3 .� (�= 5)
Type of 

Z-eigenvalue
Method � #Occu. Iterave CPUave

GEAP 34.5304 62.30% 27.52 0.0341����
ADM 34.5304 100.00% 56.26 0.0362

GEAP -101.1994 72.00% 14.00 0.0184����
ADM -101.1994 100.00% 13.16 0.0057

3

�
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Table 4(on next page)

Comparison results for computing the extreme Z-eigenvalues of A from Example 4
(n=5).
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1 Table 4. Comparison results for computing the extreme Z-eigenvalues of  from Example 4 .� (�= 5)
Type of 

Z-eigenvalue
Method � #Occu. Iterave CPUave

GEAP 13.0779 63.20% 22.01 0.0263����
ADM 13.0779 100.00% 30.72 0.0166

GEAP -23.5741 69.10% 15.21 0.0161����
ADM -23.5741 100.00% 15.32 0.0030

2

3

�

5

6

7

PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77860:0:1:NEW 26 Oct 2022)

Manuscript to be reviewedComputer Science



Table 5(on next page)

Comparison results for computing the extreme Z-eigenvalues of A from Example 5
(n=5).
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1

2 Table 5. Comparison results for computing the extreme Z-eigenvalues of  from Example 5 .� (�= 5)
Type of 

Z-eigenvalue
Method � #Occu. Iterave CPUave

GEAP 9.5821 61.00% 25.59 0.0309����
ADM 9.5821 100.00% 50.69 0.0295

GEAP -27.0429 71.60% 13.47 0.0153����
ADM -27.0429 100.00% 12.86 0.0050

3

�

�
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Table 6(on next page)

Comparison results for computing the extreme Z-eigenvalues of A from Example 6.
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1 Table �� Comparison results for computing the extreme Z-eigenvalues of  from Example �.�
T��	 of 

Z-eigenvalue
MethoM � #Occu. Iterave CPUave

GEAP 1 51.50% 7.56 0.0077����
ADM 1 �
���
 12.40 0.0066

GEAP 0 99.90% 231.32 0.3365����
ADM 0 100.00% 12.15 0.0027

2

3
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