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ABSTRACT
In computer-based testing it has become standard to collect response accuracy (RA)
and response times (RTs) for each test item. IRT models are used to measure a latent
variable (e.g., ability, intelligence) using the RA observations. The information in the
RTs can help to improve routine operations in (educational) testing, and provide
information about speed of working. In modern applications, the joint models are
needed to integrate RT information in a test analysis. The R-package LNIRT supports
fitting joint models through a user-friendly setup which only requires specifying RA,
RT data, and the total number of Gibbs sampling iterations. More detailed
specifications of the analysis are optional. The main results can be reported through
the summary functions, but output can also be analysed with Markov chain Monte
Carlo (MCMC) output tools (i.e., coda, mcmcse). The main functionality of the
LNIRT package is illustrated with two real data applications.

Subjects Computer Education, Data Science, Scientific Computing and Simulation
Keywords R-code, R-package LNIRT, IRT models, RT models, Joint models, MCMC, Model-fit
tools, Variable working-speed

INTRODUCTION
In computer (adaptive) testing next to response accuracy (RA) response times (RTs) can be
automatically recorded. The information from RTs can be used to improve the assessment
of the test-takers (e.g., latent ability estimation), to improve the design of a test (e.g.,
adaptive item selection), and to learn more about a test-taker’s response process (e.g., test
cheating, item exposure). The traditional item response theory (IRT) models to measure
ability and item characteristics (e.g., one- and two-parameter IRT models) offer no options
to include this important information from RTs. These IRT models were constructed for
paper-and-pencil tests and assume the RA data (response-accuracy observations to test
items) represents the complete-data information. Therefore, to include the RT data
(response-time observations to test items) in the psychometric-measurement analysis the
traditional IRT models need to be modified.

IRT models have been adjusted to include RT information through a new parameter
(e.g., a time parameter) (see, e.g., Roskam, 1997; Thissen, 1983; Verhelst, Verstraalen &
Jansen, 1997). In another approach, the RT data is modeled separately using an RT-specific
measurement model (Maris, 1993, Scheiblechner, 1979). Both approaches are not popular,
mainly because the analysis of RT and RA data requires a joint modeling approach, which
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includes the modeling of (underlying) associations between RA and RT data. This
motivation has lead to an hierarchical modeling approach in which the RTs and the RA are
each conditionally independently modeled (van der Linden, 2007). According to IRT
measurement principles, a latent variable, referred to as accuracy (i.e., ability), is measured
with the RA data. In the same way, it is assumed that a latent variable speed is measured
with the RT data. Therefore, in the joint modeling approach of RA and RT data, the latent
variables speed and accuracy (i.e., ability) are assumed to be measured by the RT and RA
data, respectively. Response observations are assumed to be conditionally independently
distributed given the latent variables speed and accuracy. At a higher modeling level (i.e.,
the level of test-takers), the association between speed and ability is modeled. A speed-
accuracy trade-off can be defined, where the level of accuracy is expected to increase when
the level of speed is decreased. The characteristics of each test item represent the properties
of measuring accuracy (e.g., item difficulty) and of measuring speed (e.g., item time-
intensity), which are expected to be related to each other.

The hierarchical model for speed and accuracy can be viewed as two-component joint
model, where an IRT model is defined for the RA and an RT model for the RTs. The
continuous nature of the RT data supports the use of a normal distribution to model the
heterogeneity in RTs. However, RTs are restricted to be positive, since they have a lower
bound at zero. Therefore, a log-transformation is applied on the RTs, and the log-RTs are
assumed to be normally distributed. The fit of the log-normal distribution for RTs from
psychometric tests have been examined in different studies and was considered to be good
(Thissen, 1983, Schnipke & Scrams, 1997, van der Linden, Scrams & Schnipke, 1999).
Furthermore, the log-normal model for RTs has a specification which closely resembles
IRT models for continuous RA (see, e.g., Samejima, 1973; Shi & Lee, 1998).

Summarized, the joint model for RTs and RA represents a two-component joint model
in which the log-normal model describes the RTs and a two-parameter IRT (i.e., normal
ogive two-parameter IRTmodel) describes the RA. The latent variables speed and accuracy
are assumed to be measured by the RT and RA data, respectively. Item parameters
represent the properties of an item for measuring accuracy and for measuring speed. This
joint model is referred to as the log-normal item response theory (LNIRT) model and has
become a popular model for analysing jointly RT and RA data.

The R-package LNIRT (Fox, Klotzke & Klein Entink, 2019) supports this (Bayesian)
joint modeling of RA and RTs and comprehends several Gibbs samplers for parameter
estimation. The R-package is available on CRAN: https://cran.r-project.org/web/packages/
LNIRT/index.html. The R-package LNIRT is the successor of the cirt package of Fox, Klein
Entink & van der Linden (2007). The cirt program was implemented in Visual Pro
FORTRAN, which led to problems in maintaining and updating the software. The
program LNIRT has been developed in R, which makes it open source and makes the
maintenance of the program much easier. The Gibbs sampler for the hierarchical joint
model implemented in the cirt package has been integrated in the LNIRT package, and
several important extensions have been added to LNIRT (see points 2–5 below). The
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LNIRT package offers several important contributions for jointly analysing item patterns
of RA and RTs:

1. Statistical computations are done through a powerful Gibbs sampling method that
allows for fast MCMC convergence and efficient MCMC sampling.

2. Extensive residual analysis tools are available for the evaluation of item- and person fit,
and outlier detection (Fox & Marianti, 2017).

3. Different parameterizations of the joint model can be applied. For instance, the log-
normal RT model can be fitted with the parameterization of van der Linden (2007) or of
Klein Entink, Fox & van der Linden (2009).

4. Explanatory variables can be included at the item and person level, and missing item
response data can be treated as missing at random (MAR) or missing by design (i.e.,
incomplete test design) (van der Linden & Fox, 2016).

5. It offers a generalized measurement model for RTs in which working speed can be
modeled through a latent growth component to allow for differential working speed
across items (Fox & Marianti, 2016).

The remainder of this article discusses the main contributions of the package. Two
detailed data examples are presented which show how the package can be used. In Section
2 the joint model is described, which includes the different measurement model
parameterizations, the inclusion of explanatory variables at the item and person level, and
(hyper) prior distributions. In “Model Fit”, statistical tools are discussed to evaluate the fit
of the model. This includes person-fit and item-fit tools to flag extreme persons and items
under the model, respectively. “Applications” describes an illustration of the package by
analysing the Credential data set collected from 1,636 candidates who took the licensure
exam (Cizek & Wollack, 2016). Furthermore, the joint model with variable working speed
is discussed using the Amsterdam chess data (Van der Maas &Wagenmakers, 2005). Then,
in “Summary and Discussion”, the conclusions are given.

THE JOINT MODEL
The LNIRT (joint) model is represented by the description of the measurement models for
speed and accuracy at level 1. At a second (hierarchical) level, the distribution is described
for the latent variables speed and accuracy, which operate as level-1 parameters to describe
the RA and RTs. Furthermore, the distribution for the item parameters, which also operate
as level-1 parameters, is also described at level 2. The joint model for RA and RTs was
introduced by van der Linden (2007) and generalized by among others van der Linden &
Fox (2016) and Fox & Marianti (2016). The current description of the joint model follows
the presentation given by Fox, Klein Entink & van der Linden (2007), who described the
(Bayesian) joint model with multivariate normal priors for the person and item
parameters.
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Level 1: measurement models
RA model
The matrix of RA-observations Y contains the responses to k ¼ 1; . . . ;K items of the
i ¼ 1; . . . ;N test takers. Each RA is described by item characteristics and a test-taker’s
accuracy. In the two-parameter IRT model, the probability of a correct response is defined
given the accuracy of a test taker i, hi, and item parameters (see, e.g., Lord & Novick, 1968).
Accordingly, the probability of a correct response to item k is defined as:

PðYik ¼ 1 j hi; ak; bkÞ ¼ �ðakhi � bkÞ; (1)

where ak and bk are generally known as the discrimination parameter and difficulty
parameter of item k, respectively, and � denotes the normal cumulative distribution
function. To define the item difficulties on the same scale as the ability scale, additional
brackets need to be placed in the mean component. Then, the probability of a correct
response to item k is given by,

P Yik ¼ 1 j hi; ak; bkð Þ ¼ � ak hi � ~bk
� �� �

; (2)

where hi and ~bk are defined on the same scale. In LNIRT, both parameterizations are
implemented. The item difficulty parameters in Eqs. (1) and (2) are not directly
comparable, and are defined on different scales. For the three-parameter model, a guessing
parameter ck is introduced, representing the probability of guessing item k correctly, and
this leads to the following measurement model for the success probability:

PðYik ¼ 1 j hi; ak; bk; ckÞ ¼ ck þ ð1� ckÞ�ðakhi � bkÞ: (3)

RT model
The matrix of RT-observations RT contains the log-RTs of the N test takers to the K items.
When assuming a constant working speed, each test taker works with a constant speed
represented by fi. The time needed to complete an item also depends on item characteristic
parameters. They are denoted as fk and kk, and can be seen as a time-discrimination and
time-intensity parameter, respectively. The log-RTs, RTik, are assumed to be normally
distributed given the speed and item parameters,

RTik ¼ kk � fkfi þ 2ik

2ik � N 0;r22k

� �
:

(4)

The time-intensity parameter kk represents the average time needed to complete the
item (on a logarithmic scale). The speed parameter, fi, represents the working speed of test
taker i, and the time-discrimination parameter, fk, the item-specific effect of working
speed on the RT. When increasing the time-intensity, kk, the average time needed to
complete the item will increase. When increasing speed fi the average time needed of
person i to complete the item will decrease. In the same way as for the IRT model in
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Eq. (2), the time intensities can be defined on the same scale as the speed parameter. By
including extra brackets in the mean term

RTik ¼ fk
~kk � fi
� �

þ 2ik; (5)

the time-discrimination parameter operates on the term ~kk � fi. Fox, Klein Entink & van
der Linden (2007) and Klein Entink, Fox & van der Linden (2009) introduced this time-
discrimination parameter to improve the modelling of the association between speed and
RTs. This item-specific discrimination effect of speed on the RT represents the item-
specific change in RT, when increasing or decreasing speed. For a constant time-
discrimination across items, a change in speed leads to item-invariant changes in RTs. For
a non-constant item-specific time-discrimination, the change in speed leads to item-
specific changes in RTs. The latter is more natural, since the effect of a change in speed is
likely to depend on an item-specific processes instead of a test-specific process.

Fox & Marianti (2016) showed that the time-discrimination parameters in Eq. (4)
contributes to the modeling of the covariance structure of the RTs. Furthermore, the item-
specific measurement error variance in Eq. (4) represents unexplained variance in RTs due
to stochastic behavior of a test taker. When test takers operate with different speed values,
take small pauses during the test, or change their time management, the RTs might show
more systematic variation than explained by the structural mean term. The item-specific
error component might accommodate for these differences and avoids bias in the
parameter estimates.

The time-discrimination parameter defined in LNIRT differs from the one defined by
van der Linden (2007). In his approach, the item-specific measurement-error precision,
defined as the reciprocal of the standard deviation of the measurement error, is referred to
as the time discrimination parameter. This parameter operates on the squared difference
between observed RT and speed (and time intensity), instead of operating directly on the
difference between speed and time intensity. Thus, the parameter does not represent
the average change in RT due to a change in speed, but represents an effect of a change in
the unexplained heterogeneity between RTs and speed. This parameterization also has the
consequence that a measurement-error variance is not included in the RT model.

It is assumed that a test taker operates with a constant speed throughout the test
conditioning on the time intensities. Each test taker’s speed level does not change whatever
the test conditions. In Section 3.4, the differential working-speed model is discussed to
model changes in working speed, for example, due to fatigue or the adoption of a new
strategy during the test, which is also implemented in the R-package LNIRT.

Level 2 and 3: structural person and item parameter models
Persons
A bivariate normal (population) distribution is defined for the ability and speed parameter,
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ðhi; fiÞwN 2ðlP;SPÞ
lP ¼ ðlh; lfÞ

SP ¼ r2h q

q r2f

 !
:

(6)

The covariance between the person parameters is represented by q. The level-2 model
for speed and ability can be considered to represent a population distribution for the test
takers. The test takers are defined to be exchangeable, and the distribution represents the
prior for the person parameters. Without an identification restriction(s) on the variance
parameters, the hyperprior for the covariance matrix SP is the inverse-Wishart
distribution with degrees of freedom mP and scale parameter VP.

Items
A multivariate normal distribution is specified for the item parameters,

ðak; bk;fk; kkÞ � N 4ðlI ;SIÞ;

SI ¼
Sa;b Sða;bÞ;ðf;kÞ

Sðf;kÞ;ða;bÞ Sf;k

 !

¼

r2a ra;b ra;f ra;k
rb;a r2b rb;f rb;k
rf;a rf;b r2f rf;k

rk;a rk;b rk;f r2k

0
BBBB@

1
CCCCA:

(7)

Parameters ak and fk are restricted to be positive. The covariance matrix for the item
parameters allows for correlation between item parameters. The hyperprior for ðlI ;SIÞ is a
normal-inverse-Wishart distribution:

SI � IWmI V�1
I

� �
(8)

lI j SI � N l0;SI=jð Þ; (9)

where mI and VI are the degrees of freedom and scale matrix of the inverse Wishart
distribution, l0 is the prior mean and j the number of prior measurements, which is given
a default value of one to specify a vaguely informative prior. A Beta prior is specified for the
guessing parameter, ck, where the default hyper-parameter values are 20 and 80. This leads
to a prior proportion of guessing of 1/5 with a standard deviation of 0.04.

Explanatory variables

The multivariate models for persons and item parameters can be extended to include
explanatory variables. Let Xh denote the predictors for the ability parameter and Xf for the
speed parameter. The mean component for the person parameters can be expressed as

lh ¼ Xhbh;lf ¼ Xfbf:
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For the mean component of the difficulty and time-intensity parameters a similar
extension is defined,

lb ¼ Xbbb; lk ¼ Xkbk:

Explanatory information can be included to explain differences between persons and
item characteristics. Noninformative normal priors are defined for the regression
parameters with a mean of zero and a large variance. In the LNIRT package, the option to
include predictors for discrimination and time discrimination are not implemented, since
the variance in parameter values is (very) small. For categorical predictor variables,
dummy coding is required.

Parameter estimation and model identification
A summarized description of the estimation method and model identification rules is
presented. A more detailed description of the parameter estimation can be found in Fox,
Klein Entink & van der Linden (2007), Klein Entink, Fox & van der Linden (2009) and Fox
(2010). IRT models are usually identified by fixing the mean and variance of the latent
variable to zero and one, respectively. Typically, this can be done directly by restricting the
prior mean lh and variance r

2
h, or by putting restrictions on the item parameters. The joint

model can be identified in the same way. However, for the identification rules in the
package LNIRT restricting the variance of a person parameter has been avoided. When
restricting the variance of a (random) person parameter, the covariance matrix in Eq. (6) is
also restricted, and the inverse-Wishart distribution does not apply to a restricted
covariance matrix. For this scenario, Klein Entink, Fox & van der Linden (2009) redefined
the prior for the person parameters, where q becomes a regression parameter in the
regression of working speed on ability with the working speed variance included in the
error variance. However, this identification procedure would also complicate other
modeling features (e.g., model-fit tools, variable working speed).

The LNIRT package provides two options to identify the model. For both options, the
variance of the latent scales are identified by restricting the product of discriminations and
of the time discriminations to one,

Q
k ak ¼ 1 and

Q
k fk ¼ 1, respectively. For option one

(referred to as (R-code) ident=1), the mean of the scales are identified by restricting the
sum of the difficulty and of the time-intensity parameters to zero,

P
k bk ¼ 0 andP

k kk ¼ 0, respectively. For option two (referred to as (R-code) ident=2), the mean of the

scales are identified by fixing the mean of the ability parameter to zero, lh ¼ 0, and of the
speed parameter to zero, lf ¼ 0.

Model parameters are estimated through Gibbs sampling from their joint posterior
distribution. The procedure involves the division of all unknown parameters into blocks,
with iterative sampling of the conditional posterior distributions of the parameters in each
block given the preceding draws for the parameters in all other blocks (Fox, 2010). In
various simulation studies and real data analysis, the Gibbs samplers in the LNIRT package
showed good convergence properties and generally returned efficient MCMC samples
(e.g., Fox & Marianti, 2016, 2017; Klein Entink, Fox & van der Linden, 2009).
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Logistic vs probit model item parameter estimates
The LNIRT package uses the normal-ogive IRT model (Probit model) to model the
probability of a correct/positive response. The item parameter estimates under the normal
ogive (Probit) model can be transformed to a Logistic scale and vice versa. Therefore, the
logistic scale factor is used (1.7) to transform parameters on a Logistic scale to those on a
Probit scale. Let lL, rL and lP, rP denote the mean and variance of the latent scale under
the Logistic and Probit model, respectively. Then, the item parameters ak and bk are
invariant under both scales, when applying the logistic scale factor

ak
hi � lPð Þ
rP

� bk|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ProbitModel

¼ 1:7 ak
hi � lLð Þ
rL

� bk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LogisticModel

: (10)

Assume that data were generated under the Logistic IRT model, and item parameter
estimates were obtained under the Probit model. The Probit model estimates can be
transformed to the Logistic model estimates;

âk
rP

¼ 1:7ak
rL

and, it follows that

âk
rP

� �
1:7

¼ ak
rL

:

In the same way, the difficulty parameters under the Probit model can be transformed.
When assuming that lP and lL are zero, the transformation is

b̂k ¼ bk

1:7b̂k ¼ b�k;

since b�k ¼ 1:7bk is the difficulty parameter under the Logistic model.

MODEL FIT
Tools for evaluating the fit of the joint model have been introduced by Marianti et al.
(2014) and Fox & Marianti (2017). The current description follows their approach and
shows the main features of their methods as implemented in the R-package LNIRT.

Person fit
The general idea is (1) to define a person-fit statistic for an RA and RT pattern, (2) to define
classification variables, as a function of the statistics, to represent a non-aberrant and an
aberrant state, and (3) to compute the posterior probability of the aberrant state. A person-
fit test for RA and RT patterns is discussed. For each test, a dichotomous classification
variable is introduced, which states whether a pattern is considered extreme. Then, the
person-fit test for the joint model is constructed from the dichotomous classification
variables for RA and RT patterns.
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Person-fit statistic for RA pattern
Drasgow, Levine & Williams (1985) proposed a standardized version of Levine-Rubin
statistic, which is shown to have statistical power to detect aberrant response patterns
(Karabatsos, 2003). The log-likelihood is used to evaluate the fit of an RA pattern.
Following a two-parameter IRT model, the person-fit statistic, denoted as l0, is given by,

lyðhi; a; b; yiÞ ¼ � ln pðyi j hi; a; bÞ

¼ �
XK
k¼1

yik ln pðyikÞ þ ð1� yikÞ lnð1� pðyikÞÞ
	 
 (11)

where pðyikÞ � pðyik ¼ 1 j hi; ak; bkÞ. The person-fit statistic can be standardized and this
standardized version, denoted as lys , is approximately standard normally distributed. Under
the 3PL model, a dichotomous classification variable Sik is introduced that classifies a
correct response to be either a correct random guess with probability ci ðSik ¼ 0Þ or a
correct response according to the two-parameter IRT model ðSik ¼ 1Þ. Then, lys is defined
conditionally on Sik ¼ 1 to evaluate the extremeness of non-guessed responses in the RA
pattern. The guessed responses are ignored in the evaluation of the extremeness of an RA
pattern.

To quantify the extremeness of an RA pattern, the posterior probability is computed
that the person-fit statistic is greater than a threshold C, which can be defined according to
its standard normal distribution. Note that the logarithm-of-response-probabilities are
negative, thus increasing values of the negative log-likelihood correspond to misfit. The
statistic is integrated over the prior distributions of all parameters and can therefore be
interpreted as a prior predictive test. The (marginal) posterior probability of the statistic
being greater than the threshold C is expressed as;

P lys ðyiÞ > C
� � ¼ Z . . .

Z
P lys ðhi; a; b; yiÞ > C
� �

pða; bÞdhidadb

¼
Z

. . .

Z
’ lys ðhi; a; b; yiÞ > C
� �

pða; bÞdhidadb;
(12)

where ’ denotes the normal density function. This approach corresponds to the prior
predictive approach to hypothesis testing advocated by Box (1980), since the posterior
probability of an extreme RA pattern is computed by integrating over the prior
distributions of the model parameters.

By introducing a classification variable, the posterior probability of an aberrant RA
pattern for a given significance level can be computed. Let Fy

i denote a random variable
that takes the value one when an observed pattern yi is marked as extreme and zero
otherwise,

Fy
i ¼

1 if P lys hi; a; b; yi
� �

.C
� �

;

0 if P lys hi; a; b; yi
� � � C

� �
:

(
(13)
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The posterior probability of an extreme pattern (Fy
i equals one) is computed by

integrating over the model parameters. Then, for a fixed critical level C, the posterior
probability represents how likely it is that the RA pattern is extreme under the model.

Person-fit statistic for RT pattern
Analogously, the log-likelihood of the RT pattern of a test taker i is used to define a person-
fit statistic to quantify the extremeness of the pattern. The person-fit statistic, based on the
log-likelihood of an RT pattern, is represented by

lti ðfi; k;f; r2; rtiÞ ¼
XK
k¼1

rtik � kk � fkfið Þð Þ2=r2k: (14)

The sum of standardized errors is an increasing function of the negative log-likelihood,
and an unusually large person-fit value corresponds to a misfit. The lti fi; k;f;r

2; rtið Þ
given the model parameters is chi-squared distributed with K degrees of freedom. For a
threshold C, representing the boundary of a critical region, the posterior probability of an
extreme RT pattern is expressed as

P lti fi; k;f; r
2; rti

� �
> C

� � ¼ P v2K > C
� � ¼ plt : (15)

A classification variable can be defined to quantify the posterior probability of an
extreme RT pattern given a threshold value C. Let Ft

i denote the random variable which
equals one when the RT pattern is flagged as extreme and zero otherwise;

Ft
i ¼

1 if P lti ðfi; k;f; r2; rtiÞ.C
� �

;
0 if P lti ðfi; k;f; r2; rtiÞ � C

� �
:

�
(16)

The posterior probability of an extreme RT pattern is computed for each pattern with
MCMC.

Person-fit statistic for RA and RT pattern
An observed RT pattern rti is reported as extreme when the Ft

i equals one with a least 0.95
posterior probability. To identify a joint pattern of RA and RT to be extreme, another
classification variable is defined. Let Ft;y

i equal one, when both Fy
i and Ft

i are equal to one,
and equal zero otherwise. This joint classification variable represents the situation that
both patterns of a test taker are extreme or not. The classification variable for the joint
pattern is defined as

Ft;y
i ¼ 1 if P lti fi; k;f;r

2; rtið Þ > C; lys hi; a; b; yi
� �

> C
� �

;
0 if 1� P lti fi; k;f;r

2; rtið Þ > C; lys hi; a; b; yi
� �

> C
� �

:

�
(17)

The posterior probabilities of the classification variables in Eqs. (13), (16), and (17) are
Bayesian significance probabilities. They represent the posterior probability of an extreme
person-fit statistic given the data. They are computed using MCMC taking into account
dependencies in the joint model parameters.
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Item fit
Without reproducing the equations for item-fit statistics, the person-fit tests for RA and
RT patterns can be modified to examine the fit of RA and RT item patterns. Therefore, the
log-likelihood of RA and of RTs of an item is considered to define an item-fit statistic for
RA and RTs, respectively. The estimated posterior probability of each item-fit statistic
represents the probability that the statistic is extreme under the model, which means that
the pattern of responses to the item is extreme.

Residual analysis
Bayesian residual computation has been considered by Albert & Chib (1993), Johnson &
Albert (2006), and Fox (2010, Chapter 5) to evaluate the fit of an IRT model. This approach
is extended to the joint model, and latent residuals eik are defined, which represent the
difference between a latent continuous RA and the mean component. The latent
continuous RA is defined through a data augmentation method to facilitate a Gibbs
sampling algorithm (Fox, 2010, Chapter 3 and 4). Conditional expectation of a latent
residual is derived by integrating out the augmented latent variable to obtain a Rao-
Blackwell estimator for the latent residuals. The estimated latent residuals are used to
quantify the total percentage of outliers per item and per test taker.

For the RA, the conditional expected latent residual is given by

E eik j ak; bk; hið Þ ¼
�’ bk�akhið Þ
� bk�akhið Þ yik ¼ 0
’ bk�akhið Þ
� bk�akhið Þ yik ¼ 1

(
(18)

where ’ and � are the normal density function and the cumulative distribution function,
respectively. Subsequently, the posterior probability that a latent residual is greater than a
threshold C is given by

P eikj j > C j ak; bk; hið Þ ¼
� Cð Þ

1�� akhi�bkð Þ yik ¼ 0
� �Cð Þ

� akhi�bkð Þ yik ¼ 1

(
(19)

The residuals for the RTs, referred to as 2ik, can be estimated directly as the difference
between the RTik and the mean, 2ik ¼ ðrtik � ðkk � fkfiÞÞ. The extremeness of an RT
residual is expressed as the posterior probability that the residual is greater than a
threshold C. This posterior probability can be expressed as

P 2ikj j > C j fi; kk;fk; rtikð Þ ¼ � �C � 2ik
rk

� �
þ 1� � C � 2ik

rk

� �
: (20)

Distribution RT residuals
The distribution of the RT residuals is evaluated using the Kolmogorov-Smirnov (KS) test.
The empirical distribution of the residuals is compared to the assumed normal
distribution. The KS test is a goodness-of-fit test and the posterior probability is computed
that RT residuals of an item are non-normally distributed. The empirical distribution is
given by
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FNð2Þ ¼ 1
N

XN
i¼1

I 2ik < 2ð Þð2ikÞ:

The implemented KS test represents the difference between the cumulative empirical
distribution and the normal cumulative distribution function:

DN ¼ sup
2

FNð2Þ � �ð2Þj j: (21)

The distribution of DN is the Kolmogorov distribution, which is used to compute the
probability that DN is greater than a threshold C:

pKS ¼ P DN > C j rtk; kk;fk; fð Þ: (22)

The marginal posterior probability is computed using MCMC, and the estimated
significance probability represents the probability that the RT residuals of item k are non-
normally distributed.

Differential Working Speed
The generalization of the joint model to allow differential working speed has been
introduced by Fox & Marianti (2016). A summarized version of their procedure is given,
which shows how the joint model can be modified to include differential working speed.

Differential working speed is defined as a change in working speed of a test taker during
the test. This relaxes a basic assumption of the joint model to work with a constant speed
throughout the test. The change in working speed is modeled using a latent growth model.
A random intercept, a linear trend component, and a quadratic time component are
considered to model the speed trajectory of each test taker. The random intercept, fi0,
represents the initial value of working speed. The linear trend component, fi1, is used to
model a linear change in speed. Test takers can start slowly (fast) to increase (decrease)
their speed later on. The quadratic time component, fi2, is used to decelerate or accelerate
the linear trend. For instance, a positive linear trend in working speed can be decelerated
by a negative quadratic component.

The log-normal differential speed model with a random trend and quadratic time
variable is represented by

RTik ¼ kk � fk fi0 þ f1iXik þ f2iX
2
ik

� �þ 2ik

fi0 � N 0;r2f0

� �
fi1 � N 0;r2f1

� �
fi2 � N 0;r2f2

� �
;

(23)

where the time variable Xik represents the order in which the test items are solved. The
beginning of the test is represented by the time-point Xi1 ¼ 0 for each test taker i. This
does not mean that each test taker should start the test at the same time. It is simply a
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reference point for the speed process of each test taker. The time scale is defined on an
equidistant scale to reduce the MCMC computations. Let XðiÞ ¼ Xði1Þ;Xði2Þ; . . . ;XðiKÞ
represent the order in which items are solved by test taker i. Then, a convenient time scale
is defined by Xik ¼ ðXðikÞ � 1Þ=K—the times are defined on a scale from 0 to 1, with 1, the
upper bound, representing an infinite number of items. The time scale addresses the order
in which the items are made and assumes an equidistant property of the speed
measurements.

The average of the time intensities defines the average time to complete the test, since
the random effects have a population mean of zero. The random intercept represents the
speed measured at the first item. The population-average speed trajectory is constant, and
shows no change in speed. Test takers can work faster (slower) than this population-
average level, which corresponds to a positive (negative) initial speed level. A negative
(positive) growth rate shows a decrease (increase) in speed, which can be decelerated
(accelerated) by the quadratic time component. The random component variances
represent the variance in growth parameters of the working speed trajectories. The
covariance between random speed effects is modeled through the time-discrimination
parameters. When the time-discrimination parameters are all fixed to one, the full
covariance matrix of the random speed components is freely estimated.

Ability and differential working speed
A multivariate normal distribution is assumed for the random component ability and
speed to allow for relationships between ability and the different speed components. This
multivariate model for the random person parameters, ðhi; fiÞ ¼ ðhi; f0i; f1i; f2iÞ, is given
by

hi
fi

� �
¼ N4

lh
0

� �
;

r2h Sh;f

Sf;h Sf

� �� �
: (24)

The relationship between ability and the speed components is defined by the covariance
components Sh;f. The growth components defining the speed trajectory influence ability.
When test takers do not vary speed, ability is only influenced by the random intercept
speed. When test takers vary their speed, the trend and quadratic time component will also
influence ability, which is a specific feature of this generalization of the constant speed
model.

Whether a change in speed improves the accuracy of the responses depends on the
application. The differential speed joint model can be used to examine different test
strategies across test takers. For instance, it is possible to estimate the speed trajectories of
test takers with different levels of ability. The speed trajectories of high-ability students can
differ from the low-ability students. The speed trajectories of test takers may also differ
across tests. The model can be used to explore effects of time limits on test takers’ changes
in working speed. Benefits of exploring heterogenous speed trajectories in relation to
ability will depend on the application.
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SOFTWARE
The main function of the package LNIRT is the LNIRT function to fit the joint model for
RA and RTs. It checks the input, arranges the input for the MCMC algorithm, and
constructs the data output. An object of class LNIRT is generated, and a summary function
can be used to get a summarized view of the estimation results. In the most simple case, the
user passes the data to the LNIRT function and uses the package’s summary function to get
an overview of the results. The complete functionality of the package can be accessed by
making further input specifications.

Input
The following arguments are mandatory for the LNIRT function:

� RT: A matrix RT containing the log-normally transformed response times in wide
format, (N) persons in rows and (K) items in columns.

� Y: A matrix Y containing the (binary) RA data in wide format, (N) persons in rows and
(K) items in columns. The binary RA data is coded as zero (incorrect) and one (correct)
(missing values as NA).

� data (optional if RT and Y are given): A list or a simLNIRT object (output object of the
function simLNIRT) containing the RT and RA matrices and optionally predictors for
the item and person parameters. If a simLNIRT object is provided, in the summary the
simulated item and time parameters are shown alongside of the estimates. If the required
variables cannot be found in the list, or if no data object is given, then the variables are
taken from the environment from which LNIRT is called.

� XG: The integer number of MCMC iterations (the default is 1,000), this includes the
burn-in period.

The remaining arguments are optional for the LNIRT function:

� burnin: The percentage of the total number of MCMC iterations (XG) which will serve
as the burn-in period of the chains. The default is 10%.

� ident: Identification rule, (ident=1) restrict sum of difficulties and sum of time
intensities to zero and (ident=2) restrict mean person parameters to zero. The default is
(ident=2). The product of (time) discriminations is restricted to one.

� guess: A logical variable with the default FALSE, where TRUE (FALSE) represents (not)
a guessing parameter in the IRT model.

� par1: A logical variable with the default FALSE, where TRUE represents the bracket
notation for the mean term of the IRT component as in Eq. (2), and FALSE the non-
bracket notation as in Eq. (1). In general, the MCMC performance is better for the non-
bracket parameterization.

� XGresid: the number of MCMC iterations (default is 1,000) to be done before starting
the residual computation.

� residual: A logical variable with the default FALSE. When TRUE, a complete residual
analysis is done together with the estimation of the joint model parameters, as discussed
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in “Model Fit”. The residual computations are started after XGresid MCMC draws.
Therefore, XG should be greater than XGresid, and a sufficient number of MCMC
iterations should be made after XGresid MCMC iterations to obtain accurate residual
estimates. Preferably, at least 5,000 MCMC iterations are made, when doing a residual
analysis.

� td: A logical variable with the default TRUE. When TRUE, the time-discrimination
parameter is estimated. When FALSE, the time discrimination is restricted to one.

� WL: A logical variable with the default FALSE. When TRUE, the time-discrimination
parameter represents the inverse of the measurement error variance parameter
according to the parameterization of van der Linden (2007).

� alpha: An optional vector of length K of pre-defined item discrimination parameters.

� beta: An optional vector of length K of pre-defined item difficulty parameters.

� phi: An optional vector of length K of pre-defined time-discrimination parameters.

� lambda: An optional vector of length K of pre-defined time-intensity parameters.

� XPA: An optional matrix of predictor variables for the ability parameters, where the
columns represent the predictor variables. Categorical predictor variables need to be
dummy coded.

� XPT: An optional matrix of predictor variables for the speed parameters, where the
columns represent the predictor variables. Categorical predictor variables need to be
dummy coded.

� XIA: An optional matrix of predictor variables for the item difficulty parameters, where
the columns represent the predictor variables. Categorical predictor variables need to be
dummy coded.

� XIT: An optional matrix of predictor variables for the time-intensity parameters, where
the columns represent the predictor variables. Categorical predictor variables need to be
dummy coded.

� MBDY: An optional missing-by-design indicator matrix—of the same size as Y—for
missing values (coded NA) in the Y matrix due to the test design (0 is missing by design,
1 is not missing by design). Multiple imputations are simulated for missing values
(missing at random) in the Y matrix which are not assigned in MBDY as missing-by-
design.

� MBDT: An optional missing-by-design indicator matrix—of the same size as RT—for
missing values (coded NA) in the RT matrix due to the test design (0 is missing by
design, 1 is not missing by design). Multiple imputations are simulated for missing
values (missing at random) in the RT matrix which are not assigned in MBDT as
missing-by-design.

Output
The LNIRT function creates an object of class LNIRT, which stores the MCMC output,
posterior draws and posterior mean estimates. The output of the function LNIRT is
described in an itemized way, without including a residual computation.
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� data: If available a data object from the function simLNIRT.

� burnin: Percentage from XG representing the burn-in MCMC iterations.

� ident: Same as the input variable ident.

� guess: Same as the input variable guess.

� MAB: The MCMC sampled values for the item parameters (discrimination, difficulty,
time discrimination, time intensity), object is an array of dimension XG (number of
MCMC iterations) by K (number of items) by 4 (number of item parameters).

� MCMC.Samples: This object contains the sampled MCMC values from LNIRT, where
the following objects are stored:

– Cov.Person.Ability.Speed: Samples of covariance of ability and speed.

– CovMat.Item: Array of dimension XG (MCMC iterations) by K (items) by 2 (time-
discrimination and time-intensity parameters), it contains the sampled variance of time
discrimination and time intensity as well as their sampled covariance.

– Item.Dificulty: Samples of difficulty parameters (XG by K).

– Item.Discrimination: Samples of discrimination parameters (XG by K).

– Item.Guessing: Samples of guessing parameters (XG by K).

– Mu.Item.Difficulty: Sampled values of mean item difficulty parameter.

– Mu.Item.Discrimination: Sampled values of mean item discrimination parameter.

– Mu.Person.Ability: Sampled values of mean ability parameter.

– Mu.Person.Speed: Sampled values of mean speed parameter.

– Mu.Time.Discrimination: Sampled values of mean time-discrimination parameter.

– Mu.Time.Intensity: Sampled values of mean time-intensity parameter.

– Person.Ability: Sampled values of person’s ability parameter (XG by N).

– Person.Speed: Sampled values of person’s speed parameter (XG by N).

– Sigma2: Sampled values of measurement error variance parameters (XG by K).

– Time.Discrimination: Sampled time-discrimination parameters (XG by K).

– Time.Intensity: Sampled time-intensity parameters (XG by K).

– Var.Person.Ability: Sampled variance ability parameters.

– Var.Person.Speed: Sampled variance speed parameters.

� Mguess: Sampled values for the guessing parameter (under the default Beta prior B
(20,80)).

� MmuI: Sampled values of the mean discrimination, difficulty, time discrimination, and
mean time intensity (in that order).

� MmuP: Sampled values of the mean ability and mean speed parameters.

� MSI: Sampled values of the covariance matrix of item parameters. Array of dimension
XG by 4 by 4 (discrimination, difficulty, time discrimination, time intensity), see also
CovMat.Item.

� Msigma2: Sampled values of measurement error variance parameters.
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� MSP: Sampled values of the covariance matrix of person parameters (ability and speed),
in an array of dimension XG by 2 by 2.

� Mtheta: Posterior mean estimates of ability and speed of dimension N by 2.

� MTSD: Posterior standard deviation of ability and speed of dimension N by 2.

� par1: Same as the input variable par1.

� Post.Means: Posterior mean estimates of the following parameters:

– Cov.Person.Ability.Speed: Covariance ability and speed.

– CovMat.Item: Covariance matrix item parameters.

– Item.Difficulty: Item difficulty estimates.

– Item.Discrimination: Item discrimination estimates.

– Mu.Item.Difficulty: Mean item difficulty estimate.

– Mu.Item.Discrimination: Mean item discrimination estimate.

– Mu.Person.Ability: Mean ability estimate.

– Mu.Person.Speed: Mean speed parameter.

– Mu.Time.Discrimination: Mean time discrimination.

– Mu.Time.Intensity: Mean time intensity.

– Person.Ability: Ability parameters.

– Person.Speed: Speed parameters.

– Sigma2: Measurement error variance.

– Time.Discrimination: Time-discrimination parameters.

– Time.Intensity: Time-intensity parameters.

– Var.Person.Ability: Variance ability parameter.

– Var.Person.Speed: Variance speed parameter.

� RT: Logarithm of the RT data.

� td: Same as the input variable td.

� WL: Same as the input variable WL.

� XIA: Same as the input variable XIA.

� XIT: Same as the input variable XIT.

� XPA: Same as the input variable XPA.

� XPT: Same as the input variable XPT.

� Y: Same as the input variable Y.

When the residual computation is included (residual=TRUE), then the LNIRT object
includes the following additional output variables:

� EAPCP1: Posterior probability that the RT pattern is flagged as aberrant according to
Eq. (16), using the posterior probability that the person-fit statistic lt is extreme as
defined in Eq. (15) with a significance level of 0.05.

Fox et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1232 17/33

http://dx.doi.org/10.7717/peerj-cs.1232
https://peerj.com/computer-science/


� EAPCP2: Posterior probability that the RA pattern is flagged as aberrant according to
Eq. (13), using the posterior probability that the person-fit statistic, lys , is significant (with
a significance level of 0.05).

� EAPCP3: Posterior probability that both patterns (RA and RT) are flagged as aberrant
according to Eq. (17).

� EAPKS: Posterior probability of an extreme KS-test result according to Eq. (22), which
indicates that the RT residuals are not normally distributed.

� EAPKSA: A significance probability of an extreme KS-test that the latent residuals of RA
items are not normally distributed. This significance test has no power.

� EAPresid: Posterior probability of an extreme (standardized) residual (RT data), which
is greater than plus or minus two in absolute value.

� EAPresidA: Posterior probability of an extreme (standardized) latent residual (RA data),
which is greater than plus or minus two in absolute value.

� IFl: The (negative) log-likelihood statistic for item fit under the IRT model (high values
represent misfit).

� IFlp: The posterior significance probability of an extreme item fit under the IRT model.

� lZI: Item-fit statistic representing the posterior probability that the squared sum of item
residuals are extreme under the model.

� EAPl0: The log-likelihood contribution of each RA observation, where a low value
represents a misfit.

� PFl: The standardized (negative) log-likelihood contribution of each RA pattern, where
a high value represents a misfit.

� PFlp: Posterior (significance) probability of observing a more extreme person-fit statistic
for the RA pattern than the observed one.

� lZPA: Posterior significance probability of an extreme person-fit test for RA pattern
based on latent residuals. This significance test has no power (under construction).

� lZPT: The (unstandardized) estimated person-fit statistic according to Eq. (14).

� lZP: Posterior (significance) probability of observing a more extreme person-fit statistic
for the RT pattern than the observed one, according to Eq. (15).

MCMC output analysis
The posterior draws in the output of LNIRT are obtained through a Gibbs sampler.
MCMC convergence tests are necessary to make sure that the MCMC chains converged
before making statistical inferences. The coda package (Plummer et al., 2006) can be used
to do an MCMC convergence analysis. The LNIRT function returns a single MCMC chain
for each model parameter, which can be directly translated to an MCMC object with the
function as.mcmc. The single-chain convergence diagnostics, for instance Geweke, and
Heidelberg-Welch, can be used to examine if the chains did not converge. The multiple-
chain convergence diagnostics, for instance Gelman and Rubin’s convergence statistic,
requires multiple calls to LNIRT to create multiple MCMC chains with different starting
values—LNIRT uses random starting values when parameter values are not pre-specified.
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With the summary function of the package LNIRT, posterior means and standard
deviations are computed and reported. Although the LNIRT Gibbs samplers produce
efficient MCMC samples with low autocorrelation, it is possible that for a specific dataset
some of the chains have a medium to high autocorrelation. Then, the reported standard
deviation estimates may underestimate the standard deviation, since autocorrelation in the
chains are ignored. The coda and the mcmcse package can be used to compute the
autocorrelation and the Monte Carlo standard error. Note that the autocorrelation has no
effect on the posterior mean estimate. The effective sample size—the sample size of
independently distributed values with the same variance as the autocorrelated MCMC
sample—can also be computed to examine if the run was long enough to make accurate
and reliable inferences. A reasonable rule of thumb is to have an effective sample size of
400. Then, the Monte Carlo standard error is less than 5% of the overall uncertainty of the
posterior mean.

The default burn-in period is 10% of the total number of MCMC iterations. This burn-
in period is used in the computation of the posterior estimates, which are also reported
with the summary function. Extensive simulation studies showed that the burn-in period is
usually below 100 MCMC iterations, but this could be higher for a specific data set.
Furthermore, the MCMC properties are better for the RA model in Eq. (1) than for the RA
model with the additional brackets given in Eq. (2).

APPLICATIONS
The credential (Form 1) data
The credential data set of Cizek & Wollack (2016) is analyzed to illustrate the functionality
of the package LNIRT. The credential data set concerns 1,636 test takers who applied for
licensure. Form 1 of the test was administered, which consisted of 170 licensure exam
items, and 30 pretest items. A total of 10 background variables of the test takers was stored
—this includes the country where the candidate received his/her educational training, the
state in which the test taker applied for licensure, and the center where the candidate took
the exam. The RA and RT data were also stored. The collected data followed from a year of
testing using a computer-based program that tests continuously.

Each candidate completed one of the three pretest forms, each consisting of 10 items. In
Table 1, the test design is given, which shows the incomplete test design of in total 200
items for three groups.

Table 1 Credential data (Form 1): the test design.

Item set

Pretest

Group Test (1–170) K1 (171–180) K2 (181–190) K3 (191–200)

G1 X X – –

G2 X – X –

G3 X – – X
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The RA and RT data were extracted from the data to be used in the LNIRT() function.
The RA data consisted of 1,636 test takers (in rows) and 170 exam items (in columns).

R> Y<- as.matrix(data[c(which(colnames(data)=="iraw.1")

+:which(colnames(Cdata)=="iraw.170"))])

R> head(Y[,1:5],3)

iraw.1 iraw.2 iraw.3 iraw.4 iraw.5

[1,] 1 1 1 0 1

[2,] 1 0 1 0 0

[3,] 0 0 0 0 1

The RT data also consisted of 1,636 test-takers and 170 exam items. The RTs were
transformed to a logarithmic scale. A total of 105 RTs were equal to zero. Possibly the item
was skipped and a default incorrect response was recorded, since the corresponding RA
were all incorrect. The zero RTs were converted into NAs, since it was unknown why a
zero RT was recorded. The minimum RT was 2 s, and the 100 highest RTs ranged from 6 to
12 min.

R> RT<-as.matrix(data[c(which(colnames(data)=="idur.1"):

+ which(colnames(data)=="idur.170"))])

R> RT[RT==0]<-NA

R> RT<-log(RT)

R> head(RT[,1:5],3)

idur.1 idur.2 idur.3 idur.4 idur.5

[1,] 4.094345 3.555348 3.555348 3.465736 3.295837

[2,] 4.007333 4.060443 4.343805 3.850148 4.110874

[3,] 4.234107 3.761200 4.007333 3.178054 4.127134

In the first analysis, the (default) joint model was fitted to the data to explore the item
parameter estimates and the item and person covariance matrix. The model was identified
by restricting the population means of ability and speed to zero and by restricting the
product of time discriminations and discriminations to one. A total of 5,000 MCMC
iterations were computed, and the burn-in period was 500 (i.e., 10% of the total number of
MCMC iterations).

R> library(LNIRT)

R> out0 <- LNIRT(RT=RT, Y=Y, XG=5000,ident=2,burnin=10)

R> summary(out0)

MCMC convergence
Multiple MCMC chains were checked for convergence and run length by computing the
Geweke and Heidelberger statistics, the effective sample sizes, and the MCMC standard
errors. The convergence statistics did not show any problems of non-convergence for the
examined chains. The lowest effective sample size was 427 for the discrimination
parameter of item 155 (MCMC standard error of 0.007), and the highest 4,000 for the
speed parameter of test taker 1 (MCMC standard error less than 0.000). The naive
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posterior standard deviation—when ignoring autocorrelation in the chain—was often just
smaller than the times-series standard error estimate using the coda package. It was
concluded that the burn-in period and the total length of the chains were sufficiently long
to compute accurate parameter estimates.

Output analysis
The general summary function of LNIRT shows the item number (which corresponds to
the column number of Y and of RT), and the posterior mean (labeled EAP) and standard
deviation (labeled SD) estimates of the item and of the prior parameters of the items and
persons. In Fig. 1, the estimation results for the first five item parameters are given.

In Fig. 2, the item and person prior parameter estimates are given. The mean of the
items, lI , is labeled in the output as mu_a (mean discrimination), mu_b (mean difficulty),
mu_phi (mean time discrimination) and mu_lam (mean time intensity). The posterior
mean estimate of the covariance matrix of the items, SI , is given under the label Sigma_I.
The estimated mean item discrimination is around 1.19 with a variance of around 0.32.
Around 10 items have an estimated item discrimination below 0.40. The item difficulty
estimates ranges from −1.84 to.75, with a mean of −0.70 and a variance of 0.27. The
estimated average time-discrimination and time-intensity is around 1.03 and 3.96, with a
variance of 0.05 and 0.11, respectively. The time discrimination ranged from 0.47 to 1.42,

Figure 1 Screenshot of the LNIRT summary output: item parameter estimates of the first five items.
Full-size DOI: 10.7717/peerj-cs.1232/fig-1
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and it appears that the items show better discriminating performance in speed than in
ability. However, the estimated working-speed variance is very small and around 0.03. The
variance in RTs is mostly explained by the time-intensity parameters and hardly by
differences in working speed across test takers. Thus, the time discriminations are
somewhat higher than the item discriminations, but the time discriminations have a minor
contribution in explaining variance in RTs.

The covariance matrix of the item parameters shows that the less difficult items are
more discriminating (correlation of −0.43), and the less time-intensive items are also more
time-discriminating (correlation of −0.40). Differences in ability and speed are better
measured with less difficult and less time-intensive items. The more difficult items are also
more time-intensive (correlation of 0.46). The time-discriminating items are positively
correlated with the item discriminations (correlation of 0.49).

The covariance matrix of the person parameters (ability and speed), SP, is given under
the label Sigma_P. The variance in ability and speed across test takers are both small. There
is a positive correlation between ability and speed of around 0.40, which states that more
able test takers also work faster than the less able ones.

Explanatory variables
Dummy coded variables were created for the pretest groups, where effect coding is used
such that the general intercept can be restricted to zero to identify the joint model.
Differences in ability and speed were examined across pretest groups (stored in objects XA
and XT for ability and speed), and the test-taker’s total test time was used to explain the
correlation between ability and speed (stored in object XA for ability). The observed total
test times contained information on top of the speed values, since the latter were shrunk

Figure 2 Screenshot of the LNIRT summary output: prior parameter estimates of persons and items.
Full-size DOI: 10.7717/peerj-cs.1232/fig-2
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towards the population-average test time depending on the variance of the speed
parameters. The joint model parameters—with the explanatory variables for ability and
speed—are estimated. The main estimation results are again computed and displayed
using the (R-code) summary function (using defaults burnin=10 and ident=2):

R> XFT$Pgroup[XFT$Pretest==6,1] <- -1

R> XFT$Pgroup[XFT$Pretest==6,2] <- -1

R> XFT$Pgroup[XFT$Pretest==7,1] <- 1

R> XFT$Pgroup[XFT$Pretest==8,2] <- 1

R> out1 <- LNIRT(RT=RT, Y=Y, XG=5000, XPA=XA, XPT=XT)

R> summary(out1)

The effect of the total test time on ability was significant and around −0.07. Those who
finished earlier scored on average higher than those who finished the test later. When
accounting for the total test-time differences in measuring ability, the correlation between
ability and speed was around 0.1. So, the total test-time explained around 75% of the
correlation. There were no significant speed differences between the pretest groups, and
the variance of speed was also small and around 0.03. There were estimated differences in
ability between the pretest groups: group G1 scored on average −0.13 lower, group G2 0.07
higher, and group G3 0.05 higher than the general average, but they were not significant.

Planned missing by design
In the planned missing data design, simultaneous parameter estimation for all examinees is
possible using (R-code) LNIRT() function. It requires defining an indicator matrix for the
planned missing data. In the matrix MBDM, a zero is a designed missing and a one a
designed observation. The planned missing data matrix can be defined separately for the
RA and RT data, and arguments MBDY andMBDT represent the design matrix for the RA
and RT data, respectively. For instance, it is possible to include RA data in the analysis for
which RT data was only partly collected. When including the pretest items in the
measurement of ability and speed, the test design contains planned missing data. Then, the
indicator matrix MBDM for the planned missing data is defined and included in the call to
LNIRT:

R> MBDM<-matrix(rep(0,1636*200),nrow=1636,ncol=200)

R> MBDM[XFT$Pretest==6,171:180]<-1

R> MBDM[XFT$Pretest==7,181:190]<-1

R> MBDM[XFT$Pretest==8,191:200]<-1

R> MBDM[,1:170]<-1

R> outmbdm <- LNIRT(RT=RTt,Y=Yt,XG=5000,alpha=alpha1,

MBDY=MBDM,MBDT=MBDM)

In the call to LNIRT, the arguments RTt and Yt contain the RT and RA data for all 200
items. Pre-specified item discriminations, alpha1, are used, since the model with free item
discrimination parameters would not fit. The output is not discussed for reasons of brevity.
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Model fit
The joint model-fit tools are illustrated by re-running the analysis with explanatory
variables for the 170 items and activating the residual computation (R-code
residual=TRUE).

R> out1 <- LNIRT(RT=RT,Y=Y,XG=5000,XPA=XA,XPT=XT,

residual=TRUE)

R> summary(out1)

The summary report contains an overview of the extreme residuals under the header
Residual Analysis. A total of 0.07% of RTs residuals were considered extreme with at least
95% posterior probability (Eq. (20)). This concerns RTs that were small and around 2–6 s
or much higher than the item-average RTs. For the RA residuals, around 0.02% was
estimated to be extreme with 95% posterior probability (Eq. (19)). This concerns incorrect
responses from test takers with an above-average ability. For 62 items (36.5%) the
assumption of log-normally distributed residuals was violated for which a significant
probability of the KS test was computed (Eq. (22)). The variance in working speed and
time intensities are small, and the estimated residual variance is around 0.26. Therefore,
RT outliers more easily affect the fit of the log-normal distribution. The item-fit statistics
(RA and RT data) did not identify a significant misfit of an item. Despite the outliers, log-
likelihoods of item patterns were not significant under the joint model.

The EAPCP1 is reported and around 18.34%, representing the percentage of RT
patterns which are considered extreme with 95% posterior probability. The percentage of
significant extreme RT patterns is around 19.5%, when using a significance level of 0.05.
The reported EAPCP2 is around 1.59% and the significant RA patterns is around 1.65%,
which shows that there are only a few RA patterns identified as extreme. Finally, around
0.31% of the joint patterns (RA and RT) are extreme (object EAPCP3).

The heterogeneity in person-fit statistics for RA an RT patterns is examined with a
linear regression of the statistics on the number of test attempts, country, and pretest
group. The country variable was (dummy) recoded (US (Cgroup1=1),Philippines
(Cgroup2=1),India (Cgroup3=1),Others (intercept)). The pretest groups were already
represented by two dummy coded variables.

R> summary(lm(out1$PFl ~ as.factor(XFT$Attempt)+(XFT

$Cgroup)+(XFT$Pgroup)))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.204245 0.045153 -4.523 6.53e-06 ***

as.factor(XFT$Attempt)2 -0.004323 0.060106 -0.072 0.94267

as.factor(XFT$Attempt)3 -0.102401 0.079525 -1.288 0.19805

as.factor(XFT$Attempt)4 -0.253421 0.114568 -2.212 0.02711 *

as.factor(XFT$Attempt)4+ 0.017670 0.080984 0.218 0.82731

XFT$Cgroup1 0.051825 0.046087 1.124 0.26097

XFT$Cgroup2 -0.215907 0.054834 -3.937 8.58e-05 ***
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XFT$Cgroup3 -0.109458 0.053455 -2.048 0.04075 *

XFT$Pgroup1 0.011785 0.034349 0.343 0.73157

XFT$Pgroup2 0.095390 0.029290 3.257 0.00115 **

It follows that the RA patterns of test takers with more test attempts are less extreme
than those with a fewer attempts. Test takers from the Philippines and India are less likely
to have an aberrant RA pattern. Furthermore, test takers from the third pretest group
(variable Pgroup2) have higher person-fit statistic scores. They correspond to RA patterns
that are less likely to be observed under the model than RA patterns with lower person-fit
statistics. For the person-fit test for RA patterns, for a significance level of 0.05 the critical
value is 1.645. The average-statistic scores (number of attempts, country, pretest group) are
much lower than the critical value, and test takers with an aberrant RA pattern are also
outliers in their groups.

The heterogeneity in person-fit statistic scores for the RT patterns is also explored
through a linear regression with the same explanatory variables.

R> summary(lm(out1$lZPT ~ as.factor(XFT$Attempt)+(XFT$Cgroup)

+(XFT$Pgroup)))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 169.9231 3.0855 55.071 < 2e-16 ***

as.factor(XFT$Attempt)2 1.1506 4.1073 0.280 0.7794

as.factor(XFT$Attempt)3 10.2410 5.4343 1.885 0.0597.

as.factor(XFT$Attempt)4 2.6948 7.8290 0.344 0.7307

as.factor(XFT$Attempt)4 2.3246 5.5341 0.420 0.6745

XFT$Cgroup1 -7.7563 3.1494 -2.463 0.0139 *

XFT$Cgroup2 3.0138 3.7471 0.804 0.4213

XFT$Cgroup3 15.4076 3.6528 4.218 2.6e-05 ***

XFT$Pgroup1 2.5152 2.3473 1.072 0.2841

XFT$Pgroup2 0.2681 2.0016 0.134 0.8935

For the lti statistic, the critical value is 201.4 when the significance level is 0.05 (lti is chi-
square distributed with 170 degrees of freedom). The intercept corresponds to test takers
from pretest group 1 from citizens outside the US, India, and the Philippines, who took the
test for the first time. For test takers with more attempts the person-fit statistic is on
average higher and closer to the critical value. Those test takers are more likely to give a
very fast or much slower response. Test takers from the US have on average much lower
person-fit scores, and test takers from India have a much higher person-fit score.

In Fig. 3, the person-fit scores for RA patterns are plotted against those of RT patterns to
provide a more comprehensive overview of the aberrant and non-aberrant patterns per
country. For this example, the R-code is given below
set1 <- which(XFT$Country=="USA")

set2 <- which(XFT$Country=="India")

set3 <- which(XFT$Country=="Philippines")

plot(out1$PFl,out1$lZPT,xlab="Person-fit Statistic RA",

ylab="Person-fit Statistic RT",col="black",cex=.5,bty="l",xlim=c(-3,3),
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ylim=c(0,500),cex.main=.8,cex.axis=.7,cex.lab=.8,pch=15)

points(out1$PFl[set1],out1$lZPT[set1],col="blue",pch=10,cex=.5)

points(out1$PFl[set2],out1$lZPT[set2],col="red",pch=13,cex=.5)

points(out1$PFl[set3],out1$lZPT[set3],col="green",pch=16,cex=.5)

abline(h = qchisq(.95, df= 170),lty = 2,col="red")

abline(v = qnorm(.95),lty = 2,col="red")

legend(-3,500,c("India","US","Philippines","Other"), col=c("red","blue",

"green","black"),pch = c(13,10,16,15), bg = "gray95",cex=.7)

For both person-fit statistics, the threshold value of the significant area is marked with a
dotted red line. With respect to aberrant RT patterns, a serious number of test takers are
marked as aberrant, since their value is above the threshold of 201.4. Test takers from India
have relatively more aberrant persons with respect to RT patterns, and the US test takers
relatively less, although many of the aberrant test takers are US citizens. A few test takers
are marked as aberrant with respect to their RA pattern, since their statistic value is above
1.645. Only five persons have been marked as aberrant in terms of the RA and RT patterns.
None of the four quadrants seems to be dominated by one specific country.

The amsterdam chess data
The Amsterdam Chess data was collected by Van der Maas & Wagenmakers (2005) and is
used to demonstrate a differential working speed analysis with the package LNIRT. The
data study of Fox & Marianti (2016) is followed who also used this data set to illustrate

Figure 3 For different countries the person-fit statistic of RA patterns plotted against those of RT patterns.
Full-size DOI: 10.7717/peerj-cs.1232/fig-3
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their differential working speed model. In the Amsterdam Chess study, RA and RT
patterns are collected of 259 test takers who responded to 40 chess tasks. The chess items
have three subdimensions; tactical skill (20 items), positional skill (10 items), and end-
game skill (10 items). Each item represents a chess board situation, and the problem-
solving task was to select the best possible move. Both RAs and RTs were recorded, where
RA was coded as 1 (correct) and 0 (incorrect). In this analysis, the differential working
speed model in Eq. (23) is fitted to explore heterogeneity in speed trajectories and to
examine the between-person relationship between ability and random speed components.

The LNIRTQ function is used to run the joint model with a differential working speed
model with a random trend and quadratic time component. The RA and RT data were
extracted from the Amsterdam Chess data to be used in the LNIRTQ function. The RA
data consisted of 259 test takers (in rows) and 40 chess items (in columns).

R> data(AmsterdamChess)

R> N <- nrow(AmsterdamChess)

R> Y <- as.matrix(AmsterdamChess[c(which(colnames

(AmsterdamChess)=="Y1"):

which(colnames(AmsterdamChess)=="Y40"))])

R> K <- ncol(Y)

R> Y[Y==9] <- NA

R> RT <- as.matrix(AmsterdamChess[c(which(colnames

(AmsterdamChess)=="RT1"):

which(colnames(AmsterdamChess)=="RT40"))])

R> RT[RT==10000.000] <- NA

R> RT <- log(RT) #logarithm of RTs

The missing RA and RT values coded as 9 and 10,000 are replaced by NAs. There are
three records with all missing values (rows 147,201, and 209). In LNIRTQ, imputations are
generated under the model for the missing data even if complete records are missing. A
time scale is defined by starting at zero and taking steps of 1/K to end in (K−1)/K. The
LNIRTQ model is identified by restricting the difficulty and discrimination parameters to
zero and one, respectively. Furthermore, the mean of each random speed parameter
(intercept, trend, quadratic) is restricted to zero, and the product of time discriminations is
restricted to one. Finally, the covariance of the speed components is restricted to zero, since
the covariance among the speed components is modeled by the time discriminations. The
LNIRTQ function is ran for 10,000MCMC iterations, with a default burnin-period of 10%.

R> X <- 1:K

R> X <- (X - 1)/K

R> outchess <- LNIRTQ(Y=Y,RT=RT,X=X,XG=10000)

R> summary(outchess)

MCMC chains can be checked in the same way for convergence and run length by
computing the Geweke and Heidelberger statistics, the effective sample sizes, the MCMC
standard errors. The output of LNIRTQ contains MCMC chains of item parameters and
hyper prior parameters for items and persons. The examined chains did not have any non-
convergence problems. The effective sample size of the chains ranged from 466 (time
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discrimination item 1) to 9,000 (time intensity item 1). The naive posterior standard
deviation were often close to the time-series standard error. The 10,000 MCMC iterations
were sufficiently long and the chains showed convergence after 1,000 iterations.

The summary function of LNIRTQ provides a similar output as the LNIRT function.
The posterior mean estimates and (naive) standard deviations of the item parameters are
given, in addition to the covariance matrix of the item and person parameters. For reasons
of brevity, the correlation matrix of the items and the covariance matrix of the persons are
discussed.

The correlation matrix of the items is again given in the order of a, b, f, and k. The
correlation between discrimination and difficulty is around 0.37, and between time
discrimination and intensity around −0.53. The difficult items tend to discriminate better
in ability than the less difficult items. The high time-intensive items do not discriminate
well between speed levels. RTs were hardly affected by increasing working speed for the
high time-intensive items. For low time-intensive items this effect on the RTs is much
higher. There is a strong correlation between item difficulty and time intensity of 0.79,
which states that the difficult items also took more time to be completed.

--- Covariance matrix Items ---

Item Matrix Correlation

[,1] [,2] [,3] [,4]

[1,] 1.000 0.371 0.050 0.406

[2,] 0.371 1.000 -0.602 0.785

[3,] 0.050 -0.605 1.000 -0.534

[4,] 0.406 0.785 -0.534 1.000

--- Covariance matrix Person ---

Estimated Value

Covariance Matrix

Theta Intercept Slope1 Slope2

Theta 0.423 0.114 -0.004 -0.014

Intercept 0.114 0.060 0.000 0.000

Slope1 -0.004 0.000 0.114 0.000

Slope2 -0.014 0.000 0.000 0.063

The covariance matrix of the random person parameters are given under the label Theta
(ability), Intercept (speed intercept), Slope1 (speed trend), and Slope2 (speed quadratic
component). The variance in working speed intercepts (i.e., the variance in starting speed
of persons) is small (0.06). The speed trajectories of the persons show a variance of 0.11 in
trends. The variance in deceleration/acceleration in working speed is around 0.06. The
positive covariance between ability and the speed intercept shows that high-ability persons
are more likely to start with a higher speed. The negative covariance between ability and
the speed trend shows that the speed trajectories of high-ability persons has a negative
trend (decrease in speed), in comparison to low-ability persons. The covariance between
ability and the quadratic speed component is around −0.014, which means that high-
ability persons are more likely to show an acceleration in the negative trend in speed.
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For the records with missing values, the imputed data leads to population-average
estimates of the random person effects. The ability estimate is around the population
average of −0.162, and the speed components are around zero. For instance, for the record
of 147 the estimated random person effects are (ability, intercept, trend, quadratic):

R> outchess$Mtheta[147,]

[1] -0.228 -0.018 -0.004 -0.004

SUMMARY AND DISCUSSION
Computer-based testing has made it possible to collect more information from
respondents to improve our understanding and interpretation of test performances and of
the behaviors of respondents. RT, the amount of time a test taker spends on answering an
item, has shown to be a very useful source of information. RTs have been used to measure
working speed, item time-intensity, or the relationship between speed and accuracy (i.e.,
speed-accuracy trade-off). The modeling of RTs and its integration in the measurement of
ability has led to the development of joint models for RA and RTs. However, there is a lack
of software tools that supports a joint model data analysis, which includes recent joint
modeling extensions.

The R-package LNIRT has been developed with the purpose to provide MCMC
estimation methods for (hierarchical) joint models for RA and RT data, while including
also new developments in this area. The IRT-based measurement models for RA and RT
data have been implemented under different parameterizations to make the program
suitable for different users. Imputation methods have been integrated to deal with missing
data, while the program can also deal with planned missing by design data. Furthermore,
Bayesian significance tests are included to evaluate person and item fit for RT and RA
patterns. The developed person-fit statistics can be used to identify aberrant test takers
with respect to their RT pattern, RA pattern or both patterns. Explanatory variables can be
used to explain differences between persons and items.

The LNIRT package has been designed to estimate the parameters of a joint model with
multiple link functions (linear, probit) and with non-exponential family distributions. The
cross-classified nature of the (random) effects (item and person parameters) further
complicates the use of standard (multilevel) software for parameter estimation.
Furthermore, Bayesian simulation methods are preferred to handle the required high-
dimensional numeric integration for parameter estimation. However, black-box MCMC
methods (e.g., JAGS) (1) can be very slow for medium to large data sets and for high-
dimensional models (2) cannot integrate identification restrictions in the simulation
procedure—for instance re-scaling latent variables to an identified scale in each MCMC
iteration—(3) necessary identifying restrictions on parameters can lead to complex priors
for the model parameters, and (4) the computation of the model-fit tools is complex, since
the tools need to be integrated in the model description. TheMCMC sampler in the LNIRT
package has been designed to collect posterior samples with low autocorrelation and a high
effective sample size. This leads to a faster and more efficient algorithm than a black-box
MCMC method, which is not designed to optimize the information content of the
posterior samples.

Fox et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1232 29/33

http://dx.doi.org/10.7717/peerj-cs.1232
https://peerj.com/computer-science/


The LNIRT has some limitations which we hope to address in next releases. Currently,
the RA data is limited to binary observations. This is a matter of integrating MCMC
schemes for ordinal RA data, which have been discussed by Fox (2010). A more elegant
way is to integrate a Gibbs sampler for mixed response types that can deal with RA data
with different levels of response types. The joint model is limited to two levels of hierarchy,
but extensions to more levels have been discussed by Fox (2010) and Klein Entink, Fox &
van der Linden (2009).

Furthermore, in the differential working speed model test takers can change their speed
and the speed components can influence the level of ability. However, the ability
component represents a summary measure of accuracy and cannot capture within-
individual changes in accuracy. Change in accuracy can be modeled directly with a latent
growth model and jointly with a latent growth model for speed. However, binary outcomes
contain less information than continuous RTs. This limits the number of growth
components that can be estimated and limits the flexibility in describing a pattern of
change in accuracy (Gorter et al., 2020). The change in accuracy can also be modeled by a
hidden markov model (Molenaar et al., 2016), where dynamic response behavior is
modeled by different item-level states. However, the model complexity increases rapidly
when increasing the number of states. Furthermore, the flexibility in modeling change
depends on the number of specified states. A more efficient way to model change in
accuracy is to adjust a person-specific (or group-specific) discrimination parameter by the
level of working speed. Then, to model change in accuracy the contribution of the ability
component is adjusted by a discrimination parameter, which level is moderated by
working speed. The inclusion of item-specific person-level and person-specific item-level
variables to allow the speed-accuracy trade-off to vary between items has been considered
by Goldhammer, Naumann & Greiff (2015) and Klotzke & Fox (2019). More research is
needed to integrate such an approach in LNIRT.
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