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ABSTRACT
Computation offloading has effectively solved the problem of terminal devices
computing resources limitation in hospitals by shifting the medical image diagnosis
task to the edge servers for execution. Appropriate offloading strategies for diagnostic
tasks are essential. However, the risk awareness of each user and the multiple
expenses associated with processing tasks have been ignored in prior works. In this
article, a multi-user multi-objective computation offloading for medical image
diagnosis is proposed. First, the prospect theoretic utility function of each user is
designed considering the delay, energy consumption, payment, and risk awareness.
Second, the computation offloading problem including the above factors is defined as
a distributed optimization problem, which with the goal of maximizing the utility of
each user. The distributed optimization problem is then transformed into a non-
cooperative game among the users. The exact potential game proves that the non-
cooperative game has Nash equilibrium points. A low-complexity computation
offloading algorithm based on best response dynamics finally is proposed. Detailed
numerical experiments demonstrate the impact of different parameters and
convergence in the algorithm on the utility function. The result shows that, compare
with four benchmarks and four heuristic algorithms, the proposed algorithm in this
article ensures a faster convergence speed and achieves only a 1.14% decrease in the
utility value as the number of users increases.

Subjects Bioinformatics, Computer Architecture, Computer Networks and Communications,
Distributed and Parallel Computing, Optimization Theory and Computation
Keywords Computation offloading, Risk awareness, Multi-objective, Prospect theory, Distributed
optimization, Exact potential game

INTRODUCTION
Medical imaging examinations are currently required for over 70% of clinical diagnostic
behaviors in hospitals (Jayashree & Bhuvaneswaran, 1970;Maglogiannis et al., 2017; Teng,
Kong & Wang, 2019). However, medical data grows unusually fast with the advancement
of information technology in smart medicine. There will be a total of 40 trillion GB of
medical data in 2020, with 85–90% of that coming from medical imaging, which
exacerbates the burden of doctors’ imaging diagnosis work. Doctors hope to use intelligent
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image diagnostic models (IIDM) for accelerating image diagnosis (Zivkovic et al., 2022),
but the hospital personal computer configuration is not high enough to meet the demand.

A new hospital service architecture known as the medical imaging cloud has emerged
(Lakshmi et al., 2021). It sends medical images to the IIDM in the central cloud for
processing by utilizing cloud computing, big data, the Internet of Things, digital imaging
technology, and Internet technology. Despite the rapid availability of diagnostic results,
there are still questions. For instance, deep learning-based IIDM will generate various
parameters, which will lead to a significant increase in computation. In addition, the
extremely long-distance image transfer between the central cloud and the hospital takes up
a huge amount of network bandwidth, resulting in large delay, energy consumption and
communication overhead.

To overcome the above shortcomings, several researchers have recently found that
computation offloading (Shakarami, Shahidinejad & Ghobaei-Arani, 2020, 2021; Xu et al.,
2020; Tong et al., 2020; uz Zaman et al., 2021, 2022b) is a promising technology to solve
this dilemma. Computation offloading, as one of the key technologies for edge computing
(uz Zaman et al., 2022a), refers to the technology by which resource-constrained terminal
devices (TDs) offload part or all of the computing tasks to the edge server execution. It
comprises an offloading strategy and resource allocation (Li et al., 2020c). This article
focuses on the former. Specifically, the diagnosis tasks of the TDs are first uploaded and
then processed on the edge servers. Finally, the corresponding terminal device receives the
results (Zhang et al., 2019b).

Many researchers have conducted extensive research on computation offloading. There
are the following major issues, however, with the existing offloading works: (1) the edge
server will provide resources to the terminal devices without charge. However, in a real
communication and computing environment, the cost of computing resources and
wireless communication is unavoidable. Doctors cannot enjoy edge server services for free,
but have to pay a fee. (2) It is not possible to effectively integrate real environmental
concerns into their decision-making. Although performing diagnostic tasks on the edge
nodes decreases latency, it might increase energy consumption and payment. Therefore, it
is important to propose a trade-off offloading model between latency, energy, and cost. (3)
Users hold a risk-neutral attitude. However, it has been argued recently that users are risk
awareness when using edge server’s resources, especially in a resource-constrained
environments (Vamvakas, Tsiropoulou & Papavassiliou, 2019a). Specifically, users can be
classified into aggressive and conservative according to their behavior characteristics. For
aggressive users, they will exhibit risk-seeking behavior, who want to offload diagnosis
tasks to edge servers to avoid using resources on terminal devices, even though edge servers
may not provide data processing services for all users. Another type of conservative user
exhibits risk-aversion behavior, who prefers to process diagnosis tasks on terminal devices.
The reason is that the computing resources of edge server will be overused when multiple
users use it simultaneously.

To be closer to the real communication and computing environment, therefore, when
making the offloading decision of each user in the medical image cloud scenario, multiple
factors are considered. The factors include the user’s risk awareness and a set of innovative
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objectives: delay, energy consumption and payment. Our ultimate optimization goal is to
maximize the prospect theoretic utility of each user. To achieve this goal, we propose a
multi-user multi-objective computation offloading for medical image diagnosis. First, we
design the user’s utility function based on the Prospect Theory principle by combining the
multi-objective of delay, energy consumption, and payment, which simulates the risk
awareness behavior of each user during diagnosis task offloading. Second, to maximize the
utility, the computation offloading problem first is expressed as a distributed optimization
problem, then is transformed into a non-cooperative game among the users. Third, we
prove that this game has Nash equilibrium (NE) points based on exact potential game and
propose a low complexity computation offloading algorithm based on best response
dynamics (BRD-CO) to reach an NE point. Finally, we conduct detailed simulation
experiments. The results show that the BRD-CO algorithm can guarantee that each user
has a higher prospect theoretic utility and a faster convergence speed when compared with
four benchmarks and four heuristic algorithms.

Therefore, according to the above, this article proposes a computation offloading
method that employs the following two element problems as a guide for investigation:

� The possibility of designing a more realistic optimization goal function based on user
risk awareness and multiple objectives.

� The possibility of further improving the convergence speed of the offloading algorithm
in a distributed manner.

Based on the system model constructed, the framework designed and the experimental
results, the main contributions of this work are summarized as follows.

� We develop a more specific and detailed computation offloading model using the formal
method. It more clearly reflects the execution process of the user’s diagnosis task on the
edge server and terminal devices, respectively.

� We achieve a more realistic optimization goal. The multi-user and multi-objective
computation offloading method are closer to the real world, which not only reflects the
risk attitude of each user but also trade-off for delay, energy consumption and payment.

� We design a distributed offloading algorithm with a faster convergence speed. Each user
wants more for computation and wireless communication resources during the
execution of a diagnostic task, the computation offloading problem therefore is
considered as a distributed optimization problem. We propose an optimal computation
offloading algorithm based on best response dynamics, which requires only a few
iterations to converge to the Nash equilibrium point.

� We have achieved a higher prospect theoretic utility. We implement the proposed BRD-
CO algorithm and conduct detailed studies. The experimental results show that the
proposed algorithm has statistical superiority and provides a higher prospect theoretic
utility.

The rest of this article is organized as follows. “Related work” presents the related work.
“Computation offloading system model” illustrates the computation offloading model and
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discusses the delay, energy consumption and payment under different offloading modes.
“Multi-user multi-objective computation offloading for medical image diagnosis”
introduces a multi-user multi-objective computation offloading for medical image
diagnosis. “Numerical results” designs the simulation experiment and presents the
numerical results. Finally, a summary of our work and future plan is presented in
“Conclusions”.

RELATED WORK
Massive medical image data is becoming more challenging to process and manipulate as
the advancement of medical information (Zhang et al., 2017b). As a way of managing and
procedure big data, cloud computing plays an important role (El-Seoud et al., 2017;
Rahman, Khalil & Yi, 2019). Zhang et al. (2020) proposed a normal distribution splitting-
based method for executing plenty of medical data parallel. On the other hand, we can use
the parallel computing and data distribution functions of related systems, such as the
MapReduce model and Hadoop model (Khezr & Navimipour, 2017; Mo, 2019; Duan,
Edwards & Dwivedi, 2019). Based on the Hadoop, MapReduce and Spark, the researcher
uses machine learning to predict and analyze the future complications of diabetic patients,
which improved processing speed (Vineetha & Nandhana, 2022). In the framework of
medical imaging cloud based on cloud computing, however, the distance between the
central cloud and the hospital is so far that the transmission will consume a large amount
of bandwidth and cause huge latency.

Recently, computation offloading has received more and more attention as one of the
most promising solutions to this issue, and various offloading strategies have been
proposed (Mao, Zhang & Letaief, 2016; Zhang et al., 2017a, 2019a; Guo, Li & Guan, 2019;
Li et al., 2019b, 2020b, 2020a;Messous et al., 2019;Meng et al., 2019;Mitsis, Tsiropoulou &
Papavassiliou, 2020; Zhu et al., 2020a, 2020b; Alioua et al., 2020; Tang & Wong, 2022;
Wang et al., 2021; Chen & Liu, 2021). The differences between various computation
offloading methods are shown in Table 1. There are currently only a few studies on
accelerating the processing of medical image data by computation offloading, mostly
focusing on areas such as the internet of vehicle, unmanned aerial vehicles, etc. On the
grounds of the optimization goal, these strategies can be divided into four categories:
reducing delay, reducing energy consumption (EC), balancing delay with energy
consumption, and maximizing utility.

Mao, Zhang & Letaief (2016), Meng et al. (2019), Zhu et al. (2020a), Tang & Wong
(2022) are offloading strategies to reduce the delay. For instance, Mao, Zhang & Letaief
(2016) proposed a dynamic offloading method based on Lyapunov optimization,
considering the execution latency and task failure, which can decrease the task time by
64%. However, these offloading strategies are only designed to minimize the overall delay,
without considering the potential energy consumption.

Zhang et al. (2019a), Li et al. (2020b), Wang et al. (2021), Chen & Liu (2021) are
offloading strategies to reduce energy consumption. For instance, Wang et al. (2021)
proposed a trajectory control algorithm based on convex optimization and deep
reinforcement learning by combining the motion trajectory, user association, and resource
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Table 1 Comparison of different computational offloading model.

References Utilized technique Performance
metrics

Evaluation
tools

Case study Advantages Disadvantages

Meng et al.
(2019)

� Markov decision
process

� Learning
approach

� Delay � Simulation
(NA)

� Machine
translation

� Single server single
user

� Multiserver
multiuser

� Dynamic
instantaneous rate
estimation

� High complexity

� Only the delay is considered

Mao, Zhang &
Letaief (2016)

� Lyapunov
optimization

� Delay � Simulation
(NA)

� Mobile apps � Decisions depend
only on the current
system state

� Only the delay is considered

Zhu et al.
(2020a)

� Deep
Reinforcement
Learning

� Delay � Simulation
(python)

� Internet of
vehicles

� Multiagent

� Distrubuted
offloading decision
making

� Only the delay is considered

Tang & Wong
(2022)

� Deep
Reinforcement
Learning

� Delay � Simulation
(NA)

� Mobile apps � Distributed
offloading decision
making

� Only the delay is considered

Wang et al.
(2021)

� Deep
Reinforcement
Learning

� Convex
optimization

� Energy
consumption

� Simulation
(python)

� Unmanned
aerial
vehicle

� Fast acquisition of
UAV trajectory

� Low complexity
matching
algorithm

� Only the energy
consumption is considered

Zhang et al.
(2019a)

� Lyapunov
optimization

� Energy
consumption

� Simulation
(matlab)

� Mobile apps � Ensure high
network stability

� Only the energy
consumption is considered

Chen & Liu
(2021)

� Deep
Reinforcement
Learning

� Energy
consumption

� Simulation
(NA)

� Augmented
reality

� Multiagent � Only the energy
consumption is considered

Li et al. (2020b) � Convex
approximation

� Energy
consumption

� Simulation
(NA)

� Unmanned
aerial
vehicle

� An on-demand
offloading service
in emergency
scenarios

� Only the energy
consumption is considered

Zhu et al.
(2020b)

� Convex
optimization

� Delay

� Energy
consumption

� Simulation
(NA)

� Unmanned
aerial
vehicle

� Multiserver
multiuser

� cooperative
offloading
algorithm

� Considerations should be
more comprehensive

Guo, Li &
Guan (2019)

� Lyapunov
optimization

� Delay

� Energy
consumption

� Simulation
(matable &
C++)

� Internet of
things

� Dynamic
computation
requests

� Considerations should be
more comprehensive

(Continued)
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allocation of UAVs. Similar to the previous optimization goal, these offloading strategies
are only effective in reducing the overall energy consumption of the task. However, in
some systems, users prefer to achieve relative stability between delay and energy
consumption.

Zhang et al. (2017a), Guo, Li & Guan (2019), Li et al. (2019b), Zhu et al. (2020b) are
offloading strategies to balance delay and energy consumption. For instance, Zhang et al.
(2017a) introduced predation behavior, swarm behavior and following behavior into the
artificial fish swarm algorithm, which saves 30% energy consumption. While these
offloading strategies achieve a tradeoff between latency and energy consumption, they may
not be applicable to all systems. The reason for this is that each system has different
performance requirements, not all of which are latency and energy consumption.

Messous et al. (2019),Mitsis, Tsiropoulou & Papavassiliou (2020), Alioua et al. (2020), Li
et al. (2020a) are offloading strategies to maximizing utility. For instance, Messous et al.
(2019) used game-theoretical to reach a balance of energy consumption, delay and
payment. Similarly, Alioua et al. (2020) also proposed a sequential game-based

Table 1 (continued)

References Utilized technique Performance
metrics

Evaluation
tools

Case study Advantages Disadvantages

Zhang et al.
(2017a)

� Artificial fish
swarm algorithm

� Delay

� Energy
consumption

� Simulation
(NA)

� Small cell
networks

� Multiserver
multiuser

� The fronthual and
backhual links are
joint considered

� Considerations should be
more comprehensive

Li et al. (2019b) � Nonlinear
programming

� queue theory

� Delay

� Energy
consumption

� Simulation
(matlab)

� Internet of
things

� tradeoff between
delay and energy
consumption

� Considerations should be
more comprehensive

Messous et al.
(2019)

� Non-cooperative
game

� Utility � Simulation
(NA)

� Unmanned
aerial
vehicle

� Distributed
offloading decision
making

� Not considered a dynamic
selection of the weighting
parameters in utility
function

Alioua et al.
(2020)

� sequential game � Utility � Simulation
(C++)

� Unmanned
aerial
vehicle

� Cooperative
offloading
mechanism

� Comprehensive network
parameters is not considered

Li et al. (2020a) � 0–1
programming

� Utility � Simulation
(NA)

� Internet of
Vehicles

� Vehicle mobility

� Offloading tasks
simultaneously
through multicast

� Energy consumption is not
considered

Mitsis,
Tsiropoulou
&
Papavassiliou
(2020)

� Non-cooperative
game

� Prospect theory

� Utility � Simulation
(python)

� Unmanned
aerial
vehicle

� Risk awareness of
user

� Energy consumption and
payment is not considered
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computation offloading strategy. Li et al. (2020a) proposed an algorithm jointly optimizing
the delay and payment for task offloading. Mitsis, Tsiropoulou & Papavassiliou (2020)
proposed a resource-based pricing and user’s risk awareness computation offloading
scheme. The above-mentioned offloading strategies have been widely concerned because
they can design different utility functions according to different scenarios, and create an
appropriate offloading strategy to meet the needs of users.

In the view of prior works, few studies conjointly consider risk awareness, delay, energy
consumption, and payment. Most of which focus on two or three aspects, and assumes that
the risk-neutral behavior of the users in the process of task offloading. To simulate the
resource consumption in the real-world environment, in this article, we propose a
computation offloading model for maximizing the prospect theoretic utility of each user,
which jointly considers: (1) a clearer formal description for the computation offloading
model; (2) more realistic optimization goals; (3) a distributed offloading algorithm with a
faster convergence speed; (4) higher prospect theoretic utility. We also conduct
experiments to evaluate the BRD-CO algorithm under various parameters.

COMPUTATION OFFLOADING SYSTEM MODEL
The scenario in this article is a medical image diagnosis in a medical image cloud. In this
section, we construct a computation offloading system model and introduce three
offloading modes.

Notation description
For readability, Table 2 summarizes the notation used in this article.

System model description
In the concerned scenario, we consider a medical image cloud that includes an edge server
and multiple terminal devices. The edge server provides storage and computing services
for users, solving the problem of limited resources for terminal devices. The terminal
devices are used by doctors, which include desktops, laptops, tablets and super beans. Each
terminal device is equipped with computing resources for processing diagnosis tasks.

As the computing resources of terminal devices are limited, they cannot meet the needs
of massive medical image diagnosis tasks. Therefore, users will offload part or all diagnosis
tasks to the edge server. Such behavior of users carries a risk-aversion or risk-seeking
attitude. The edge server typically charges a payment to share their resources. In addition,
terminal devices and the edge server cause delay and energy consumption when
performing diagnosis tasks. To clearly explain the offloading process of the image
diagnosis task in the medical image cloud, it is formalized as follows:

Definition 1. Computation offloading system model.
The computation offloading system model

COSH ¼ TD;B;l;f; n; paraL; paraS; paraPOð Þ is an eight-tuple, the details of which are
shown in the Supplemental Information.
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Offloading modes
Each terminal device has one or more medical image diagnosis tasks to perform. As shown
in Fig. 1, there are three offloading modes for the diagnosis tasks: local computing, full
offloading and partial offloading. Each offloading mode can be conceived as three-stages,

Table 2 Notations.

Notation Description Notation Description Notation Description

TD The finite set of terminal devices tdi The device used by the i-th user B The finite set of diagnosis tasks

btdi The computation task of tdi l The finite set of offloading proportions ltdi The offloading proportion of tdi

f Task computational complexity n The expected profits PU0 The user’s anticipated profit

PUtdi The user’s actual profit ktdi The loss aversion coefficient k1 Delay weight

k2 Energy consumption weight k3 Payment weight x Payment factor

Pr The failure probability of the edge
server

c Gain attitude d Loss attitude

paraL The finite set of local computing
parameters

FL The finite set of the computational
capability

f Ltdi The computational capability of tdi

vL The finite set of the energy coefficient vLtdi The consumed energy per CPU cycle
of tdi

TL ct The finite set of the computation
delay locally

tL ct
tdi

The computation delay required by tdi
to process btdi locally

EL ce The finite set of the computation
energy consumption locally

eL ce
tdi

The computation energy
consumption required by tdi to
process btdi locally.

paraS The finite set of full offloading
parameters

f S The computational capability of the
edge server

vS The energy coefficient

PS ct The finite set of computation delay
pricing

pS ct
tdi

The computation delay pricing of tdi TPS The finite set of transmission
power

tpStdi The transmission power between tdi
and the edge server

TRS The finite set of the transmission rate trStdi Transmission rate between tdi and
the edge server,

TS The finite set of the total delay on the
edge server

atdi , btdi The risk attitude coefficient tStdi The total delay required by tdi to
process btdi on the edge server

TS ct The finite set of the computation delay
on the edge server

tS ct
tdi

The computation delay required by tdi
to process btdi on the edge server

TS tt
tdi

The finite set of the transmission
delay on the edge server

tS tt
tdi

The transmission delay required by tdi
to process btdi on the edge server

ES The finite set of the total energy
consumption on the edge server

eStdi The total energy consumption
required by tdi to process btdion
the edge server.

ES ce The finite set of the computation
energy consumption on the edge
server.

eS ce
tdi

The computation energy consumption
required by tdi to process btdi on the
edge server

ES te The finite set of the transmission
energy consumption on the edge
server

eS te
tdi

The transmission energy consumption
required by tdi to process btdi on the
edge server

CS ct The finite set of the payment TS ct The finite set of the computation
delay on the edge server

cS ct
tdi

The computation delay cost required
by tdi to process btdi on the edge
server

paraPO The finite set of partial offloading
parameters

TPO The finite set of the total delay in
partial offloading

tPOtdi Denotes the delay required by tdi to
process btdi in partial offloading,

EPO The finite set of the total energy
consumption in partial offloading

ePOtdi The energy consumption required
by tdi to process btdi in partial
offloading

cPO The finite set of the total delay in
partial
offloading

CPO ct The computation delay cost required
by tdi to process btdi in partial
offloading
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including the sending, processing and feedback steps. First, the part or full diagnosis tasks
are sent from tdi to the edge server. Second, the diagnosis task offloaded is processed on the
edge server. Third, the processed results are feedback to tdi. Next, the computing methods
of three objectives in different modes are as follows.

Local computing
In the local computing mode, as illustrated in Fig. 1, users execute the diagnosis task btdi
[bits] only using the computing resources of terminal devices, where the offloading
proportion ltdi ¼ 0. For terminal device tdi, the local computation delay tL ct

tdi
[s] of

processing btdi can be given by

tL ct
tdi ¼ btdi � fð Þ=f Ltdi (1)

Besides the required computation delay, each diagnosis task also consumes some
computation energy. Therefore, the local computation energy consumption eL ce

tdi
[J]

required by tdi to process btdi can be given by

eL ce
tdi ¼ vLtdi � btdi � f (2)

Full computing

In the full offloading mode, as illustrated in Fig. 2, the diagnosis task had to be performed
completely on the edge server, where the offloading proportion ltdi ¼ 1. Therefore, the
transmission delay tS tt

tdi
[s] required by tdi to process btdi on the edge server via the uplink

channel can be given by

tS tt
tdi ¼ btdi=tr

S
tdi (3)

Figure 1 Three offloading modes for diagnosis tasks: local computing, full offloading and partial
offloading. Full-size DOI: 10.7717/peerj-cs.1239/fig-1

Liu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1239 9/33

http://dx.doi.org/10.7717/peerj-cs.1239/fig-1
http://dx.doi.org/10.7717/peerj-cs.1239
https://peerj.com/computer-science/


The transmission energy consumption eS te
tdi

[J] required by tdi to process btdi on the edge
server can be given by

eS te
tdi ¼ tpStdi � tS tt

tdi ¼ tpStdi � btdi
� �

=trStdi (4)

Next, the edge server will use some of the computing resources to perform btdi .
Therefore, the computation delay tS ct

tdi
[s] required by tdi to process btdi on the edge server

can be given by

tS ct
tdi ¼ btdi � fð Þ=f S (5)

Meanwhile, computation energy consumption is also generated. Therefore, the
computation energy consumption eS ce

tdi
[J] required by tdi to process btdi on the edge server

can be given by

eS ce
tdi ¼ vS � btdi � f (6)

After the diagnosis task is completed, the results will be sent back to terminal devices via
the downlink channel. However, resembling many studies (Xian, Lu & Li, 2007; Wang
et al., 2017; Cui et al., 2017; Rudenko et al., 1998), we ignore the downlink transmission
delay because the results are insufficient compared to the original image data.

In summary, the total delay tStdi [s] required by tdi to process btdi on the edge server can
be given by

tStdi ¼ tS ct
tdi þ tS tt

tdi (7)

The total energy consumption eStdi [J] required by tdi to process btdi on the edge server
can be given by

eStdi ¼ eS ce
tdi þ eS te

tdi (8)

Figure 2 The framework of the multi-user multi-objective computation offloading method for
medical image diagnosis task. Full-size DOI: 10.7717/peerj-cs.1239/fig-2
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We assume that the user has to pay a fee for the edge server based on the computation
delay pricing pS ct

tdi
[$/s] (see “Prospect Theoretic Utility”) and the computation delay tS ct

tdi
.

Therefore, the payment cS ct
tdi

[$] required by tdi to process btdi on the edge server can be
given by

cS ct
tdi ¼ pS ct

tdi � tS ct
tdi ¼ pS ct

tdi � btdi � f
� �

=f S (9)

To simplify the model, we assume that the configuration and transmission setting are
the same for each terminal device in this article (i.e., 8 i e 1; 2; . . . ; n; f ltdi ¼ f ltd; v

l
tdi
¼ vltd;

tpStdi ¼ tpStd; and trStdi ¼ trStd).

Partial computing
In the partial offloading mode, as illustrated in Fig. 3, the diagnosis task is divided into two
subtasks, where the offloading proportion ltdi 2 0; 1ð Þ. Subtask ltdi � btdi performed on the
edge server while subtask ð1� ltdiÞ � btdi will be executed on tdi. Therefore, the total delay

tPOtdi , total energy consumption ePOtdi and payment cPO ct
tdi

required by tdi to process btdi in

partial offloading can be given by

tPOtdi ¼ max ð1� ltdiÞ � tL ct
tdi

;ltdi � tStdi
n o

ePOtdi ¼ ð1� ltdiÞ � eL ce
tdi
þ ltdi � eStdi

cPO ct
tdi

¼ ltdi � cS ct
tdi

(10)

It can be clearly seen that when the computation delay pricing pS ct
tdi

is constant, the
greater amount of subtask ltdi � btdi offload, the more payment users will pay.

Figure 3 The user’s prospect theoretic utility. Full-size DOI: 10.7717/peerj-cs.1239/fig-3
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MULTI-USER MULTI-OBJECTIVE COMPUTATION
OFFLOADING FOR MEDICAL IMAGE DIAGNOSIS
In this section, we propose a multi-user multi-objective computation offloading for
medical image diagnosis. First, the proposed framework of this system model is presented
in detail. We then construct the user’s prospect theoretic utility function, formulate the
offloading problem as a non-cooperative game among users, and design an algorithm to
solve the problem.

Proposed framework overview
In the above computation offloading system model, users are not always risk-neutral when
deciding where to process diagnosis tasks. The reason is that the different offloading modes
will yield different profits for the users. Faced with possible future gains and losses, users
can hardly be in a completely neutral attitude, but will indicate different risk attitudes
depending on situation.

Therefore, considering the delay, energy consumption, payment and user’s risk
awareness behavioral characteristics required to complete the diagnosis tasks, we propose a
multi-user multi-objective computation offloading for medical image diagnosis. The
proposed framework consists of two parts, as shown in Fig. 2. (1) Problem formulation:
computation offloading problem involving delay, energy consumption, payment and risk
awareness behavioral characteristics, whose optimization goal is to maximize the user’s
utility based on Prospect Theory. This problem is regarded as a DO problem and then
formulated as an NCG among users. (2) Problem solution: the complete proof of the
existence of the NE is provided by the exact potential game (EPG). Then, we propose a
low-complexity computation offloading algorithm based on best response dynamics
(BRD-CO), to determine the optimal data offloaded l�tdi � b�tdi in a distributed manner for
each user.

Problem formulation
Computation offloading problem involving risk awareness and multi-objective is regarded
as a distributed optimization problem. Its optimization goal is to maximize the user’s
prospect theoretic utility. Then, it is formulated as a non-cooperative game among users
and solved by exact potential game.

Prospect theoretic utility
When users make an offloading strategy, we will analyze their risk-aware behavior using
the prospect theory (PT). The prospect theory was first proposed after revising the
expected utility theory based on absorbing “Allais Paradox” in 1979 (Kahneman &
Tversky, 1988). The theory combines psychology and behavioral science, explicitly states
that humans exhibit “loss aversion” when deciding. When faced with gains, users exhibit
an attitude of risk-aversion. When faced with losses, users exhibit a risk-seeking attitude
and have the principle of being more sensitive to losses than gains (Wu& Gonzalez, 1996).

Specifically, prospect theory simplifies the results by establishing appropriate reference
points and a preliminary analysis of various outcomes during the editing phase. Then, the
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decision with the highest PTU is selected in the evaluation phase by figuring the results of
the previous phase through a value function (VF) and a weight function (WF).

Each user offloads part or all of the diagnosis task to the edge server, as shown in Fig. 3.
We then calculate the value of the edge server in different states based on the VF. When all
users have offloaded, we calculate the failure probability of the edge server. Then, the
probability is modified to a weight according to the WF. Finally, we obtain the user’s PTU
by multiplying the corresponding value and weight. The specific definitions of VF and WF
are as follows.

Value function

The value function mainly reflects the subjective value of users, following the principle of
PT (Vamvakas, Tsiropoulou & Papavassiliou, 2019b), which can be given by

v PUtdið Þ ¼ ðPUtdi � PU0Þatdi ; if PUtdi � PU0 � 0
�ktdi � ðPU0 � PUtdiÞbtdi ; if PUtdi � PU0 , 0

�
(11)

Inspired by Tram, Tham & Niyato (2014), Zhou, Tham & Motani (2017), Li et al.
(2019a), PU0 ¼ n � log 1þ btdið Þ � k3 denotes the reference point, expressing the user’s
anticipated profit by fully processing diagnosis task btdi at tdi. PUtdi represents the user’s
actual profit after offloading part or all of the diagnosis task btdi to the edge server, and is
given by (12) below. atdi and btdi represent risk attitude coefficient, which are
0 � atdi ;btdi � 1. As the atdi and btdi increase, the risk taken by the user becomes greater.

atdi ¼ btdi ¼ 1, the user is risk-neutral. ktdi is the loss aversion coefficient. ktdi > 1 indicates

that users are more stimulated by losses instead of than gains. Moreover, the user can
adjust atdi , btdi and ktdi in different environments. For simplicity, we attempt to assume
atdi ¼ btdi in this article.

k1, k2 and k3 denote the multi-objective weight coefficient, i.e., delay weight, energy
consumption weight and payment weight. We map these different measures into the same
dimension, where 0 � k1, k2, k3 � 1. For delay-sensitive tasks, k1 is larger than k2 and k3.
For energy-sensitive tasks and payment-sensitive tasks, k2 and k3 are relatively large.

PUtdi ltdi � btdi
� � ¼

n � log 1þ btdið Þ � k3;
if ltdi ¼ 0

tL ct
tdi
� tPOtdi

� �
� k1 þ eL ct

tdi
� tPOtdi

� �
� k2 þ n � log 1þ btdið Þ � cPO ct

tdi

� �
� k3;

if ltdi 6¼ 0 and edge server survives

eL ct
tdi
� tPOtdi

� �
� k2 þ 1� ltdi

� � � n � log 1þ btdið Þ � cPO ct
tdi

� �
� k3;

if ltdi 6¼ 0 and edge server fails

8>>>>>>>>>><
>>>>>>>>>>:

(12)

Given the weak computing capacity of a terminal device, it cannot meet the computing
needs of a massive medical image. As a common resource, the edge server can provide
services for all users. Every user can enjoy edge server services, but the computing
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resources of the edge server are limited. There will be serious negative effects when the
resources use exceeds the boundary. Here, we mainly divide it into two situations.

Situation 1: edge server survives. There may be some signal interference or channel
congestion, resulting in reduced transmission efficiency, but the edge server remains
capable of diagnosis tasks of terminal devices.

Situation 2: edge server failures. Excessive competition for computing resources on edge
server, terminal devices will no longer be able to enjoy services once edge server is
shutdown.

The first branch of (12) denotes the actual profit of the user performing tasks entirely on
the terminal device. The second branch of (12) corresponds to situation 1, where the user’s
actual profit depends primarily on the delay, energy consumption and payment after
executing all the images. Quite the opposite, the third branch of (12) corresponds to
situation 2, where the user’s actual benefit is determined by the energy consumption and
payment. The reason is that the edge server is shutdown and is no longer able to get a delay
gain after processing the image.

Therefore, the living state of the edge server directly affects the user’s actual profits. In
situation 1, the value function of the user should be determined by the first branch of (11)
and the second branch of (12), which is defined as

vsurv PUtdi ltdi �btdi
� �� �¼ðPUtdi�PU0Þatdi

¼ tLcttdi
�tPOtdi

� �
�k1þltdi � eLcetdi

�eStdi
� �

�k2�pS cttdi �tS cttdi �k3
� �� �atdi (13)

In situation 2, the value function of the user should be resolute by the second branch of
(11) and the third branch of (12), which is defined as

vfail
�
PUtdi

�
ltdi � btdi

�� ¼ �ktdi � ðPU0 � PUtdiÞatdi
¼ �ktdi � ltdiatdi �

��
n � log �1þ btdi

�þ pS ct
tdi � tS ct

tdi

� � k3
��eL ce

tdi � eStdi
� � k2�

atdi (14)

According to the math characteristics of the value function, (13) must be a positive
constant, and (14) must be a negative constant. Thus, we can determine the boundaries of
the computing delay pricing pS ct

tdi
imposed by the edge server on the user, which can be

given by

pS ct
tdi

. 0

tLtdi � tPOtdi

� �
� k1 þ ltdi � eL ce

tdi
� eStdi

� �
� k2 � pS ct

tdi
� tS ct

tdi
� k3

� �
. 0

n � log 1þ btdið Þ þ pS ct
tdi
� tS ct

tdi

� �
� k3 � eL ce

tdi
� eStdi

� �
� k2. 0

8>><
>>:

) 0, pS ct
tdi

,
tL ct
tdi
� tPOtdi

� �
� k1 þ eL ce

tdi
� eStdi

� �
� k2

k3 � tS ct
tdi

(15)

For simplicity, u ¼
k1 � tL ct

tdi
� tPOtdi

� �
þ eL ct

tdi
� tPOtdi

� �
� k2

k3 � tS ct
tdi

, so pS ct
tdi
¼ x � u, where

payment factor x 2 0; 1ð Þ.
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Weight function

The weight function reflects the degree of perception of probability. Users have different
risk behaviors towards different failure probabilities of the edge server during the diagnosis
task offloading (i.e., Gains and losses). The failure probability of the edge server is directly
related to the size of the processed data. The reason is that the larger the offloaded amount,
the higher the computing demand for the terminal devices. This will lead to a greater
failure probability of the edge server. Inspire by Mitsis, Tsiropoulou & Papavassiliou
(2020), the failure probability of the edge server Pr can be given by

Pr ltdi � btdi
� � ¼ �1þ 2

1þ e�&
Pn

i¼1 f�ltdi �btdi

 !2

(16)

where ltdi � btdi represents the offload image data of the user on the edge server. & > 0 is a
positive constant calibrating the sigmoidal curve based on the computing capabilities of
the edge server (Mitsis, Tsiropoulou & Papavassiliou, 2020). The failure probability of the
edge server, 0 � Pr � 1, is a continuous, strictly increasing, convex, and twice
differentiable function (Mitsis, Tsiropoulou & Papavassiliou, 2020).

Following the principle of PT, we convert the probability function P into the weight
function p Pð Þ, which is defined as

p Pð Þ ¼

Pr

Pr þ 1� Pð Þrð Þ1=r
; if PUtdi � PU0 � 0

Pd

Pd þ 1� Pð Þd
� �1=d ; if PUtdi � PU0 < 0

8>>>>><
>>>>>:

(17)

The parameter c; d < 1 denote the risk attitude of the user to gains and losses in
making an offloading strategy. p Pð Þ is the increment function of P. When P is a small
probability event approaching 0, users show risk-seeking attitude (i.e., p Pð Þ > P). For the
events with medium probability and high probability, the users show the attitude of risk
aversion (i.e., P > p Pð Þ). In other words, low-probability events tend to be overestimated,
and the converse holds (Monderer & Shapley, 1996).

Combining (11)–(17), following the principle of PT, the user’s prospect theoretic utility
function comprises the value function and the weight function, which is defined as follows

E PUtdi ltdi � btdi
� �� � ¼ vsurv PUtdi ltdi � btdi

� �� � � psurv 1� Prð Þ
þ vfail PUtdi ltdi � btdi

� �� � � pfail Prð Þ (18)

where psurv 1� Prð Þ denotes the weight of the edge server survives (i.e., Gains). pfail Prð Þ
represents the weight of the edge server fails (i.e., Losses). The definition is as follows

psurv 1� Prð Þ ¼ Pr

Pr þ 1� Pð Þrð Þ1=r
; if PUtdi � PU0 � 0 (19)
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pfail Prð Þ ¼ Pd

Pd þ 1� Pð Þd
� �1=d ; if PUtdi � PU0 < 0 (20)

Problem model
To maximize the prospect theoretic utility of each user, the computation offloading
problem for medical image diagnosis task involving risk awareness and multi-objective
(i.e., delay, energy consumption and payment) is, therefore, represented as a distributed
optimization problem as follows

max E PUtdi ltdi � btdi ; l�tdi � b�tdi
� �� �

s:t: 0 � ltdi � 1 (21)

where l�tdi � b�tdi is the amount of image data offloaded by the rest of the terminal devices
except for the terminal device tdi. The above problem is defined as a non-cooperative game
among users as follows

Gdop ¼ TD;OStdi ;E PUtdi ltdi � btdi ; l�tdi � b�tdi
� �� �� �

(22)

where TD is the finite set of the user terminal devices, OStdi is the offloading strategies
space of tdi, and E PUtdi ltdi � btdi ; l�tdi � b�tdi

� �� �
reflects the prospect theoretic utility of

the user i. The solution of Gdop for the user’s optimal computation offloading strategy
l�tdi � b�tdi , the meaning of which is that PTU is greatest when the amount of data offloaded

is l�tdi � b�tdi .
Definition 2. Nash equilibrium.
An image data offloading vector l�tdi � b�tdi ¼ l�td1 � b�td1 ;l�td2 � b�td2 ; . . . ; l�tdn � b�tdn

n o
in

the strategy space l�tdi � b�tdi 2 OStdi ¼ 0; btdi½ � is a Nash Equilibrium point if for every user i
the following condition holds true

E PUtdi l�tdi � b�tdi ;l��tdi � b��tdi
� �� �

.E PUtdi ltdi � btdi ;l��tdi � b��tdi
� �� �

for all ltdi � btdi 2 OStdi
(23)

The meaning of the Nash equilibrium point is that, no player (users in our problem) can
further increase the cost (user’s prospect theoretic utility in our problem) by unilaterally
changing his strategy while the other player’s strategy (computation offloading strategy in
our problem) remains unchanged.

Problem solution
In this section, we first prove the existence of NE points for the NCG by EPG. Then, a
computation offloading algorithm based on best response dynamics is proposed to solve
the problem. Finally, we discuss the time complexity of the proposed algorithm.

The existence of NE point
To prove Gdop has at least one NE point, which means as a solution to maximize the
distributed optimization problem, the exact potential game is adopted. The main reason
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for this design is that not all NCGs have an NE point and can reach algorithmic
convergence. An exact potential game with a limited set of strategies converges to at least
one NE point, regardless of the starting point.

Definition 3. Exact potential game. The Gdop ¼ TD;OStdi ;E PUtdi ltdi � btdi ;
���

l�tdi � b�tdiÞÞ� is an EPG if there is an exact potential function � ltdi � btdi
� �

that for all
tdi 2 TD satisfies the following conditions

� l0tdi � b0tdi
� �

� � ltdi � btdi
� � ¼ E PUtdi l0tdi � b0tdi ; l�tdi � b�tdi

� �� �
� E PUtdi ltdi � btdi ;l�tdi � b�tdi

� �� �
for all ltdi � btdi ; l0tdi � btdi 0eOStdi ; l�tdi � b�tdieOS�tdi

(24)

Theorem 1. The Gdop ¼ TD;OStdi ;E PUtdi ltdi � btdi ;l�tdi � b�tdi
� �� �� �

is an exact
potential game and has at least one Nash equilibrium point

l�tdi � b�tdi ¼ l�td1 � b�td1 ;l�td2 � b�td2 ; . . . ; l�tdn � b�tdn
n o

. (Due to space limitation, the proof of

theorem 1 is shown in the Supplemental Information).

Computation offloading algorithm based on best response dynamics
Given that we have already proven that the Gdop belongs to the class of EPG as stated
above, and exists at least one NE point. In an exact potential game, the NE point can always
be reached after a finite number of iterations, which is called the finitely increasing
property (Yang et al., 2020). Therefore, the best response dynamics is adopted to determine
each user’s optimal computation offloading strategy l�tdi � b�tdi (i.e., converged to a NE
point) in a distributed manner through a finite number of iterations, when the
computation offloading strategy of other users is determined (Topkis, 1998; Milgrom &
Roberts, 1990), as follows

BR ltdi � btdi ;l�tdi � b�tdi
� � ¼ l�tdi � b�tdi ¼ arg max E PUtdi ltdi � btdi ; l�tdi � b�tdi

� �� �
(25)

From the above discussion, we propose a low-complexity computation offloading
algorithm based on best response dynamics (BRD-CO) to determine each user’s
computation offloading strategy. To more clearly describe the workflow of the BRD-CO
algorithm, described briefly in Table 3, the algorithm follows a pseudo-code. The BRD-CO
algorithm comprises three parts: the first part is a line 1–4, the initial definition of
parameters, including the number of iterations, the user i’s computation offloading
strategy and the convergence of the algorithm. The second part is lines 9–14, which
calculates the user i’s prospect theoretic utility. In each iteration, first, we calculate the
delay, energy consumption and payment in three offloading modes via (1)–(10). Second,
using (13) and (14), the user i’s value in the survival and failure state of the edge server can
be obtained. Then, we calculate the failure probability of the edge server via (16) and use
(19) and (20) convert probability to weight. Finally, taking advantage of (18), we get the
user i0s prospect theoretic utility. The third part is 16–20 lines, which determine the user i0s
optimal offloading strategy. We calculate the user i’s offload strategy via (25) each time. If
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two adjacent times strategies are the same, the strategy is called the optimal offload strategy
for the user i.

Time complexity of BRD-CO algorithm
In this section, the time complexity of the proposed BRD-CO algorithms is discussed.
From the above pseudo-code analysis, it can be seen that the solution process of the BRD-
CO algorithm is iterative, and its time complexity is mainly determined by three factors:
the number of iterations, the number of users, and the complexity of the utility function.
Specifically, assume that the number of iterations required for Algorithm 1 is the
complexity of (25) is, the number of users is. In each iteration, the formula (25) is
calculated for all users. In addition, the difference between the current and previous
offloading amounts is compared. If the difference is within the error range, the
convergence state is adjusted to true; otherwise, it is adjusted to false. Therefore, the time
complexity of the BRD-CO algorithm is O(F � ite � n).

Table 3 BRD-CO algorithm.

Algorithm 1: BRD-CO algorithm

Input: all paraments of COSH model, btdi , f, ltdi , n, f
L
tdi
, vLtdi , f

S, vS, tpStdi , tr
S
tdi
, k1, k2, k3, 8 i e n

Output: optimal computation offloading strategy, l�tdi � b�tdi
1. // Initialization Paraments

2. ite 0 //iterations

3. ðltdi  btdiÞite 0 //The initial amount of image data offloaded for the user i

4. convergence  false //Whether the algorithm converges

5. While convergence == false do

6. ite iteþ 1

7. While i < n do

8. // computer prospect theoretic utility

9. computer delay, energy consumption and payment via (1)–(10)

10. computer vsurv PUtdi ltdi � btdi
� �� �ite�1

via (13)

11. computer vfail PUtdi ltdi � btdi
� �� �ite�1

via (14)

12. obtain Pr ltdi � btdi
� �ite�1

via (16)

13. convert (16) into weight psurv 1� Prð Þite�1 and pfail Prð Þite�1 and via (19) and (20)

14. computer E PUtdi ltdi � btdi
� �� �ite�1

via (18)

15. // determine the optimal strategy

16. user i determines l�tdi � b�tdi
� �ite

is based on l�tdi � b�tdi
� �ite�1

via (25)

17. End while

18. If l�tdi � b�tdi
� �ite

¼¼ l�tdi � b�tdi
� �ite�1

then

19. convergence  true

20. End if

21. End while
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NUMERICAL RESULTS
In this section, we introduce the simulation setting to build COSH . The parameter influence
analysis then is exhibited from five aspects. Next, we discuss the convergence of the
algorithm. Finally, we compare the proposed BRD-CO algorithm with four benchmarks
and four heuristic methods.

Simulation setup
To evaluate the parameter influence and convergence of the algorithm, we use PyCharm as
the development tool for Python IDE. The performed simulations were executed on an
Intel� Xeon (R) Silver 4114 CPU @ 2.20 GHz 	 40 with 128 GB RAM.

The contents of the simulation are as follows: Suppose that 25 users simultaneously
offload part of the annotation tasks to the edge server. The data used in the experiment
came from the dynamic panoramic PET data set of Henan Provincial People’s Hospital.
Each user’s prospect theoretic utility is calculated via (18). Using the BRD-CO algorithm to
explore the optimal offloading strategy for each user to maximize their PTU. Inspired by
Apostolopoulos, Tsiropoulou & Papavassiliou (2020), the main parameters are given in
Table 4.

Parameter influence analysis
In “Impact of Computing Delay Pricing”, we consider the number of users (denoted by
‘N’) is set to 25 and parameter values as indicated in Table 4. However, in the rest of the
analysis, a wide range of computing delay pricing pS ct

tdi
, number of users, multi-objective

weight coefficients (k1, k2 and k3) and prospect theoretic parameters (risk attitude atdi , gain
attitude c, loss aversion ktdi and loss attitude d) are considered.

Impact of computing delay pricing
In this section, we discuss the impact of the computing delay pricing pS ct

tdi
¼ x � u,

imposed by the edge server on the user’s computation offloaded strategy, where the
payment factorx is from 0.001 to 0.9. The simulation results are shown in Fig. 4. It can see
that as x increases, the average prospect theoretic utility of users gradually increases to its
maximum after that slowly decreases (Fig. 4A). Specifically, when the x is small (i.e., x =
0.001), the edge server will charge a lower pS ct

tdi
and users will offload a large amount of

image data (Fig. 4B), which results in lower delay (Fig. 4C) and lower payment (Fig. 4E),

Table 4 The value for simulation parameters.

Parameters Value Parameters Value Parameters Value

btdi 10	 106 
 106 bits vLtdi 4	 10�9 
 10�9 J/CPU-cycles f 1,000 CPU-cycles/bit

x 0.5 ktdi 1.2 atdi 0.2

n 5 $/bit vS 4	 10�8 J/CPU-cycles f S 6	 1010 CPU-cycles/s

f Ltdi 6	 107 
 107 CPU-cycles/s tpStdi 109 dbm trStdi 0.1 bits/s

k1 1 k2 0.001 k3 0.1

c 0.61 d 0.69
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higher energy consumption (Fig. 4D), lower prospect theoretic utility (Fig. 4A). But the
edge server will bear huge computing pressure, which causes a higher Pr (Fig. 4F). Whenx
further increases, the edge server will charge a higher pS ct

tdi
. Users are not willing to use the

computing resources of the edge server, the delay and payment will gradually increase, the
energy consumption and Pr will reduce, a lower prospect theoretic utility again. Therefore,
we need to balance the computing delay pricing to maintain the user’s high-quality
experience. In addition, Figs. 4G–4I indicate the joint distribution between average utility
and average delay, average energy consumption and average cost, respectively. It is clear

Figure 4 The relationship between computing delay pricing and user’s average prospect theoretic utility, average offloaded image data
amount, average delay, average energy consumption, average payment and failure probability of the edge server.

Full-size DOI: 10.7717/peerj-cs.1239/fig-4
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from the regression line that the average utility shows a decreasing, increasing and
decreasing trend with the increase of the three, respectively.

Impact of the number of users
In this section, we discuss the impact of the number of users on the user’s computation
offloading strategy, where the number of users is from 1 to 100. The simulation results are
shown in Fig. 5. When the N is small (i.e., N = 1, 2, 5), the Pr is very low (Fig. 5F) because

Figure 5 The relationship between the number of users and user’s average prospect theoretic utility, average offloaded image data amount,
average delay, average energy consumption, average payment and failure probability of the edge server.

Full-size DOI: 10.7717/peerj-cs.1239/fig-5
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the computing resources on the edge server are far greater than the needs of users. Users
are inclined to offload a large amount of image data to the edge server (Fig. 5B), resulting in
lower delay (Fig. 5C), higher payment (Fig. 5E), higher energy consumption (Fig. 5D), and
higher prospect theoretic utility (Fig. 5A). As N further increases, the edge server is under
more and more computing pressure. Users tend to offload a small amount of image data to
the edge server, while the remaining image process on the local device, which results in
higher delay, lower payment, lower energy consumption, and lower prospect theoretic
utility. Similarly, Figs. 5G–5I indicate the joint distribution between average utility and
average delay, average energy consumption and average cost, respectively. It is clear from
the regression line that the average utility shows a decreasing, increasing and increasing
trend with the increase of the three, respectively.

The relationship between computing delay pricing and number of users
In this section, we discuss the relationship between computation delay pricing

pS ct
tdi
¼ x � u and the number of users N. The simulation results are shown in Fig. 6.

Especially, in Figs. 6A–6C, the x-axis shows the payment factor x, and the y-axis shows
the average PTU under N = 25, 55 and 95, respectively. It is noted that the average PTU of
users gradually increases to its maximum with the increase of x after that slowly decreases.
Moreover, the payment factor x is different when the maximum PTU is reached under
different user’s numbers. To explore the relationship between the two, we performed the
following experiments. Figure 6D shows the computation delay pricing pS ct

tdi
¼ x � u

corresponding to the maximum utility of a different number of users. When the number of
users is small (i.e., 1, 2), the computing pressure on the edge server is very small, so it will
impose a smaller payment factor x, i.e., a lower computation delay pricing pS ct

tdi
. As the

number of users further increases, the edge server is under more and more computing
pressure. To reduce the possibility of failure, the edge server will control the number of
users by increasing pS ct

tdi
. Since that N = 85, there is no change in both convergence speed

and convergence result.

Impact of the multi-objective weight coefficients
In this section, we discuss the impact of the multi-objective weight coefficients on the
user’s computation offloaded strategy, where multi-objective weight coefficients
k1 > k2 > k3. The simulation results are shown in Fig. 7.

Figure 6 The relationship between computation delay pricing and number of users. Full-size DOI: 10.7717/peerj-cs.1239/fig-6
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In the subfigure of Figs. 7A and 7B, the x-axis shows the delay weight k1, and the y-axis
shows the user’s average offloaded image data amount and failure probability of the edge
server in each k1, where k2 ¼ 0:1, k3 ¼ 0:01. As the k1 increases from 0.5 to 1, users are
inclined to offload an enormous amount of image data (Fig. 7A). The reason is that the
scenario set in this article is a delay-sensitive task, and users choose a larger k1 rather than
smaller k1. This will bring tremendous pressure to the edge server and increase the failure
probability (Fig. 7B).

In the subfigure of Figs. 7C and 7D, the x-axis shows the energy consumption weight k2,
and the y-axis shows the user’s average offloaded image data amount and failure
probability of the edge server in different k2, where k1 ¼ 1, k3 ¼ 0:01. The reason is that
users are insensitive to energy consumption for delay-sensitive tasks. As the k2 increases
from 0.001 to 0.1, a fewer images will be offloaded (Fig. 7C), which reduces the failure
probability (Fig. 7D).

In the subfigure of Figs. 7E and 7F, the x-axis shows the payment weight k3, and the
y-axis shows the user’s average offloaded image data amount and failure probability of the
edge server in different k3, where k1 ¼ 1, k2 ¼ 0:1. For the same reason, users are also
relatively insensitive to payments. As the k3 increases from 0.001 to 0.1, a little image will
be offloaded (Fig. 7E) and the failure probability of the edge server also will reduce
(Fig. 7F).

Figure 7 The relationship between multi-objective weights and user’s average offloaded image data amount and failure probability of the edge
server. Full-size DOI: 10.7717/peerj-cs.1239/fig-7
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Impact of the prospect theoretic parameters
In this section, we discuss the impact of the prospect theoretic parameters, including risk
attitude atdi , gain attitude c, loss aversion ktdi and loss attitude d on the user’s offloading
strategy. The simulation results are shown in Fig. 8.

In the subfigure of Figs. 8A and 8B, the x-axis shows the atdi , and the y-axis shows the
user’s average offloaded image data amount and failure probability of the edge server in
each atdi . As the risk attitude atdi increases from 0 to1, users are inclined to offload a larger
amount of image data (Fig. 8A). The reason is that they will choose larger gains, not
smaller gains. As the atdi increases, the failure probability of the edge server will also
increase (Fig. 8B). For the same reason, As the gain attitude c increases from 0.1 to 1, users
will have a larger average offloaded image data amount (Fig. 8C) and larger failure
probability of the edge server (Fig. 8D).

In the subfigure of Figs. 8E and 8F, the x-axis shows the ktdi , and the y-axis shows the
user’s average offloaded image data amount and failure probability of the edge server in
each ktdi . As the loss aversion ktdi increases from 0.1 to 2, they offload fewer images to the
edge server (Fig. 8E). The reason is that the ktdi and user’s loss aversion are positively
correlated. This will lead to the failure probability of the edge server decreasing (Fig. 8F).
For the same reason, As the loss attitude d increases from 0 to 1, the user will have a lower
average offloaded image data amount (Fig. 8G) and larger failure probability of the edge
server (Fig. 8H).

Convergence analysis
We evaluate the convergence of the BRD-CO algorithm. The simulation results are shown
in Fig. 9. In the subfigure, the x-axis shows the number of iterations, and the y-axis shows

Figure 8 The relationship between prospect theoretic parameters and user’s average offloaded image data amount and failure probability of
the edge server. Full-size DOI: 10.7717/peerj-cs.1239/fig-8
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each user’s offloaded image data amount, PTU, delay, energy consumption, payment and
failure probability of the edge server.

There are two lines on the above and below of the boxes, which represent the maximum
and minimum offloaded amounts. The red solid line is the median of the amount of
offloaded image data, representing the average level, and the green dotted line represents
the average level of offloaded image data after using the BRD-CO algorithm. Figures 9A–
9E shows the convergence of each user’s offloaded image data amount, prospect theoretic
utility, delay, energy consumption and payment after the image is offloaded to the edge
server. The results show that the BRD-CO algorithm converged faster with fewer
iterations.

Figure 10 shows the user’s average prospect theoretic utility, average delay, average
energy consumption and average payment with the increase of iteration number.
Specifically, each user will offload a large image on the edge server instead of the terminal
device when ite = 1 (Figs. 9A and 10A). This behavior is highly likely to trigger the overuse
of computing resources, which makes the Pr increase dramatically (Fig. 9F). Therefore, the
edge servers will curb this occurrence by charging users for higher energy consumption
(Fig. 10C) and higher payment (Fig. 10D). Surprisingly, the algorithm will reach the lowest
delay (Fig. 10B) because of the high computing power of the edge server and performing
massive diagnosis tasks.

Figure 9 The relationship between the number of iterations and each user’s offloaded image data amount, prospect theoretic utility, delay,
energy consumption, payment and failure probability of the edge serve. Full-size DOI: 10.7717/peerj-cs.1239/fig-9
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Considering the failure probability of the edge server, as ite increases from 2 to 5, the
convergence speed of the BRD-CO algorithm is increase. It will lead to the rapid decrease
of image data offloaded amount (Fig. 9A), prospect theoretic utility value (Fig. 10A),
energy consumption (Fig. 10C) and payment (Fig. 10D) and the rapid increase of delay
(Fig. 10B). As it further increases from 5 to 14, there is no change in both convergence
speed and convergence result.

Method comparison
In this session, to evaluate the proposed BRD-COmethod, we provide a comparative study
between the proposed method with the following four benchmarks and four heuristic
methods.

(1) Local computing (denoted by L. Comp.): all tasks are executed on the user terminal
without offloading.

(2) Full offloading (denoted by F. Offl.): all tasks are executed on the edge server.
(3) Random offloading (denoted by R. Offl.): each task is randomly offloaded to the user

terminal or edge server.
(4) Greedy offloading (denoted by G. Offl.): find the best offloading location for each

task by selecting the current optimal solution each time.
(5) Particle swarm optimization-based offloading (denoted by PSO. Offl.) (Yuan et al.,

2022): PSO simulates the foraging behavior of a flock of birds, using collaboration and
information sharing among individuals in the flock to find the best decision to determine
the offloading position of each task.

(6) Differential evolution-based offloading (denoted by DE. Offl.) (Hussain & Beg,
2021): DE simulates biological evolution by iterating repeatedly so that those individuals
that are adapted to the environment are retained and the offloading position of each task is
determined.

(7) Simulate anneal-based offloading (denoted by SA. Offl.) (Li, 2021): SA algorithm
draws on the similarities, which exist between the annealing process of solids in statistical
physics and general combinatorial optimization problems, to find the execution position of
each task.

Figure 10 The relationship between iteration number and user’s average prospect theoretic utility, average delay, average energy consumption
and average payment. Full-size DOI: 10.7717/peerj-cs.1239/fig-10
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(8) Ant colony optimization-based offloading (denoted by ACO. Offl.) (Lin, Pankaj &
Wang, 2018): each ant in the ACO algorithm uses pheromones to search simultaneously
and independently at multiple points in the problem space, eventually finding the
offloading position for each task.

Since the optimization goal of this article is to maximize the user’s prospect theoretic
utility, we choose average utility as the performance metric. To eliminate the stochastic
introduced by the heuristic algorithms, we conduct 50 runs and used the mean and
standard deviation of PTU value as the final result. Table 5 and Table 6 in the
Supplemental Information show the results of various heuristic algorithms for different
payment factor x and different numbers of users, respectively.

In Fig. 11A, as the payment factor x increases, the proposed BRD-CO algorithm can
always maintain a higher average utility when compared with the benchmark methods.
When thex is small (i.e.,x = 0.001), the maximum average utility can be achieved by most
methods, but it is maximum in our method. As its future increases from 0.001 to 0.9, the
average utility of our proposed BRD-CO algorithm decreases by 1.14%, while those of the
benchmark methods (expect L. Offl.) decrease by at least 16.4%. This implies that as the
computing delay pricing pS ct

tdi
¼ x � u increases, the average utility of the proposed

algorithm decreases less dramatically than other methods. The reason is that when the
payment factor x is larger, the users are inclined to offload fewer image, resulting in the
average utility decreasing slowly.

In Fig. 11B, the proposed BRD-CO algorithm always achieves a higher average utility
than the benchmark methods, especially when the number of users is small. As the number
of users increases, the average utility of each algorithm (expect L. Offl.) decreases and
gradually converges. The reason is that when the number of users is larger, the potential
pressure at the edge servers will be increased. When the number of users is large enough,
each user has very little offload. In addition, in this article, a marginal decrease of less than
0.005 in average utility is called convergence. From Fig. 11B, we can find that only the
BRD-CO algorithm can converge when the number of users is 45. For G. Offl., R. Offl., F.
Offl., PSO. Offl., DE. Offl., SA. Offl., and ACO. Offl., convergence is achieved at 50, 85, 55,
85, 85, 75, and 100, respectively (expect L. Offl.). When the BRD-CO reaches convergence,
the average utility is 0.138, which is greater than G. Offl. (0.115), L. Offl. (0), R. Offl.

Figure 11 Performance under different payment factors.
Full-size DOI: 10.7717/peerj-cs.1239/fig-11
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(−2.052), F. Offl. (−2.523), PSO. Offl. (−2.500), DE. Offl. (−2.551), SA. Offl (−2.39) and
ACO (−2.265). Therefore, compared with other methods, our proposed BRD-CO
algorithm has a faster convergence speed and higher average utility.

Statistical test is an effective way to evaluate the performance of algorithms. In this
article, the Wilcoxon rank sum test (Derrac et al., 2011) is adopted as a non-parametric
statistical test that returns a P-value that verifies the significant level difference between the
two algorithms. It is worth noting that an algorithm is statistically different when the P-
value is less than 0.05. The P values obtained from formula (21) under different payment
factor and different number of users are shown in Table 7 of the Supplemental
Information. By evaluating the comparison between BRD-CO and the other eight
algorithms, it is clearly understood that only one of the 16 P-values exceeds 0.05, which
reflects the statistical superiority of BRD-CO.

CONCLUSIONS
In this article, we propose a multi-user multi-objective computation offloading for medical
image diagnosis, which can play a significant role in the medical image cloud. Prior
computation offloading strategies ignored payment required to perform computation tasks
and a user’s risk awareness. To reflect the real communication and computing
environment, we consider a more realistic optimization of multi-objective. Specifically, to
maximize the prospect theoretic utility of each user by considering delay, energy
consumption, payment and user’s risk awareness, we design a low-complexity BRD-CO
algorithm. The algorithm can quickly converge to NE point and obtain an optimal
computation offloading strategy for each user in a distributed manner. The parameter
influence analysis of the BRD-CO algorithm is verified by five aspects. The simulation
results show that when compared with four benchmarks and four heuristic algorithms, our
proposed BRD-CO algorithm can guarantee a higher user’s prospect theoretic utility and a
faster convergence speed. The benefit is especially significant when the diagnosis tasks are
delay-sensitive and the resources of terminal devices are limited.

It is worth noting that the medical tasks studied in this article are coarse-grained, but
some medical tasks can be more fine-grained. Therefore, our future research work focuses
on task dependencies. For diagnostic tasks based on radiomics model, the association
relationships between sub-modules (i.e., subtasks) within the model have a large impact on
the task offloading problem. Therefore, we intend to use the recurrent neural network to
model the dependencies between subtasks. Meanwhile, the high-quality task offloading
strategy is learned by continuous ‘trial and error’ through deep reinforcement learning.
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