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ABSTRACT
JavaScript Web applications are a common product in industry. As with most applica-
tions, Web applications can acquire software flaws (known as bugs), whose symptoms
are seen during the development stage and, even worse, in production. The use of
debuggers is beneficial for detecting bugs. Unfortunately, most JavaScript debuggers (1)
only support the ‘‘step into/through’’ feature in an execution program to detect a bug,
and (2) do not allow developers to go back-in-time at the application execution to take
actions to detect the bug accurately. For example, the second limitation does not allow
developers to modify the value of a variable to fix a bug while the application is running
or test if the same bug is triggeredwith other values of that variable. Using concepts such
as continuations and static analysis, this article presents a usable debugger for JavaScript,
named DeloreanJS, which enables developers to go back-in-time in different execution
points and resume the execution of aWeb application to improve the understanding of
a bug, or even experiment with hypothetical scenarios around the bug. Using an online
and available version, we illustrate the benefits of DeloreanJS through five examples
of bugs in JavaScript. Although DeloreanJS is developed for JavaScript, a dynamic
prototype-based object model with side effects (mutable variables), we discuss our
proposal with the state-of-art/practice of debuggers in terms of features. For example,
modern browsers like Mozilla Firefox include a debugger in their distribution that only
support for the breakpoint feature. However DeloreanJS uses a graphical user interface
that considers back-in-time features. The aim of this study is to evaluate and compare
the usability of DeloreanJS and Mozilla Firefox’s debugger using the system usability
scale approach. We requested 30 undergraduate students from two computer science
programs to solve five tasks. Among the findings, we highlight two results. First, we
found that 100% (15) of participants recommended DeloreanJS, and only 53% (eight)
recommended Firefox’s debugger to complete the tasks. Second, whereas the average
score for DeloreanJS is 71.6 (‘‘Good’’), the average score for Firefox’s debugger is 55.8
(‘‘Acceptable’’).
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1Indeed, in 1966 a survey was published
which showed features of debuggers
for languages like Fortran, Lisp, and
Algol (Evans & Darley, 1966).

INTRODUCTION
JavaScript is one of the most commonly used languages for developing Web applications.
In fact, a survey conducted by Stack OverFlow (2022) showed that, for the past nine
years, JavaScript has been the most used programming language. The popularity of Web
applications has increased due to the number of standalone applications that have been
migrated to the Web, to take full advantage of cloud and distributed services. Examples
of migrated applications cover a wide range of domains, from PDF (Portable Document
Format) toMicrosoftWord documents conversion (Smallpdf, 2022) to Enterprise Resource
Planning (ERP)Web applications (Oracle, 2022), and everything in between. We note that,
as the complexity of new and migrated Web applications increases, they are more prone to
the presence of flaws (i.e., bugs).

Detecting bugs represents one of the most time-consuming tasks in software
development (National Institute of Standards and Technology, 2002), and the development
of Web applications is no exception. To alleviate this task, alongside the proposal of
programming languages and Integrated Development Environments (IDE), a large
number of debuggers that provide many different features (Balzer, 1969).1 Even though
multiple debugger alternatives exist, most practitioners still rely on classic breakpoint-based
debuggers (Perscheid et al., 2017). Such debuggers allow developers to pause the execution
of a program, allowing them to step through the program execution (i.e., forward,
into, or out of a given instruction). The advantage of this technique is to observe the
values for selected program variables (Stallman, Pesch & Shebs, 2010; Dr. Racket, 2022).
Other debuggers provide more advanced features like navigation through a program
execution history (Pothier, Tanter & Piquer, 2007; Bousse et al., 2015; Barr et al., 2016),
the re-execution of a program from a given execution point (UndoDB, 2022; Srinivasan
et al., 2004; Bhansali et al., 2006; Choi & Srinivasan, 1998), or the remote monitoring of an
execution (Session Stack, 2022; Raygun, 2022; TrackJS, 2022). However, the use of advanced
debuggers faces two problems. First, developers consider debuggers complex to use, opting
to use log approaches with print-like statements (Beller et al., 2018). Second, most existing
debuggers are postmortem. That is, the analysis of the program can only occur after the
execution has taken place, and only for a single execution path (i.e., a set of state values). As
a result, classic debuggers only show the occurrence of a bug, forcing developers to execute
their application multiple times to try to detect the bug over multiple value instances. This
makes finding the cause of a bug difficult and time consuming, as the debuggers detect an
instance of a problem, but provide no information about the underlying reasons for the
program that occurred.We argue that offering the possibility of going back-in-time through
the application’s execution, to replay a program using different values in an intuitive way,
can improve understanding of the causes behind a bug.

Inspired by the work on replay-based debugging (Tolmach & Appel, 1995) for Standard
Meta Language (ML) (Milner, Tofte & Macqueen, 1997), this article presents a proof-of-
concept usable (and practical) back-in-time debugger for JavaScript, named DeloreanJS.
To realize back-in-time debugging, we introduce timepoints, defined as specific execution
points of aWeb application that developers canmove to at any time. Timepoints are created
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Figure 1 An overview of the DeloreanJS approach.
Full-size DOI: 10.7717/peerjcs.1238/fig-1

explicitly by developers or implicitly whenever specified variables or object properties
changed their values. Using timepoints, DeloreanJS enables back-in-time features that
allow developers to: (1) navigate through an execution history by skipping through
timepoints, (2) modify values associated with variables or object properties in a timepoint,
and (3) resume the execution from a timepoint.Whenever a value is changed at a timepoint,
the re-execution creates a new timeline (i.e., a new execution trace for the application).
The definition of timepoints and timelines is shown in Fig. 1. We present the details of
timepoints and their implementation further in Section 3.

Additionally, we propose a specialized Graphical User Interface (GUI) for DeloreanJS to
ease the usability of its features, in response to the complexity that back-in-time debuggers
might introduce (e.g., adding interactive timelines to navigate through the program’s
execution history (Pothier, Tanter & Piquer, 2007)).

The development of DeloreanJS is based on the debugger for Standard ML, however,
both debuggers are fundamentally different. On the one hand, StandardML is a purely typed
functional programming language, where there are no side effects (no mutable variables).
However, JavaScript is a dynamically typed object-oriented programming language with
higher-order functions andmutable states. To implement DeloreanJS, we use continuations
(Friedman &Wand, 1984), to capture and store, as a first-class value, the current program
control state of an application execution. Moreover, we extend continuations with static
analysis (Cousot & Cousot, 1977) techniques to capture and store mutable objects (stored
in the heap). This combination can completely capture the control and mutable state for
JavaScript programs. Using the captured state, DeloreanJS creates timepoints that allow
developers to go back-in-time to them and to resume execution from such points. If the
stored state at the timepoints changes, the execution resumes in a new timeline with the
changed state.

Using the back-in-time features, DeloreanJS allows developers to (1) improve
understanding of a bug, and (2) experiment with hypothetical scenarios. DeloreanJS
helps developers understand bugs as they can repeatedly modify variable values associated
with a bug and resume an execution from the same timepoint, saving a large number
of executions (i.e., time). Additionally, developers can experiment with hypothetical
scenarios of a Web application execution through the interactive user interface, allowing
the exploration and evaluation of diverse timepoints with different variable values.
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To validate DeloreanJS’ functionality (Section 4), we developed four different scenarios
exhibiting the most important functionalities of DeloreanJS, which are to detect,
understand, clarify, and experiment with bugs in JavaScript applications. The scenarios
are taken from a Management Information System (MIS), and are made available in the
online version of DeloreanJS (DeloreanJS, 2022).

Furthermore, to validate the usability of DeloreanJS, we conducted an empirical
evaluation based on the System Usability Scale (SUS) approach (Brooke, 1996) (see
the ‘Usability Evaluation’ section). Our evaluation consists of 15 computer science
undergraduate students, with varying expertise levels, evaluating DeloreanJS in comparison
to the built-in debugger inMozilla Firefox (Mozilla Firefox, 2022). As a proof of DeloreanJS’
usability, all participants using DeloreanJS, recommended it; while 35% of the participants
using Firefox’s debugger, recommended it.

In summary, our proposal constitutes an advancement in debugger research in three
different dimensions, which we posit as our main contributions:
1. Navigate through and resume from program execution points. Unlike most

debuggers for JavaScript, DeloreanJS allows developers to go back-in-time to specific
execution points of aWeb application and create new execution traces from a timepoint.

2. Back-in-time debugger for a mutable object-oriented language. DeloreanJS extends
state-of-the-art features of back-in-time debuggers to enable the use of mutable states
in the object-oriented programming paradigm.

3. Usable user interface for a back-in-time debugger. Advanced debugging features
usually increase the complexity of using a debugger. DeloreanJS posits a user-friendly
GUI to ease the navigation through timepoints and the generation of new execution
timelines.
The rest of this article is organized as follows. The ‘Related Work’ section compares

DeloreanJS to debuggers with existing approaches that have similar features. We then
describe DeloreanJS and its crucial components in ‘Deloreanjs’. The ‘Validation: Deloreanjs
in Action’ section presents our proposal in action through five examples. ‘Usability
Evaluation’ presents the evaluation of DeloreanJS alongside a usability study based on the
SUS approach. We end this article with a conclusion and describe the limitations of our
proposal.

Availability. A proof-of-concept implementation of DeloreanJS with the tests presented
in this article is available at http://pleger.cl/sites/deloreanjs (DeloreanJS, 2022). The source
code is available from the following GitHub repository: http://github.com/fruizrob/delorean
(revision 5f98bc6). Our proposal currently supports Google Chrome (Google Chrome,
2022) andMozilla Firefox (Mozilla Firefox, 2022) browsers without any need for extensions
or plugins.

RELATED WORK
JavaScript is a widely used language with active research (Vázquez et al., 2019; Leger,
Tanter & Douence, 2013; Leger, Tanter & Fukuda, 2015; Zheng, Bao & Zhang, 2011; ten
Veen, Harkes & Visser, 2018; Lui et al., 2018) and development communities (jQuery,
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Table 1 Feature comparison of DeloreanJS and related debuggers. The black circle is full support for
the feature, a half black circle means a feature (or half of it) is emulated, and a white circle means that it is
not supported.

Table 1. Feature comparison of DeloreanJS and related debuggers. The black circle is full support for
the feature, a half black circle means a feature (or half of it) is emulated, and a white circle means that it
is not supported.

Debuggers Features

Name Approach Target language
(Features)

Step Navigation Replay Modify and
resume execution

Available in browsers
(e.g., Google Chrome (Google Chrome, 2022) and

Mozilla Firefox (Mozilla Firefox, 2022))
Breakpoint

JavaScript
(Prototype-based programming

with higher-order functions)

Dr. Racket (Dr. Racket, 2022) Breakpoint
Racket

(Mainly functional language)

TOD (Pothier et al., 2007) Omniscient
Java

(Class-based language)

JARDIS (Barr et al., 2016) Omniscient JavaScript

PECCit (Azar, 2016) Omniscient & remote JavaScript

Session Stack (Session Stack, 2022) Omniscient & remote JavaScript

Raygun (Raygun, 2022) Omniscient & remote JavaScript

TrackJS (TrackJS, 2022) Omniscient & remote JavaScript

Standard ML Debugger (Tolmach and Appel, 1995) Replay-based
Standard ML

(Functional language)

Flashback (Srinivasan et al., 2004) Replay-based
Multiple languages

(source code not required)

of Linux applications)

UndoDB (UndoDB, 2022) Replay-based
Multiple languages

(source code not required

of Linux applications)

iDNA (Bhansali et al., 2006) Replay-based
Multiple languages

(source code not required)

DejaVu (Choi and Srinivasan, 1998) Replay-based Java

QueryPoint (Mirghasemi et al., 2011) Replay-based JavaScript

DeloreanJS Timepoint JavaScript

1. Breakpoint. Debuggers that use breakpoints are widely known. These debuggers allow developers141

to insert breakpoints to pause the program execution and start the debugging process when a142

program execution reaches a breakpoint. When the debugging process starts, a developer can step143

forward, statement by statement, or, as with the built-in Dr. Racket debugger, step back as well (Dr.144

Racket, 2022). Regarding JavaScript, modern browsers include a debugger in their distribution145

with breakpoint support (Google Chrome, 2022; Mozilla Firefox, 2022; Safari, 2022). More146

advanced JavaScript debuggers offer additional functionality. For example, FireBug (Barton and147

Odvarko, 2011), currently included in Mozilla Firefox, allows developers to modify a running Web148

application. Such features are desired in replay-based debuggers and are available in DeloreanJS.149

Although DeloreanJS does not directly support breakpoints, we may emulate this feature by150

inserting timepoints explicitly as shown in the following snippet:151

delorean . breakpoint = function (name) { / /name is optional152

delorean . insertTimepoint (name) ;153

/ / . . . f lags to resume the af ter the throw statement154

throw ”Delorean breakpoint exception” ;155

};156

As the method implementation above shows, a breakpoint is added through the execution of the157

breakpoint method in the delorean object. In our proposal, the role of a breakpoint is to suspend a158

program’s execution to start the debugging process and work as a timepoint as well. Not surprisingly,159

the definition of this method is very direct because its implementation only inserts a timepoint and160

triggers an exception.161

2. Omniscient. Omniscient debuggers, which have been implemented for languages like Java (Pothier162

et al., 2007) and xDSMLs (Bousse et al., 2015), record every event that occurs in the program’s163

execution, creating an execution trace history. In JavaScript, the JARDIS (Barr et al., 2016) debugger164

records the execution trace of a Web application and provides a GUI to navigate through this trace.165

Unlike DeloreanJS, omniscient debuggers are postmortem, meaning that it is not possible to go166

back-in-time to a point in the history of an application’s execution to resume the execution from a167

point with potentially modified variable values. Additionally, implicit timepoints in DeloreanJS168
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2022; Angular, 2022; McKenzie, 2022; RxJS, 2022). Currently, there are several debuggers
proposed in the body of literature (Barton & Odvarko, 2010; JsBin, 2022; NodeJS Inspector,
2022), offering a wide set of features, such as modifying variable values while an application
is running (e.g., FireBug; Barton & Odvarko, 2010).

Table 1 shows a comparison of debugger features in approaches that consider the
execution history of an application. This table shows 15 debuggers with their supported
approaches and features. For each debugger, some features are supported (black circles),
and some are not supported (white circles). In the last row, we compare these debuggers
to our proposed debugger. Considering the approach of these debuggers, we can classify
them to four groups:
1. Breakpoint. Debuggers that use breakpoints are widely known. These debuggers

allow developers to insert breakpoints to pause the program execution and start
the debugging process when a program execution reaches a breakpoint. When the
debugging process starts, a developer can step forward, statement by statement, or, as
with the built-in Dr. Racket debugger, step back as well (Dr. Racket, 2022). Regarding
JavaScript, modern browsers include a debugger in their distribution with breakpoint
support (Google Chrome, 2022; Mozilla Firefox, 2022; Safari, 2022). More advanced
JavaScript debuggers offer additional functionality. For example, FireBug (Barton &
Odvarko, 2010), currently included in Mozilla Firefox, allows developers to modify a
running Web application. Such features are desired in replay-based debuggers and are

Leger et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1238 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1238


2Apart from the Web, JavaScript is
currently used in other development
environments, for example, on the server
side with NodeJs (NodeJS, 2022) and
in window managers of Linux-based
operating systems (Gnome, 2022).

available in DeloreanJS. Although DeloreanJS does not directly support breakpoints,
we may emulate this feature by inserting timepoints explicitly as shown in the following
snippet:

delorean . breakpoint = function (name) { / /name i s optional
delorean . insertTimepoint (name) ;
/ / . . . f l a g s to resume the a f t e r the throw statement
throw "Delorean breakpoint exception " ;

} ;

As the method implementation above shows, a breakpoint is added through the
execution of the breakpoint method in the delorean object. In our proposal, the role
of a breakpoint is to suspend a program’s execution to start the debugging process
and work as a timepoint as well. Not surprisingly, the definition of this method is very
direct because its implementation only inserts a timepoint and triggers an exception.

2. Omniscient. Omniscient debuggers, which have been implemented for languages like
Java (Pothier, Tanter & Piquer, 2007) and xDSMLs (Bousse et al., 2015), record every
event that occurs in the program’s execution, creating an execution trace history.
In JavaScript, the JARDIS (Barr et al., 2016) debugger records the execution trace
of a Web application and provides a GUI to navigate through this trace. Unlike
DeloreanJS, omniscient debuggers are postmortem, meaning that it is not possible to
go back-in-time to a point in the history of an application’s execution to resume the
execution from a point with potentially modified variable values. Additionally, implicit
timepoints in DeloreanJS allow us to emulate the history of the navigation through
different variable values.

3. Omniscient and remote. JavaScript is commonly used to build Web applications2

that are running on devices with different hardware and software characteristics (e.g.,
smartphones, tablets, notebooks). Given a device’s fragmentation, bugs may appear
from different configurations and may not have been tested by developers due to
scarse development environment. To overcome this difficulty, JavaScript developers
use debuggers that remotely monitor the execution of applications (Session Stack, 2022;
Raygun, 2022;TrackJS, 2022;Azar, 2016). Similar to omniscient debuggers, omnisciente
and remote debuggers record and send the occurrence of each event to a developer over
the network. Although these debuggers allow developers to analyze the execution traces
of different users in real-time, they do not offer the possibility to navigate back-in-time
through timepoints (i.e., execution points) as is possible in DeloreanJS.

4. Replay-based. A deterministic replay tool (UndoDB, 2022; Srinivasan et al., 2004;
Bhansali et al., 2006; Choi & Srinivasan, 1998) re-executes a program with the exact
behavior of the original program execution. Some researchers have adapted this kind
of tool to create replay-based (or reverse) debuggers. For example, Jockey (Saito, 2005)
allows developers to replay program executions from specified ‘‘checking points,’’
to analyze program behavior from such execution points. Using continuations, the
Standard ML (SML) debugger (Tolmach & Appel, 1995) provides a timepoint-like
feature. However, SML is fundamentally different from JavaScript due to the support
of mutable objects. QueryPoint (Mirghasemi, Barton & Petitpierre, 2011) is a JavaScript
debugger with replay tools that allows developers to go back-in-time to the last change
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of a specific variable that could have an incorrect value. Apart from using timepoints to
resume an execution with different variable and object property values, with DeloreanJS
developers can use timepoints with watched variables to emulate a similar behavior to
QueryPoint.
Runtime verification tools (Meredith, 2012) are not strictly defined as debuggers,

nonetheless, these tools have a behavior similar to that of DeloreanJS given that errors can
be detected at run time. Available runtime verification tools include PQL (Martin, Livshits
& Lam, 2005), PTQL (Goldsmith, O’Callahan & Aiken, 2005), and JavaMOP (Meredith et
al., 2011; Chen & Roşu, 2007). These tools allow developers to express the complex patterns
of an application’s execution, for example, detecting access to an item that is not available
in an array because another execution thread removed this item. Unfortunately, similarly
to previous debuggers, these tools cannot resume an execution from a specific point of the
computation history with different variable values.

DELOREANJS
Unlike current JavaScript debuggers, DeloreanJS uses a back-in-time approach. Figure 2
shows the multiple execution traces, named timelines, that can be created from the
timepoints inserted into a Web application. When a developer inserts a timepoint, it is
possible to go back-in-time to that timepoint when the execution of an application is stoped
due to an exception, or the regular execution flow ends.When we replay the execution from
the timepoint, a new timeline is created. Each timeline represents a different execution
trace, for example, the variables x and y in Fig. 2 contain different values. Figure 3 shows
a screenshot from the current version of DeloreanJS (DeloreanJS, 2022). As shown in Fig.
3, the GUI is composed of six panels (inspired by Visual Studio Code; Visual Studio Code,
2022). Panel 1 allows a developer to write a JavaScript program to debug. Panel 2 shows
the output of the execution. Panel 3 is used to add variables to watch by DeloreanJS.
Panel 4 shows the timepoints with their corresponding timelines. A timeline, a specific
execution trace, is created while the Web application executes; for example, Fig. 2 shows
two timelines, where one is created from resuming the application execution in a selected
timepoint. Panel 5 shows variables and objects that a timepoint captures. The values of
these variables and objects can be modified by developers before resuming the execution.
Panel 6 shows two configuration options to define the types of timepoints to use (cf.
‘‘Inserting and Using Timepoints’’ section).

The Related Works section described existing back-in-time debuggers. However,
the distinguishing features of JavaScript, like mutable and dynamic object-oriented
programming with higher-order functions, introduce new challenges, not addressed
by existing debuggers. For example, dealing with the mutable state of objects. The next
section presents how we address these challenges in DeloreanJS.

Creating timepoints
To go back-in-time to a specific point in the execution of a Web application, the timepoint
abstraction is crucial. This is because a timepoint captures and stores the control state of
a Web application in terms of the: program counter, stack, and (partially) heap. Figure 4
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Figure 2 Multiple execution traces of an application with DeloreanJS.
Full-size DOI: 10.7717/peerjcs.1238/fig-2
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Figure 3 A screenshot of DeloreanJS as aWeb application.
Full-size DOI: 10.7717/peerjcs.1238/fig-3

shows how we capture the program counter and stack using continuations (Friedman &
Wand, 1984). Variables from the stack and heap are captured using static analysis (Cousot
& Cousot, 1977).

Capturing the program counter and stack
To understand how to capture and store the program counter and stack, we offer
a brief explanation of continuations (Koppel, Scherer & Solar-Lezama, 2018; Cong
et al., 2019; Cong & Asai, 2016), which are pivotal to fulfilling this task. Functional
programming languages, such as Scheme (Kesley & Rees, 1995), provide an abstraction
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Figure 4 Composition of timepoints, created using continuations and static analysis.
Full-size DOI: 10.7717/peerjcs.1238/fig-4

named continuation. This abstraction captures the program counter and stack of a
functional program and stores them as a first-class value, that is, a value that supports
assignment and invocation operations (e.g., functions in JavaScript). When a continuation
is created, this can be invoked to replace the current execution of a program with the
execution stored in the continuation. Unwinder (Long, 2022) is a third-party library
in JavaScript that supports continuations through a function called callCC. Although
this library is not being maintained, Unwinder provides the necessary functionalities to
DeloreanJS. We exemplify continuations with Unwinder using a piece of code that captures
the execution of a function that adds two numbers:
1 var kont ;
2

3 function add(x , y) {
4 return x + (
5 function () { kont = callCC(cont => cont ) ;
6 return typeof (kont) == "number" ? kont : y ; } ) ( ) ;
7 }
8

9 show(add(5 ,1)) ; / / shows 6
10 i f ( typeof (kont) == " function " ) kont (20); / / shows 25

Listing 1: Use of continuations in the Unwinder library.

Figure 5 shows the workflow of Listing 1. Line 5 shows a continuation kont created
before adding the y variable. This execution capture occurs on line 9 when the add function
is called. The result of add is passed to show, and the number 6 (6 = (x = 5) + (y = 1)) is
shown. Line 10 invokes the continuation stored in kont with the parameter 20, resulting in
the return value of the anonymous function between lines 5–6 as 20 and not 1. As a result,
25 (25= (x = 5) + (y = 20)) is displayed. Note that the if expression statement (line 6), and
the if statement (line 10) are used to differentiate between the creation of a continuation
and its invocation. A continuation is a function when it is created (line 5); and when the
continuation is invoked, it is bound to the value passed as a parameter (e.g., the value 20
in our example).
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Start add(5,1) show(6) typeof(kont) ==
“function”

End

kont(20)declarations &
assignments

kont (parameter)

return +5

(function() {…        return   1; }) ();

Figure 5 The process flow diagram of listing 1 that illustrates the use of continuations. The kont con-
tinuation uses a parameter to replace the return value of the anonymous function within add (figure taken
from Leger & Fukuda (2017); Leger, Fukuda & Figueroa (2021); https://doi.org/10.1145/3019612.3019783).

Full-size DOI: 10.7717/peerjcs.1238/fig-5

Capturing variables with their values
A timepoint needs to capture and store the variables found in a heap. However,
continuations do not do this. To capture heap variables and values, DeloreanJS statically
analyzes a Web application before running it. As JavaScript is single-threaded, the capture
of heap variables does not need to deal with issues related to data races, as is the case in
multi-threading languages like Java (Kimball & Grossman, 2007; Warth & Kay, 2008). For
example, to manage situations where two threads modify the same shared variable, v1 = 5
and v2 = 2, and we use a timepoint, which would restore the variable value for only one
thread.

The static analysis allows DeloreanJS to instrument the source code to store (during
the execution) the values of watched variables. Figure 6 exemplifies the two steps in our
static analysis. Considering a lexical scope strategy, Step 1 captures and stores the values of
defined watched variables (e.g., v1 and v2). In Step 2, the static analysis also captures and
stores the variables that modify watched variables, i.e., that have dependencies to watch
variables (e.g., a and b). As a result, DeloreanJS creates a dependency tree for each watched
variable, where a node contains a variable that (transitively) modifies the watched variable
(e.g., the two trees shown in Fig. 6). This last step follows a reactive programming (Wan
& Hudak, 2000) strategy and is necessary to ensure watched variables evolve consistently
with the variable values when an application resumes from a timepoint. For example, in
Fig. 6, if the a variable is not captured, then the v2 variable would have a different value
when the application resumes its execution from a timepoint. To implement these two
steps, DeloreanJS first creates an Abstract Syntax Tree (AST) from the source code. Using
the AST, DeloreanJS applies the Visitor (Gamma et al., 1994) design pattern to visit every
node of the AST to: (1) create a dependency tree for each watched variable, and (2) capture
and store it at runtime any modification to variables in the dependency tree.

If watched variables are associated with objects, developers can select between a shallow
or deep copy of objects in DeloreanJS’ user interface. The first option only copies the
references to other objects, while the second option clones these objects. Both options
contain a tradeoff that is necessary to consider. On the one hand, if the shallow copy
option is used, developers may not keep an exact version of an object through the time,
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//Watching ‘v1’ & ’v2’

Apart from program counter 
and stack, DeloreanJS 

captures v1=5 and v2=2

a = 1;
b = 0;
v1 = 5;
v2 = 2;

a = a + 1;
v1 = 0;

v2 = a + 3;
b = a + 1;

In addition, DeloreanJS 
captures a because 

v2 depends on a and b

1

2

 //An exception is triggered

if (v2 == 5)
 
   
   nonexistentFunction();

v1 v2

a

Dependency trees

b

Figure 6 The two steps to capture and store watched variables (e.g., v1 and v2) with their dependen-
cies (e.g., the a variable because it modifies v2).

Full-size DOI: 10.7717/peerjcs.1238/fig-6

i.e., developers can resume an execution from a timepoint with inconsistent memory (e.g.,
object properties with future values). On the other hand, if the deep copy option is used,
memory usage significantly increases, and it is possible that references of nested objects
may not be changed (e.g., modification of an object reference in a place that our debugger
is not supervising). In the current implementation, the DeloreanJS’ user interface allows
developers to choose between the two approaches.

Inserting and using timepoints
Developers can explicitly insert timepoints using the delorean.insertTimepoint(String)
method, and DeloreanJS can implicitly insert timepoints when watched variables and their
dependencies change their values. To insert implicit timepoints, the debugger instruments
the source code before the execution, to add a timepoint every time that a variable of any
dependency tree changes its value (Fig. 6).

Figure 7 shows what happens when (1) a timepoint is inserted, and (2) the inserted
timepoint is used. When a timepoint is inserted DeloreanJS creates and stores a Timepoint
object, which contains a new continuation and an object that stores the watched variables
with their dependencies. When a developer selects a specific timepoint (e.g., TP)
using DeloreanJS’ user interface, the debugger invokes the continuation stored in the
timepoint and subsequently modifies the values of the watched variables along with their
dependencies.

VALIDATION: DELOREANJS IN ACTION
This section introduces the main functionalities of DeloreanJS and its inner workings
through five examples extracted from a MIS (Laudon & Laudon, 2016) that manages
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stack

heap

program
counter

Creation of 
a timepoint TP

Storing continuations and 
watched variables and

dependencies

TimepointTP = {
  kont:      //continuation
  variables: /* object with 
               watched variables
               and dependencies */
};

Restoring the continuation 
with variables values in 

the timepoint TP

 the timepoint TP 
is selected

Figure 7 Insertion of a timepoint and its usage.
Full-size DOI: 10.7717/peerjcs.1238/fig-7

student grades at a university. To gradually introduce the debugger, the complexity of the
examples is incrementally increased.

Bug detection and fixing
A common task for a MIS is to calculate the final grade of a student, according to an
evaluation strategy assigned to a course. We want to be able to identify errors, in a
meaningful way, whenever this calculation cannot take place. Listing 2 shows an example
of how to manage errors during the calculation. In this example, we calculate the final
grade for a student of the course ‘‘Algebra.’’. Here, an exception is triggered because the
variable ‘‘courseName’’ contains an incorrect name for the course (‘‘Alggebra’’), which
does not have an evaluation strategy assigned to it. Although the goal of DeloreanJS is to
detect bugs, we can also use our tool to fix bugs at runtime. To do so, a developer must
first add the courseName to the list of watched variables using the user interface; then the
developer inserts an explicit timepoint (line 4) to be able to go back-in-time to it. When an
exception is triggered, the program stops its execution. As we are attempting to invoke a
function that is not in the evalStrategies array (line 9), the developer can select a timepoint
such as StrategyNotFound using the DeloreanJS user interface and change the courseName
value to the correct course name: ‘‘Algebra.’’. Finally, the developer can resume execution
from the selected timepoint for a successful calculation.
1 l e t courseName = Alggebra / / should contain ’Algebra ’
2 l e t studentId = 200121736 / / contains the student Id
3

4 delorean . insertTimepoint ( ’ StrategyNotFound ’ ) ;
5

6 l e t evalStrategyId = findStrategy (courseName) ; / / returns null
7 l e t evaluations = getDegrees (courseName , studentId ) ;
8

9 / /Next l ine t r i g g e r s an exception
10 l e t finalGrades = eva lStra teg ies [ evalStrategyId ]( evaluations ) ;
11 show( finalGrade ) ;

Listing 2: A bug occurs when a non-existing function is invoked. This is detected with an
explicit DeloreanJS timepoint.
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Improve the understanding of a bug
Another desirable feature of the MIS is to generate a report that contains the average grade
of all courses at a university. This feature is implemented in Listing 3. Similar to the code
in Listing 2, the course ‘‘Algebra’’ is misspelled. However, this scenario is more complex as
the exception is triggered within the execution of the loop, and has many possible iterations
(e.g., there can bemore than 1,000 courses per semester). Knowingwhich iteration andwhy
it triggers an exception in a loop can be an extremely time-consuming task for developers.
The use of breakpoints, available in existing debuggers, does not necessarily ease the task at
hand as breakpoints do not react to an exception, but react to the execution of a statement.
In the case of a loop, such statements may be executed several times, having to stop at each
of them. For this example, DeloreanJS allows developers to save the execution state from
many executions (i.e., loop iterations), and reuse the execution context of the application
(i.e., go back to a specific iteration and try different values). This is helpful information
for developers to understand the bug. In Listing 3, a DeloreanJS timepoint is inserted for
each iteration of the loop while the program is executing. When an exception is triggered,
a developer can go back in time to any iteration of this loop to find the causes of a bug,
improving their understanding of the reason for the bug. Again, in this example, we observe
that DeloreanJS allows developers to watch and modify objects and their properties (e.g.,
courseNames) to explore execution alternatives.

l e t universityMean = 0;
l e t courseNames = / / contains ’ Alggebra ’ in an array of courses

for ( l e t $i=0$ ; i < courseNames . length ; ++i ) {
delorean . insertTimepoint ( ’ StrategyNotFound ’ ) ;

l e t courseName = courseNames[ i ] ;
l e t evalStrategyId = findStrategy (courseName) ;
l e t mean = eva lStra teg ies [ evalStrategyId ](courseName) ;
universityMean += mean;

}

show(universityMean /courseNames . length ) ;

Listing 3: A bug occurs in one of the iterations within the loop.

Clarify unexpected results
A MIS has to administer the personal information of students, such as their name or birth
year. Student information can be used to generate reports or aggregate information like the
students’ average year of birth. Listing 4 shows a piece of code that can be used to calculate
students’ average year of birth. In JavaScript, when there is a variable without initialization,
this variable is bound to undefined (e.g., Guillermo’s birth year). Additionally, JavaScript
does not trigger an exception when arithmetic expressions operate with undefined, the
language just returns NaN (Not a Number). The average variable of this listing ends up with
a NaN because of an undefined value in Guillermo’s birth year. As a bug is an unexpected
behavior (not only an exception), developers using DeloreanJS can employ timepoints
when a program execution ends. Listing 4 inserts a timepoint for each student in the
students array. Developers can navigate through these timepoints to find the iteration step
when average goes from a numeric value to NaN, i.e., when i = 4.
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l e t students = [
/ / Database information ext rac t
{name: "Paul " , birthyear : 1980} ,
{name: " Felipe " , birthyear : 1985} ,
{name: "Nicolas " , birthyear : 1983} ,
{name: "Hiroaki " , birthyear : 1975} ,
{name: "Guillermo" , birthyear : undefined } ,
{name: "Tomas" , birthyear : 1988}

] ;
l e t average = 0;
for ( l e t $i=0$ ; i < students . length ; ++i ) {
delorean . insertTimepoint ( ’Average birth year ’ ) ;
average = average + students [ i ] . birthyear / students . length ;

}
show( "The birth year average i s : " + average ) ; / / show "NaN"

Listing 4: An unexpected results is shown when the program execution ends.

Experiment with hypothetical scenarios
Experimentingwith several hypothetical scenarioswithout the need to re-run an application
from the beginning may save time for testers. Developers can use DeloreanJS to experiment
with different execution scenarios by reusing timepoints with different values for watched
variables. We illustrate this feature through three potential reports that this MIS can
show depending on the value of the realMean variable, as shown in Listing 5. Using
DeloreanJS with explicit timepoints triggered by exceptions, a tester can (re)use the
timepoint TestingDifferentResults to modify the value of realMean and explore the
behavior of the system when it displays different reports.

l e t realMean = universityMean /maximumMean;
delorean . insertTimepoint ( ’ TestingDifferentResults ’ ) ;

i f (realMean < 0.2)
showReportMeanOfBadCourses ( ) ;
else i f (realMean >= 0.2 &amp; &amp; realMean < 0.8)
showReportMeanOfOutLayerCourses ( ) ;
else i f (realMean >= 0.8)
showReportMeanOfBestCourses ( ) ;

throw " Triggering a te s t e r exception " ;

Listing 5: Defining timepoints to explore and display different reports in deloreanjs.

Revisiting: improve the understanding of a bug
This does not strongly highlight its benefits. DeloreanJS’ user interface allows developers
to activate the implicit timepoints option, so that timepoints are automatically added each
time that a watch variable is modified. With implicit timepoints, a developer can navigate
in the computation history of a program through the selection of timepoints that represent
value modifications of watch variables. Other proposals (Pothier & Tanter, 2009; Barr et
al., 2016) have shown the benefits of navigating through a program’s execution history to
understand a bug; this is mainly because it is possible to find when a variable is bound to an
unexpected value. For example, Fig. 3 shows the execution history through the timepoints
with their associated timestamps; in each timepoint, developers can watch variable and
object property values at that execution point. We illustrate the use of implicit timepoints
for navigation through the second example of this section, when we attempt to generate a
report that contains the average grade of all courses at a university. Without adding any
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Figure 8 Two different execution points of an application execution, 7 and 8ms; where the average
variable changes its value.

Full-size DOI: 10.7717/peerjcs.1238/fig-8

call to a DeloreanJS method, the developer is able to watch the evolution of variable values
in each iteration of the (long) loop, and, of course, resume the execution from a selected
timepoint.

Figure 8 illustrates the navigation that a developer can use with DeloreanJS. The figure
shows the evolution of a variable named average in two different execution points, 7
and 8 ms (ms), that are contained in two timepoints. Whereas the value of average is
0 at 7 ms, this value changes to 59.1 at 8 ms. As many timepoints can be created at the
exact millisecond, the user interface groups these timepoints in one point to simplify the
interface.

Summary
We have presented DeloreanJS through different concrete examples, which show the use
of explicit and implicit timepoints to deal with bugs. Using timepoints, we have shown
how to modify values of variable or object properties using a Web interface while an
application is running. Although we use the first three examples with explicit timepoints,
the usefulness of DeloreanJS comes from employing implicit timepoints, as developers can
navigate through the evolution of values in the execution history of a Web application.

USABILITY EVALUATION
We evaluated and compared the usability of DeloreanJS and Mozilla Firefox’s built-
in debugger (ex-Firebug (Barton & Odvarko, 2010)) using the SUS (Brooke, 1996)
to detect bugs in five pieces of code written in JavaScript. The SUS approach has
been widely used in different contexts (Bangor, Kortum &Miller, 2008; Derisma, 2020;
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3The most used IDE in 2021 (Stack
OverFlow, 2022).

Vlachogianni & Tselios, 2021) because of its quick and adjustable use (Brooke, 2013). In this
section, we first describe the inspiration for DeloreanJS’ GUI, then we present the usability
evaluation setup with its results.

Graphical user interface
As mentioned in Section 4, DeloreanJS’ GUI is mainly inspired by Visual Studio Code
(Visual Studio Code, 2022), which provides a familiar user interface for developers.3 To
interact with a timeline, we borrow the interface used in TOD (Pothier & Tanter, 2009)
and other IDEs (Field et al., 2022). Additionally, as Fig. 3 shows, we include the timepoint
interactions, the support of multiple timelines, and a panel to modify the property
values contained by a timepoint. Readers can check out DeloreanJS’ GUI on its website
(DeloreanJS, 2022).

Evaluation setup
Table 2 shows the characteristics of the evaluation participants. We invited 30
undergraduate students from two computer engineering programs (from Universidad
Católica del Norte—Chile, and Universidad de los Andes—Colombia). All participants
are in their 4th or 5th year of the program and have 1–3 years of experience in JavaScript
development. These participants analyzed five pieces of code (tasks), which are available
in the DeloreanJS website (DeloreanJS, 2022). The task complexity is incremental, starting
with the execution of the easiest to the most complex task (Table 3). The evaluation splits
the participants in two groups, 15 students used DeloreanJS, and the remaining 15 used
the built-in Mozilla Firefox debugger. After executing the five tasks, all participants filled
out a Google Form survey that contained a set of questions. The evaluation was carried out
in two online sessions–one for each university.

Results
The results of the evaluation show that 100% of the participants using DeloreanJS (15)
recommend it as an effective tool to debug JavaScript Web applications. 53% of the
participants using Firefox’s debugger recommend it to debug Web applications. In this
section, we present and compare different charts that illustrate he participants’ use of
DeloreanJS. After presenting these charts, we briefly describe and apply the SUS approach
to DeloreanJS and Firefox’s debugger. Participant responses used to create the charts and
SUS evaluation are anonymized and available at http://pleger.cl/sites/deloreanjs/results.html
(responses in Spanish and translated to English).

Percentage of participants that detected a bug. Figure 9 compares the percentage of
participants that were able to detect a bug using each of the platforms debugger: DeloreanJS,
and FireFox. For both debuggers, most participants (over 75%) could detect the bugs for
all tasks. Note that all participants using DeloreanJS could detect the bug in task 2 (Listing
6) while only 93% of the participants could detect the bug using FireFox’s debugger.
The difference in success rates may be because the piece of code in task two presents an
unexpected behavior (NaN as a result) and not a runtime exception. Participants using
DeloreanJS could use timepoints to find the moment when the result becomes NaN.
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Table 2 Participants’ profiles per debugger.

Debugger Participants’ profile Number Universities

Firefox Undergraduate Students 15 University of the Andes (Colombia) - Universidad Católica
del Norte (Chile)

DeloreanJS Undergraduate Students 15 University of the Andes (Colombia) - Universidad Católica
del Norte (Chile)

Table 3 Tasks for participants.

Id Description

1 Detect a simple bug
2 Detect a bug into a loop
3 Experiment with different and hypothetical scenarios
4 Detect a bug using implicit timepoints
5 Detect a bug in advanced structures
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Figure 9 Percentage of participants that detected the bug per script for DeloreanJS and Firefox’s de-
bugger.

Full-size DOI: 10.7717/peerjcs.1238/fig-9

l e t matrix = createMatrix (n, m) ;
l e t sum = 0;

for ( l e t $i=0$ ; i < n; ++i )
for ( l e t $j=0$ ; j < n; ++j ) { / / the loop bound should be "m"
delorean . insertTimepoint ( "sumFor" ) ; / / e x p l i c i t timepoint
sum = sum + matrix[ i ][ j ] ;

}

Listing 6: Extract of task 2 that was used to evaluate and compare different aspect of De-
loreanJS.

Average time to detect a bug. Figure 10 shows the average time per task that participants
used to detect the bug. In the first task, participants using DeloreanJS, detected the bug
significantly faster than the participants using Firefox’s debugger, with a net difference
of 4 min. In the remaining tasks, the average time to solve each task is similar for both
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4On the Web, few variations in the ranges
can be found to classify the user interface.
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Figure 10 Average time (minutes) that took to the participants to detect each bug.
Full-size DOI: 10.7717/peerjcs.1238/fig-10

debuggers. It is possible that the difference in time required to locate the bug in the first
task is related to the fact that the first time participants used either debugger, and Firefox’s
debugger seems more complex (cf. Section 5.3.1).

Usability
To evaluate and compare DeloreanJS with Firefox’s debugger in respect to their usability,
we employed the SUS approach (Brooke, 1996).With the SUS approach, a set of participants
that used a product, service, or application, are asked to score ten items using a Likert scale
(Albaum, 1997) of five levels (from ‘‘Strongly agree’’ to ‘‘Strongly disagree’’). The ten items
are presented as statements that a participant scores:

• ‘‘I think that I would like to use this system frequently’’
• ‘‘I found the system unnecessarily complex’’
• ‘‘I thought the system was easy to use’’
• ‘‘I think that I would need the support of a technical person to be able to use this system’’
• ‘‘I found the various functions in this system were well integrated’’
• ‘‘I thought there was too much inconsistency in this system’’
• ‘‘I would imagine that most people would learn to use this system very quickly’’
• ‘‘I found the system very cumbersome to use’’
• ‘‘I felt very confident using the system’’
• ‘‘I needed to learn a lot of things before I could get going with this system’’

To calculate a global score, we follow a three-step procedure. The global score is in the
range of 0–100, which determines its usability according to Fig. 11.4

1. Add up the total score for all odd-numbered questions, then subtract five from the
total to get total-odd.

2. Add up the total score for all even-numbered questions, then subtract that total from
25 to get total-even.

3. Add total-odd and total-even, and the result is multiplied by 2.5.
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Figure 11 Range of values to determine how the usability is a user interface according tothe SUS ap-
proach.

Full-size DOI: 10.7717/peerjcs.1238/fig-11
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Figure 12 In ascending order, the SUS score for 15 participants that use DeloreanJS and Firefox’s de-
bugger.

Full-size DOI: 10.7717/peerjcs.1238/fig-12

In an ascending order based on the score, Fig. 12 shows the usability score evaluation
using SUS for each participant: 15 for each debugger. Whereas the average score
for DeloreanJS is 71.6 (‘‘Good’’), the average score for Firefox’s debugger is 55.8
(‘‘Acceptable’’). Although DeloreanJS’ evaluation average is not ‘‘Excellent’’, we can
claim it is better than the other debugger. Additionally, we can show that three participants
found the user interface of our debugger to be ‘‘Excellent’’, and two participants found
Firefox’s debugger to be ‘‘NotAcceptable’’. Considering someof the participants’ comments
(available in Spanish), we might argue that the result is because DeloreanJS’ user interface
entirely focuses on JavaScript debugging. However, Firefox’s debugger integrates other
aspects of a Web application, for example, the use of Cascading Style Sheets, performance,
or networking.

CONCLUSION
The software industry is geared toward building increasingly large and complex Web
applications, implying a higher probability of introducing bugs in them. To build
these applications, the JavaScript language is commonly used. To help support the
implementation of applications, different debuggers are available on the Web (Barr et
al., 2016; Session Stack, 2022; Raygun, 2022; TrackJS, 2022; Barton & Odvarko, 2010; JsBin,
2022; NodeJS Inspector, 2022; Azar, 2016). However, most of these offer classic breakpoint
features, which can pose problems with the identification of the cause of bugs, beyond
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specific values leading to bugs. The use of back-in-time debuggers, like DeloreanJS, can
increase the ability of developers to reason and identify the causes of bugs, for example,
by navigating through timepoints and generating of multiple execution timelines, without
requiring re-execution of the complete application. The functionality and usability of
DeloreanJS, is presented through the use of a proof-of-concept application evaluating aMIS,
and a usability evaluation of DeloreanJS’ user interface. The results of our study confirm
that DeloreanJS is effective in (1) improving the understanding of bugs through scenario
experimentation, and (2) providing enhanced usability by offering more information than
other web debuggers currently available.

Currently, DeloreanJS faces some challenges. One of these challenges is that of time travel
paradoxes. These paradoxes appear when a developer modifies values from a timepoint,
resumes the application execution, and then navigates back to other timepoints. The
problem here is that timepoints represent a snapshot of the execution within a specific
context. The actions of going back-in-time and modifying values contained in a timepoint
create new executions with different contexts, i.e., timelines (Fig. 2). Consequently, a future
timepoint maybe not be the result of a past timepoint, which may confuse a developer.
To avoid these time-travel paradoxes, DeloreanJS can limit the use of future timepoints
(Milner, Tofte & Macqueen, 1997) when associated with modifications at past timepoints.
Another challenge is measuring when, in terms of programming experience, DeloreanJS
(and other debuggers) can benefit developers. To address this challenge, we plan to conduct
similar evaluations presented in the Usability Evaluation section with programmers with
different ranges of experience in JavaScript (e.g., 0–1, 2–4, and more than 4 years).
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