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ABSTRACT
Tensor eigenproblems have wide applications in blind source separation, magnetic res-
onance imaging, and molecular conformation. In this study, we explore an alternating
directionmethod for computing the largest or smallest Z-eigenvalue and corresponding
eigenvector of an even-order symmetric tensor. The method decomposes a tensor Z-
eigenproblem into a series of matrix eigenproblems that can be readily solved using off-
the-shelf matrix eigenvalue algorithms. Our numerical results show that, in most cases,
the proposed method converges over two times faster and could determine extreme
Z-eigenvalues with 20–50% higher probability than a classical power method-based
approach.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Higher-order tensor, Z-eigenvalues, Power method, Alternating direction method

INTRODUCTION
The tensor eigenproblem has been of great interest since the seminal works ofQi (2005) and
Lim (2005). It has numerous applications in several areas, including automatic control (Ni,
Qi & Wang, 2008), magnetic resonance imaging (Qi, Yu & Wu, 2010; Qi, Yu & Xu, 2013;
Schultz & Seidel, 2008), statistical data analysis (Zhang & Golub, 2001), image analysis
(Zhang, Zhou & Peng, 2013), signal processing and navigation (Kofidis & Regalia, 2001;
Ashourian & Sharifi-Tehrani, 2022; Sharifi-Tehrani & Sabahi, 2022; Sharifi-Tehrani, Sabahi
& Danaee, 2021), and higher-order Markov chains (Li & Ng, 2014).

Unlike formatrices, there are several definitions of tensor eigenvalues and corresponding
eigenvectors. For example, Qi (2005) proposed the definition of an H-eigenvalue
and Z-eigenvalue as being equivalent to the lm-eigenvalue and l2-eigenvalue in Lim
(2005), respectively. In Chang, Pearson & Zhang (2009), these definitions were unified by
employing a positive definite tensor B while m was even. In this work, we mainly focus on
computing Z-eigenvalues of symmetric tensors.

In general, the calculation of all eigenvalues of a higher-order tensor is very difficult
due to the NP-hardness of deciding tensor eigenvalues over R (Hillar & Lim, 2013).
Fortunately, one only needs to compute the largest or smallest eigenvalue of a tensor in
certain scenarios. For instance, to guarantee the positive definiteness of the diffusivity
function in higher-order diffusion tensor imaging, we just need to compute the smallest
Z-eigenvalue of the tensor and make sure it is nonnegative. In automatic control (Ni,
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Qi & Wang, 2008), the smallest Z-eigenvalue of a tensor is used to determine whether a
nonlinear autonomous system is stable or not. According to the Perron–Frobenius theory,
the spectral radius of a nonnegative tensor is the largest Z-eigenvalue of the tensor (Chang,
Pearson & Zhang, 2008).

To obtain the extreme eigenvalues of a symmetric tensor, De Lathauwer, De Moor
& Vandewalle (2000) introduced a symmetric higher-order power method (S-HOMP).
However, it was pointed out by Kofidis & Regalia (2002) that the S-HOMP method is
not guaranteed to converge while the objective function is not convex. To address this
problem, Kolda & Mayo (2011) presented a shifted S-HOMP (SS-HOMP) for solving the
eigenproblem, which is guaranteed to converge to a tensor eigenpair. A major limitation of
SS-HOMP is the difficulty in selecting an appropriate shift. Hence, Kolda & Mayo (2014)
further extended the SS-HOMP method to an adaptive version for computing extreme
eigenvalues, called GEAP, which chooses the shift automatically.

Over the past few years, there has been extensivework onhandling the extreme eigenvalue
problem of symmetric tensors by solving different nonlinearly constrained models. Hu,
Huang & Qi (2013) proposed a sequential semidefinite relaxations approach to compute
extreme Z-eigenvalues. Han (2012) employed the BFGS method to solve an unconstrained
optimization problem for finding real eigenvalues of even-order symmetric tensors. Cui,
Dai & Nie (2014) computed all of the real Z-eigenvalues of symmetric tensors using a
Jacobian semidefinite relaxation technique. Using the method proposed by Qi, Wang &
Wang (2009) in which Z-eigenpairs are computed directly in a lower dimensional case, a
sequential subspace projection method (SSPM) (Hao, Cui & Dai, 2015) was proposed to
obtain the extreme Z-eigenvalues of symmetric tensors. All the methods mentioned above
converge linearly or superlinearly. To speed up convergence, Jaffe, Weiss & Nadler (2018)
presented a fast iterative Newton-based method that converges at a locally quadratic rate.
Based on the idea of the SSPM method (Hao, Cui & Dai, 2015), Yu et al. (2016) proposed
an adaptive gradient (AG) method in which an inexact line search, rather than an optimal
stepsize, was adopted. The experimental results presented in Yu et al. (2016) showed that
the AG method converges much faster and finds the extreme eigenvalues with a higher
probability than those methods using power algorithms. For more related work, we refer
readers to Benson & Gleich (2019), Chen, Han & Zhou (2016), Sheng & Ni (2021), Xiong et
al. (2022), and references therein.

Despite the fact that the extreme eigenvalue problem has drawn a lot of attention in
recent years, there are still some issues to address. For example, all algorithms mentioned
above are not guaranteed to converge to the largest or smallest eigenvalue, which is exactly
what we want to obtain in some applications (Chang, Pearson & Zhang, 2008; Ni, Qi &
Wang, 2008), and instead only converge to an arbitrary eigenvalue of A depending on
the initial conditions. However, in the case of symmetric matrices, those counterpart
algorithms can always converge to the largest or smallest eigenvalue. Motivated by this,
we propose to determine extreme eigenvalues by combining the method of solving matrix
eigenvalue problems and tensor optimization techniques. To this end, we develop a novel
method for computing the largest or smallest Z-eigenvalue of symmetric tensors using the
variable splitting method.
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The main contributions of this work are listed as follows:

• We reformulate a typical tensor Z-eigenvalue problem as an equivalent multi-variable
linearly constrained problem using the variable splitting method, which has a structure
similar to the matrix eigenvalue problem.
• We design an efficient algorithm to solve the reformulated problem, in which the
tensor Z-eigenproblem is decomposed into a series of matrix eigenproblems that has
been extensively studied and can be readily solved using off-the-shelf matrix eigenvalue
algorithms.

The remainder of the article is organized as follows. In the next section, we formulate
the tensor eigenproblem and introduce some classical methods for solving it. In Section 3,
we propose a simple and efficient algorithm for the problem and analyze its convergence
property. Section 4 reports some experimental results to show the efficiency of our proposed
method. Finally, we conclude this article in Section 5.

PROBLEM FORMULATION AND RELATED WORK
Problem formulation
An mth order n-dimensional real tensor consisting of nm entries in R:

A=
(
ai1i2···im

)
,ai1i2···im ∈R,1≤ i1,i2,...,im≤ n.

A is called symmetric if the value of ai1i2···im is invariant under any permutation of
its indices i1,i2,...,im. For convenience, we use S[m,n] to denote the set of all m th order
n-dimensional real symmetric tensors.

Throughout this article, we use Axm−k(0≤ k ≤m) to simply denote a k th order
n-dimensional tensor defined by

(
Axm−k

)
i1i2···ik

=

n∑
ik+1,...,im=1

ai1i2···ik ik+1···imxik+1 ···xim, (1)

for all 1≤ i1,i2,...,ik ≤ n and 1≤ k ≤m.
Obviously, Axm is a scalar, Axm−1 is a vector, and Axm−2 is a matrix. For brevity, let

Axpyq denote the result of
(
Axp

)
yq=

(
Axm−(m−p)

)
ym−p−(m−p−q), where 0≤ p,q,p+q≤

m, and Axp11 xp22 ···x
pk
2 can be computed in a similar way, where 0≤ p1,p2,...,pk ≤m, and

k is an arbitrary integer such that 0≤ p1+p2+···+pk ≤m.
Using the definition of Eq. (1), an mth degree homogeneous polynomial function f (x)

with real coefficients can be represented by a symmetric tensor A, i.e., f (x)=Axm. We
call A positive definite tensor if Axm> 0 for all x ∈Rn

\{0}. It is easy to understand that
m must be even in this case.

As mentioned before, there are several definitions of tensor eigenvalues and
corresponding eigenvectors. In this work, we mainly focus on computing Z-eigenvalues of
symmetric tensors defined as follows.
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Definition 1 (Qi, 2005). Let A be an m th order n-dimensional symmetric real tensor.
If there exists a nonzero vector x ∈Rn and a scalar λ∈R satisfying{
Axm−1= λx,
xTx = 1,

(2)

then we call the scalar λ a Z-eigenvalue of A, and the vector x a Z-eigenvector associated
with the Z-eigenvalue λ. We also say the pair (λ,x) is a Z-eigenpair of A.

Iterative algorithms to find the largest or smallest eigenvalues and corresponding
eigenvectors are usually designed to solve a nonlinearly constrained optimization problem

maxf (x)=Axm

s.t .x ∈Sn−1, (3)

where Sn−1 denotes the unit sphere in the Euclidean norm, i.e., Sn−1={x ∈Rn
|‖x‖2= 1}.

We can determine the gradient and Hessian of the objective function of Eq. (3) through
some simple calculations, as follows:

g (x)≡∇f (x)=mAxm−1 (4)

and

H (x)≡∇2f (x)=m(m−1)Axm−2 (5)

Some existing methods for Z-eigenproblems
In this subsection, we introduce some typical methods for computing Z-eigenpairs by
solving the problem Eq. (3) or its variants. From Theorem 3.2 of Kolda & Mayo (2011), we
know that (λ,x) is a Z-eigenpair of A if and only if x is a constrained stationary point of
Eq. (3) and λ=Axm/‖x‖. Based on the theorem, De Lathauwer, De Moor & Vandewalle
(2000) proposed the S-HOPM method for solving the problem Eq. (3) to find the best
symmetric rank-1 approximation of a symmetric tensor A∈ S[m,n], which is equivalent to
finding the largest Z-eigenvalue of A (Qi, 2005). The main step of the S-HOPM algorithm
is

xk+1=
Axm−1k∥∥Axm−1k

∥∥ ,λk+1=Axmk+1. (6)

Under the assumption of convexity on Axm, S-HOPM could be convergent for even-
order tensors. However, it has been pointed out that S-HOPM can not guarantee to
converge globally (Kofidis & Regalia, 2002). To address this issue, Kolda & Mayo (2011)
modified the objective function to

f̂ (x)=Axm+α‖x‖m, (7)

and proposed the SS-HOPM for solving Eq. (3) with the objective function Eq. (7). SS-
HOPM has a similar iterative scheme to S-HOPM, but at the same time has a shortcoming
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in the choice of the shift α. To overcome the limitation, the same authors proposed an
adaptive method, called GEAP, which is monotonically convergent and much faster than
the SS-HOPM method due to its adaptive shift choice of the shift. GEAP is originally
designed to calculate generalized eigenvalues (Chang, Pearson & Zhang, 2009) with a
positive definite tensor B. The authors also presented a specialization of the method to the
Z-eigenvalue problem, which is equivalent to SS-HOPM except for the adaptive shift. The
details of the GEAP specialization are briefly summarized in Algorithm 1.

Algorithm 1. GEAP method for the problem Eq. (3) with the objective function Eq. (7)
Initialization: Given a tensorA ∈ S[m,n], an initial vector x0 ∈ Rn, and a tolerance ε > 0.
Let β = 1 if we want to compute the largest Z-eigenvalue, and let β = −1 if we want to compute
the smallest Z-eigenvalue. Let τ be the tolerance on being positive/negative definite.

1: x0← x0/‖x0‖, and λ0←Axm0
For k= 0, 1, ··· do

2: Hk←m(m−1)Axm−2k

3: αk←βmax0,(τ−λmin(βHk))/m
4: xk+1←β(Axm−1k +αxk)
5: xk+1= xk+1/‖xk+1‖
6: λk+1←Axmk+1
7: Break if |λk+1−λk |<ε

End for
Output: Z-eigenvalue λ and its associated Z-eigenvector x .

GEAP is a simple and effective approach for computing Z-eigenvalues of a symmetric
tensor, but it is not guaranteed to determine the largest eigenvalue or the smallest one,
which is exactly the goal in some applications. To obtain these extreme eigenvalues with
a higher probability, we propose to reformulate the problem Eq. (3) to make its structure
similar to a matrix eigenproblem, so that it can be solved by existing methods for matrices
that always converge to extreme eigenvalues.

PROPOSED METHOD
An alternating direction method for Z-eigenproblems
Motivated by that algorithms for solving matrix eigenproblem can always converge to the
largest or smallest eigenvalue, we propose to compute extreme eigenvalues by combining
the method of solving the matrix eigenproblem and tensor optimization techniques. To
this end, we adopt a variable splitting strategy in which we introduce some superfluous
variables and equality constraints over these variables. Specifically, the term Axm with
even number m is rewritten as Ax21x

2
2 ···x

2
p , where p=m/2, with the equality constraints

xi = xj(i,j = 1,2,...,p). Therefore, problem Eq. (3) is transformed into the following
model:
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max f̃ (x)=Ax21x
2
2 ···x

2
p

s.t .xi= xj,i,j = 1,2,...,p (8)

xi ∈Sn−1,i= 1,2,...,p.

When A is symmetric and conditions xi= xj = x(i,j = 1,2,...,p) hold, we can obtain
Ax21x

2
2 ···x

2
p =Axm. Using this fact, the equivalence between problems Eqs. (3) and (8) can

be easily checked. It is also worthwhile to note that if all variables except xi are available and
those equality constraints are not considered, the problem Eq. (8) reduces to the standard
matrix eigenproblem for the matrix Ax21 ···x

2
i−1x

2
i+1 ···x

2
p .

Directly solving the problem Eq. (8) may be inefficient because its special structure is not
considered, and in doing so, it is easy to converge to a locally optimal point, thus the largest
or smallest eigenvalue could not be determined. On the other hand, it is comparatively easy
to compute extreme eigenvalues for the matrix cases. In Eq. (8), if all variables except xi are
known and those equality constraints are not considered, solving Eq. (8) can exactly get the
largest eigenvalue and the corresponding eigenvector of the matrix Ax21 ···x

2
i−1x

2
i+1 ···x

2
p .

Following this observation and the fact that there aremany efficient algorithms available for
tackling matrix eigenproblems, we propose a simple alternating direction scheme between
solving different matrix eigenproblems for the problem Eq. (8). The details of this method
are given in Algorithm 2.

Algorithm 2 Alternating direction method (ADM) for Eq. (8)
Initialization: Given an even-order tensorA ∈ S[m,n], initial unit vectors xi ∈ Rn,i=1 ,2,...,p,
where p = m/2, and ε > 0 is the tolerance. Set x = xp, λ = Axm, and δ as the absolute
difference between successive values of λ.

While δ > ε
For i= 1,2,...,p do

1: Compute the matrix A=Ax21 ···x
2
i−1x

2
i+1 ···x

2
p .

2: Find the largest or smallest eigenvalue λ̃ and the corresponding unit eigenvector v of A
using any eigenvalue algorithm for matrices.

3: Update the variable xi= v .
End for
4: Set x = xp and λ=Axm.

End while
Output: Z-eigenvalue λ and its associated Z-eigenvector x .

The main computational cost lies in tensor-vector multiplications Ax21 ···x
2
i−1x

2
i+1 ···x

2
p

and matrix eigenvalue computations. For an mth order n-dimensional symmetric tensor
A, it costs O(mnm) operations to compute the matrix A=Ax21 ···x

2
i−1x

2
i+1 ···x

2
p . The cost

of computing the largest or smallest eigenvalue of the matrix A is (4/3)n3, which is much
less than the products for large n. Compared with GEAP, which has similar computations
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to our method but needs to compute tensor multiplication at least twice in each iteration,
our method can save about half of the time because it only needs to calculate tensor
multiplication once in each iteration. This can be verified in the numerical experiments in
Section 4.

Specialization of ADM to fourth-order tensors
The proposed ADM transforms the tensor eigenvalue problem Eq. (3) into a series of
matrix eigenvalue problems that are easy to solve. For fourth-order tensors, there are
two related variables of x1 and x2, and the inner iteration can be omitted because p= 1.
According to the symmetry property of A, we also have Ax21x

2
2 =Ax22x

2
1 . Therefore, it is

not necessary to explicitly write out the variable x2, and the procedure of Algorithm 2 can
be simply described, as shown in Algorithm 3, for fourth-order tensors. To better describe
the iterative steps, we use xk to denote a kth iterate in Algorithm 3, rather than the splitting
variable as in Algorithm 2.

Algorithm 3 Specialization of the ADM to fourth-order tensors
Initialization: Given a tensorA ∈ S[4,n], initial unit vectors x0 ∈ Rn, and ε > 0 is the tolerance.
Set λ0=Axm0 , k := 0, and δ as the absolute difference between successive values of λ.

For k= 0,1,2··· do
1: Compute the matrix Ak =Ax2k .
2: Find the largest or smallest eigenvalue λ̃ and the corresponding unit eigenvector v of Ak
using any eigenvalue algorithm for matrices.

3: Update the variable xk+1= v and the eigenvalue λk+1= λ̃.
4: Break if |λk+1−λk |<ε, set k= k+1.

End for
Output: Z-eigenvalue λk+1 and its associated Z-eigenvector xk+1.

Convergence analysis
As shown in the main steps of Algorithm 2 and Algorithm 3, the equality constraints
in Eq. (8) are not considered in the process of calculation. A natural question arises
about whether the algorithms can converge, and furthermore, whether the algorithms can
converge to a Z-eigenvalue ofA. In this subsection, we handle these issues using properties
of extreme eigenvalues and corresponding eigenvectors of matrices. For simplicity, only the
convergence property of Algorithm 3 is analyzed. The convergence property of Algorithm
2 can be analyzed in a similar way.

Let xk denote the kth iterate generated by Algorithm 3. According to Steps 2 and 3, in the
case of computing the largest Z-eigenvalue ofA, xk+1 is the largest eigenvalue of the matrix
Ax2k . Therefore, the quadratic function q

(
y
)
= yT

(
Ax2k

)
y =Ax2k y

2 reaches a maximum
value λk+1 at the point y = xk+1 over the unit sphere Sn, i.e., λk+1=Ax2k x

2
k+1≥Ax2k y

2 for
all y ∈ Sn. At the same time, xk is the largest eigenvalue of the matrix Ax2k−1. These results
give

λk+1=Ax2k x
2
k+1≥Ax2k x

2
k−1=Ax2k−1x

2
k = λk . (9)
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Here, the second equality holds because of the symmetric property of A. From Eq. (9),
we know that the sequence λk generated by Algorithm 3 is nondecreasing. On the other
side, λk is computed by λk =Ax2k−1x

2
k , where xk ∈ Sn. Due to the compactness of the unit

sphere Sn, we also know that the sequence λk is bounded above. Consequently, λk has a
unique limit, and we can readily conclude by posing this as a theorem.

Theorem 1. Let λk be a sequence generated by Algorithm 3. Then the sequence λk is
nonincreasing and there exists λ∗ such that λk→ λ∗.

While Theorem 1 ensures that Algorithm 3 always terminates in finitely many iterations,
theoretically, it cannot ensure that the sequence λk converges to a Z-eigenvalue of A
because the equality constraints in Eq. (8) are omitted in the implementation of Algorithm
3. One possible result is the occurrence of cyclic solutions, that is, two consecutive iterates
xk and xk+1 that satisfy Ax2k xk+1= λkxk+1, Ax2k+1xk = λk+1xk , and λk = λk+1. However,
this situation is rarely encountered in the numerical experiments presented in the next
section. Additionally, how to theoretically avoid this situation is the subject for future
research.

NUMERICAL EXPERIMENTS
In this section, we present some numerical results of the ADM for computing the largest or
smallest Z-eigenvalues of tensors. The proposed ADM is compared with the GEAPmethod,
which is an adaptive shifted power method first proposed by Kolda & Mayo (2014), and the
AG method (Yu et al., 2016), which is an adaptive gradient method with inexact stepsize.
All experiments are performed in MATLAB R2017a and the Tensor Toolbox (Bader &
Kolda, 2012) under a Windows 10 operating system on a laptop with an Intel(R) Core
(TM) i7-10510U CPU and 12 GB RAM. In all numerical experiments, we terminate the
computationwhen the absolute difference between successive eigenvalues is less than 10−10,
i.e., |λk+1−λk | ≤ 10−10, or the number of iterations exceeded the maximum number 500.

In our experiments, we use some typical examples from references (Cui, Dai & Nie,
2014;Kofidis & Regalia, 2002;Nie & Wang, 2014) to assess the performance of the proposed
method in finding the largest or smallest Z-eigenvalue of a symmetric tensor. All of the
largest or smallest Z-eigenvalues in these examples are given in the original literature.
Therefore, those desired values are known in advance.

Example 1 (Kofidis & Regalia, 2002) Let A∈S[4,3] be the symmetric tensor with entries

a1111= 0.2883, a1112=−0.0031, a1113= 0.1973, a1122=−0.2485,

a1223= 0.1862, a1133= 0.3847, a1222= 0.2972, a1123=−0.2939,

a1233= 0.0919, a1333=−0.3619, a2222= 0.1241, a2223=−0.3420,

a2233= 0.2127, a2333= 0.2727, a3333=−0.3054.

The largest and smallest Z-eigenvalue of the tensor A are respectively
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Figure 1 Convergence comparison of the GEAPmethod and the proposed method for computing the
largest and smallest Z-eigenvalue ofA from Example 1.

Full-size DOI: 10.7717/peerjcs.1242/fig-1

λmax = 0.8893,vmax = (0.6672,0.7160,0.9073)T ;

λmin=−1.0954,vmin= (−0.6447,−0.3357,0.3043)T .

We first test the convergence performance of the proposedADM in comparison toGEAP.
Figure 1 shows the convergence trajectories of the two methods for computing extreme Z-
eigenvalues of A from Example 1, with the starting point x0= (0.0417,−0.5618,0.6848)T .
As shown on the left in Fig. 1, both GEAP and ADM can find the largest Z-eigenvalue
0.8893. Until the stopping criterion is met, GEAP runs 63 iterations in 0.2188 s, while
the proposed ADM runs only 26 iterations in 0.0313 s. When computing the smallest
Z-eigenvalue with the same starting point (right in Fig. 1), although ADM runs longer than
GEAP, the ADM find the desired value of −1.0954, while GEAP fail.

To test the performance of the proposed algorithm in finding extreme eigenvalues, 1,000
random starting guesses drawn uniformly from [-1, 1] are employed in the experiments.
All three methods are implemented 1,000 times, each with the same initial point. We
list the number of occurrences of extreme eigenvalues (#Occu.), the average number of
iterations (Iterave), and the average running time in seconds (CPUave) for the two types
of Z-eigenvalues in Tables 1, 2, 3, 4, 5 and 6. As shown in Tables 1–6, for the cases of
computing the largest eigenvalues, the proposed ADM runs a similar or slightly larger
number of iterations but in a similar or shorter time compared to both GEAP and AG.
For the case of computing the smallest Z-eigenvalue, ADM runs slower for Example 1 but
runs much faster for the other examples. It can also be seen from the fourth columns of
Tables 1–6 that GEAP can only obtain the largest Z-eigenvalues with a probability of about
0.55, and the smallest Z-eigenvalue with a probability of about 0.65. AG performs clearly
better than GEAP. The proposed ADM performs best in almost all cases, which can reach
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Table 1 Comparison results for computing extreme Z-eigenvalues ofA from Example 1.

Type of Z-eigenvalue Method λ #Occu. Iterave CPUave

GEAP 0.8893 51.00% 27.59 0.0356
AG 0.8893 57.60% 12.97 0.0202λmax

ADM 0.8893 57.10% 28.96 0.0165
GEAP −1.0953 41.10% 12.18 0.0121
AG −1.0953 52.50% 8.24 0.0185λmin

ADM −1.0953 100.00% 43.52 0.0258

Note.
The best results are in bold.

Table 2 Comparison results for computing the extreme Z-eigenvalues ofA from Example 2 (n= 5).

Type of Z-eigenvalue Method λ #Occu. Iterave CPUave

GEAP 7.2595 49.80% 49.30 0.0701
AG 7.2595 60.90% 19.91 0.0334λmax

ADM 7.2595 100.00% 117.20 0.0806
GEAP −8.8463 51.60% 49.85 0.0692
AG −8.8463 77.80% 23.29 0.0385λmin

ADM −8.8463 100.00% 57.41 0.0389

Note.
The best results are in bold.

the largest Z-eigenvalues for Examples 2-5 and the smallest Z-eigenvalues for all examples
with a probability of 1.

Example 2 (Nie & Wang, 2014). Consider the symmetric tensor A∈S[4,n] such that

aijkl = sin
(
i+ j+k+ l

)
,1≤ i,j,k,l ≤ n.

In the case of n= 5, the largest and smallest Z-eigenvalues of the tensorA are respectively

λmax = 7.2595,vmax = (0.2686,0.6150,0.3959,−0.1872,−0.5982)T ;

λmin=−8.8463,vmin= (−0.5809,−0.3563,0.1959,0.5680,0.4179)T .

Example 3 (Cui, Dai & Nie, 2014). Consider the symmetric tensor A∈S[4,n] such that

aijkl = tan(i)+ tan
(
j
)
+ tan(k)+ tan(l),1≤ i,j,k,l ≤ n.

In the case of n= 5, we can obtain the largest and smallest Z-eigenvalues of the tensor
A from the reference as follows.

λmax = 34.5304,vmax = (0.6665,0.1089,0.4132,0.6070,−0.0692)T ;

λmin=−101.1994,vmin= (0.2248,0.5541,0.3744,0.2600,0.6953)T .

Example 4 (Nie & Wang, 2014). Let A∈S[4,n] be a symmetric tensor with

aijkl = arctan
(
(−1)i

i
n

)
+arctan

(
(−1)j

j
n

)
+arctan

(
(−1)k

k
n

)
+arctan

(
(−1)l

l
n

)
.
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Table 3 Comparison results for computing the extreme Z-eigenvalues ofA from Example 3 (n= 5).

Type of Z-eigenvalue Method λ #Occu. Iterave CPUave

GEAP 34.5304 62.30% 27.52 0.0341
AG 34.5304 92.10% 14.54 0.0350λmax

ADM 34.5304 100.00% 56.26 0.0362
GEAP −101.1994 72.00% 14.00 0.0184
AG −101.1994 98.90% 9.37 0.0149λmin

ADM −101.1994 100.00% 13.16 0.0057

Note.
The best results are in bold.

Table 4 Comparison results for computing the extreme Z-eigenvalues ofA from Example 4 (n= 5).

Type of Z-eigenvalue Method λ #Occu. Iterave CPUave

GEAP 13.0779 63.20% 22.01 0.0263
AG 13.0779 93.00% 12.80 0.0209λmax

ADM 13.0779 100.00% 30.72 0.0166
GEAP −23.5741 69.10% 15.21 0.0161
AG −23.5741 97.20% 10.09 0.0193λmin

ADM −23.5741 100.00% 15.32 0.0030

Note.
The best results are in bold.

Table 5 Comparison results for computing the extreme Z-eigenvalues ofA from Example 5 (n= 5).

Type of Z-eigenvalue Method λ #Occu. Iterave CPUave

GEAP 9.5821 61.00% 25.59 0.0309
AG 9.5821 91.70% 14.03 0.0285λmax

ADM 9.5821 100.00% 50.69 0.0295
GEAP −27.0429 71.60% 13.47 0.0153
AG −27.0429 98.40% 9.13 0.0159λmin

ADM −27.0429 100.00% 12.86 0.0050

Note.
The best results are in bold.

In the case of n= 5, the largest and smallest Z-eigenvalues of the tensorA are respectively

λmax = 13.0779,vmax = (0.3174,0.5881,0.1566,0.7260,0.0418)T ;

λmin=−23.5740,vmin= (0.4403,0.2382,0.5602,0.1354,0.6459)T .

Example 5 (Nie & Wang, 2014). Let A∈S[4,n] be a symmetric tensor with

aijkl =
(−1)i

i
+
(−1)j

j
+
(−1)k

k
+
(−1)l

l
,1≤ i,j,k,l ≤ n.
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Table 6 Comparison results for computing the extreme Z-eigenvalues ofA from Example 6.

Type of Z-eigenvalue Method λ #Occu. Iterave CPUave

GEAP 1 51.50% 7.56 0.0077
AG 1 82.80% 6.28 0.0054λmax

ADM 1 64.70% 12.40 0.0066
GEAP 0 99.90% 231.32 0.3365
AG 0 100.00% 22.73 0.0595λmin

ADM 0 100.00% 12.15 0.0027

Note.
The best results are in bold.

 
 

Figure 2 The largest Z-eigenvalues computed by GEAP and ADM in the 100 runs on the tensorA
from Example 5.

Full-size DOI: 10.7717/peerjcs.1242/fig-2

For n= 5, we can get the largest and smallest Z-eigenvalue of the tensor A with

λmax = 9.5821,vmax = (−0.1125,0.7048,0.2507,0.5685,0.3233)T ;

λmin=−27.0429,vmin= (−0.6900,−0.1987,−0.4717,−0.2806,−0.4280)T .

Besides the point λ1 = 9.5821 of the largest Z-eigenvalue, the tensor A has another
stable eigenvalue λ2= 0. As shown in Figure 2 and Table 5, GEAP falls into the latter point
with a probability of around 0.4, while ADM can always converge to the previous point.

Example 6 (Sheng & Ni, 2021). Let A∈S[6,3] be a tensor with

a111122=
1
15
,a112222=

1
15
,a112233=−

1
30
,a333333= 1,

and ai1···i6 =0 if (i1 ···i6) is not a permutation of an index in the above. We can get the
largest Z-eigenvalue λmax = 1 and smallest Z-eigenvalue λmin= 0, and these corresponding
eigenvectors are not unique. The comparison results are shown in Table 6, from which
we find that GEAP converges very slowly when computing the smallest eigenvalue of A.
In contrast, ADM reaches the smallest eigenvalue with only about 12 iterations for each
execution.

DISCUSSION
In general, algorithms for computing the largest or smallest eigenvalue of a higher-order
tensor are prone to getting stuck in local extrema and then converging to an arbitrary
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eigenvalue of the tensor depending on the initial conditions. However, the counterpart
for symmetric matrices can always converge to the largest or smallest one. Motivated by
this, we propose combining algorithms for matrix eigenproblem and tensor optimization
techniques in order to obtain extreme eigenvalues. Specifically, the tensor eigenproblem
is split into a series of matrix eigenvalue problems using a variable splitting method, and
then an alternating scheme is proposed to solve the problem.

To solve the tensor eigenproblems, many algorithms for matrix eigenproblems are
extended to the tensor case. However, these generalizations cannot guarantee the low
complexity of these algorithms, and the global convergence to the extreme eigenvalues
is also not ensured. In this article, the tensor eigenvalue problem is directly transformed
into a series of matrix eigenvalue problems so that its algorithms can be directly used
to solve the original tensor eigenvalue problem. This method not only overcomes local
minima problems existing in direct generalizations, but also has great potential to speed
up the convergence. The experimental results verify the effectiveness and advancement
of the proposed algorithm, which converges rapidly in most cases and reaches extreme
Z-eigenvalues with a significantly higher probability. In many cases, we determine the
extreme eigenvalue with a probability of 1, indicating that we can obtain the extreme
eigenvalue under any given initial value in these cases. This demonstrates the significant
robustness of the proposed method.

However, the proposed algorithm cannot guarantee global convergence for each type of
tensor. For Examples 1 and 6, we could only obtain the largest eigenvalue with a probability
of about 0.6. In future research, the question of why this kind of tensor cannot obtain the
extreme eigenvalue under any initial point will be discussed in more detail.

CONCLUSION
In this article, we transform a tensor Z-eigenvalue problem into a series ofmatrix eigenvalue
problems using a variable splitting method and propose an alternating scheme for
computing the largest or smallest Z-eigenvalue of symmetric tensors. Just like the classical
power method, which constantly uses the intermediate iterates to construct a vector, the
proposed algorithm uses them to construct a matrix and computes the eigenvalues and
corresponding eigenvectors of the matrix. We analyze the convergence properties of the
proposed method which is verified in the numerical experiments. The limitations of this
work are twofold. First, as the authors note themselves, it can only ensure the convergence
of eigenvalues, but not the convergence of eigenvectors due to the possible existence of
cyclic solutions. Second, as can be seen from the numerical examples, it cannot obtain
the largest eigenvalues with a 100% probability. The numerical results are reported for
some testing examples, which showed that the proposed method converged much faster
than both GEAP and AG in most cases and could reach the extreme Z-eigenvalues with a
significantly higher probability than GEAP.
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