
Code4ML: a large-scale dataset of
annotated Machine Learning code
Anastasia Drozdova1, Ekaterina Trofimova1, Polina Guseva1, Anna
Scherbakova1 and Andrey Ustyuzhanin1,2,3,4

1 Department of Computer Science, NRU Higher School of Economics, Moscow, Russia
2 National University of Science and Technology MISIS, Moscow, Russia
3 Constructor University, Bremen, Germany
4 Institute for Functional Intelligent Materials, National University of Singapore, Singapore

ABSTRACT
The use of program code as a data source is increasingly expanding among data
scientists. The purpose of the usage varies from the semantic classification of code to
the automatic generation of programs. However, the machine learning model
application is somewhat limited without annotating the code snippets. To address the
lack of annotated datasets, we present the Code4ML corpus. It contains code snippets,
task summaries, competitions, and dataset descriptions publicly available from
Kaggle—the leading platform for hosting data science competitions. The corpus
consists of ~2.5 million snippets of ML code collected from ~100 thousand Jupyter
notebooks. A representative fraction of the snippets is annotated by human assessors
through a user-friendly interface specially designed for that purpose. Code4ML
dataset can help address a number of software engineering or data science challenges
through a data-driven approach. For example, it can be helpful for semantic code
classification, code auto-completion, and code generation for an ML task specified in
natural language.

Subjects Data Mining and Machine Learning, Databases, Natural Language and Speech
Keywords ML code dataset, Jupyter code snippets

INTRODUCTION
In recent years, more and more tools for software development have started using machine
learning (ML) (Allamanis et al., 2018; Yang et al., 2021). ML systems are capable of
analyzing (Alsolai & Roper, 2020; Bilgin et al., 2020), manipulating (Goues, Pradel &
Roychoudhury, 2019; Liu et al., 2020), and synthesizing (Svyatkovskiy et al., 2020; Austin
et al., 2021) code. However, even the most successful deep-learning models of the last few
years (Roziere et al., 2020; Chen et al., 2021) require training on vast amounts of data before
obtaining good results.

There is a multitude of code datasets (Iyer et al., 2018; Puri et al., 2021). Still, most of
them need to be domain-specific, which poses a challenge during the development of tools
for specialized areas of software engineering because of domain shift (Gretton et al., 2006).
Moreover, generic datasets can lack examples, making it hard for the model to pick up on
domain-specific patterns.

ML is one of the most popular software development areas without a domain-specific
code corpus. Such a dataset is necessary for the development of data science tools. The
searchable database of annotated code is suitable for data scientists to find solutions to

How to cite this article Drozdova A, Trofimova E, Guseva P, Scherbakova A, Ustyuzhanin A. 2023. Code4ML: a large-scale dataset of
annotated Machine Learning code. PeerJ Comput. Sci. 9:e1230 DOI 10.7717/peerj-cs.1230

Submitted 5 October 2022
Accepted 9 January 2023
Published 23 February 2023

Corresponding author
Ekaterina Trofimova,
etrofimova@hse.ru

Academic editor
Stefan Wagner

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.1230

Copyright
2023 Drozdova et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1230
mailto:etrofimova@�hse.�ru
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1230
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

specific problems they are working on. This can be especially useful if the code is organized
and tagged in a way that makes it easy to find relevant examples. The desired structure of
the ML code corpus is illustrated by Fig. 1. Such a corpus allows researchers to train ML
models to predict the correct code for a given data science problem. One can use the
annotated code as training data to build a model that takes in a description of a problem
and generates code that solves it.

Also, the possible application of the annotated code lies in developing tutorials or
educational materials for data scientists. By providing explanations and examples of how
to solve real-world problems, one can help others learn and improve their skills.

Overall, a corpus of annotated code, accompanied by a natural task description, can be a
valuable resource for data scientists and others working in applied data science.

In this article, we introduce a Large-scale Dataset of Machine Learning Code
(Code4ML) dataset, a corpus of Python code snippets, competition, and data summaries
from Kaggle.

Our major contributions are the following:

� We present a large dataset of about 2.5 million Python code snippets from public Kaggle
notebooks. Those snippets are enriched with metadata.

� The notebooks are accompanied by natural language descriptions of corresponding
competitions.

� We propose a novel technique for ML code annotation based on a Machine Learning
Taxonomy Tree that reflects the main steps of the ML pipeline. In addition, we provide
an annotation tool that can help continue further markup of the dataset.

The rest of this article is organized as follows. “Related Work” contains an overview of
existing datasets and their properties. “Construction of Code4ML” includes a description
of our dataset collection/annotation process. Details of human and machine-oriented
reading of the dataset are described in “Code4ML Dataset Structure”. “Downstream Tasks”
describes potential applications and research directions that the community can perform

Figure 1 The scheme of the ML code corpus candidate.
Full-size DOI: 10.7717/peerj-cs.1230/fig-1

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 2/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-1
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

with the presented dataset. “Limitations” reflects the limitations of the corpus.
“Conclusion” concludes the article.

RELATED WORK
Several publicly available datasets for source code have been proposed for various code
intelligence tasks. Some datasets, like CodeNet (Puri et al., 2021) and POLYCODER’s
dataset (Xu et al., 2022), contain snippets from different programming languages. Others
consist of code from one specific language: PY150 (Raychev, Bielik & Vechev, 2016) for
Python, CONCODE (Iyer et al., 2018) for Java, Spider (Yu et al., 2018) for SQL, etc. The
source code is collected from GitHub (CodeSearchNet Husain et al., 2019) and Stack
Overflow (CoNaLa Yin et al., 2018), and from other platforms as well, such as Kaggle
(Quaranta, Calefato & Lanubile, 2021). In Lu et al. (2021) CodeXGLUE is proposed, a
machine learning benchmark dataset that contains 14 datasets of different sizes and in
multiple programming languages.

Table 1 gives an overview of several datasets for Python since our corpus is also for
Python. As we aim to study ML code, we focus on ML-related datasets.

Boa
The Boa (Biswas et al., 2019) dataset represents a pool of data-science-related python files
and the meta-information about the corresponding GitHub projects. The authors extract
the abstract syntax tree (AST), i.e., a tree representation of a conceptual code structure,
from the source code and store AST parts classified into domain-specific types: ASTRoot,
containing a program file, namespace, holding the qualitative path to the file; declarations,
including functions as methods in Python, which in turn have other statements and
expressions. While maintaining the project as a repository containing different program
files remains the standard among the Data Science community, interactive programming
in Jupyter notebooks is gaining popularity. Moreover, Jupyter usually provides a logical
division of code into snippets. That makes it possible to analyze the ML pipeline’s structure
quickly, e.g., a code snippet corresponding to the data import is further followed by data
processing and model training.

JuICe
In Agashe, Iyer & Zettlemoyer (2019), the authors provide the set of manually created high-
quality Jupyter notebooks representing class programming assignments. The notebooks

Table 1 Overview of some of the existing ML-related datasets for Python.

Dataset name Dataset size Human-curated
annotated data size

Data source Natural description of
the general task the
code is written for

Boa Biswas et al. (2019) �5M Python files – GitHub –

JuICe Agashe, Iyer & Zettlemoyer (2019) �1.5M code snippets �4K code snippets GitHub –

KGTorrent Quaranta, Calefato & Lanubile (2021) �250K Jupyter notebook files – Kaggle –

Code4ML (ours) �2.5M code snippets �8K unique code snippets Kaggle ✓

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 3/19

http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

consist of alternating NL markdown and code cells. The code is assumed to match the
provided markdown description. The corpus includes 1.5 million unique target cell-context
examples. A human-curated test part of 3.7 K examples is also provided. The motivation of
the JuICe dataset lies in the generation of the code snippet by the natural description of the
Jupyter notebook cell using the prior information from the notebook. However, the
description of the task the notebook tries to solve needs to be included. Thus, JuICe is hard
to use to solve the problem of ML pipeline generation.

KGTorrent
In Quaranta, Calefato & Lanubile (2021) the authors present a KGTorrent dataset. It
includes a complete snapshot of publicly available artifacts of Kaggle, including Jupyter
notebooks, dataset descriptions, and forum discussions. Still, there are no descriptions of
the competitions. Also, as KGTorrent only aggregates the Kaggle data, it does not includes
any specific annotation of the code snippets. Moreover, one can verify Kaggle notebook
quality by assessing the Kaggle score of the notebook, which corresponds to the value of
the specified competition metric. Because Kaggle competitions have various metrics, code
quality assessment is difficult. Thus, although KGTorrent is an extensive collection of the
Jupyter notebooks and Kaggle metadata, it is unsuitable for ML pipeline synthesis from
natural language description.

CONSTRUCTION OF CODE4ML
Our work focuses on the Kaggle kernels (Jupyter Notebooks) as the sequential
computational code cells designed to solve machine learning problems. We aim to reduce
the dimension of the learning space by introducing a taxonomy tree once it is used as an
annotation class for notebook code cells. One can compare this annotation with the
markdown describing the task of the code cell in the JuICe dataset (see Figs. 2 and 3).
Unlike markdown-based annotation, our taxonomy class approach is uniquely defined in
all snippets. We provide a set of �8K human-curated annotated unique code snippets and
a tool for the snippets’manual classification. Thus, the human assessors describe the whole

Figure 2 JuICE code snippets with the corresponding natural language description examples. Source:
Agashe, Iyer & Zettlemoyer (2019). Full-size DOI: 10.7717/peerj-cs.1230/fig-2

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 4/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-2
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

ML pipeline, i.e., the sequence of the taxonomy tree vertices. Like KGTorrent, our corpus
also contains information about Kaggle notebooks, corresponding datasets, and
competitions. We deal with the problem of kernel verification by introducing the
classification of Kaggle metrics into 20 classes. Moreover, each competition in the corpus is
provided with a natural description.

Collection and preprocessing of the dataset
Kaggle is the most prominent platform for competitive data science. It curates the creation
of data challenges and encourages users to publish their solutions in Jupyter Notebook
kernels. A kernel is a sequence of code snippets and description blocks in a natural
language. The code from the kernels is a good source of ML code since the users have to
build their machine learning pipelines from scratch.

Kaggle provides an API for accessing the published kernels and competitions and an
open dataset containing various metadata. Using the API, we collect the most popular
kernels from the most popular competitions (i.e., with the highest number of teams). We
only consider kernels that use Python3 and have Apache 2.0 license.

The parser processes the collected kernels for code blocks and corresponding kernel id
extraction. Each code cell of the Jupyter notebook is considered a code snippet. We clean it
up to ensure the collected code uniformity by removing broken Unicode characters and
formatting the code to conform to the PEP8 standard. Also, personal information such as
emails is not included in the snippets.

Notebooks on Kaggle have many useful metrics. Users vote for notebooks with high-
quality code. Another important notebook metric is the kernel result on the test set (Kaggle
score).

This metadata, as well as a number of kernel comments, are collected from Meta
Kaggle.1

Taxonomy tree
Transformation of the Python code into conceptual pipelines describing the steps for
performing ML experiments significantly reduces the amount of data required to train an

Figure 3 Code4ML code snippets with the corresponding taxonomy types examples.
Full-size DOI: 10.7717/peerj-cs.1230/fig-3

1 Kaggle’s public data on competitions,
users, submission scores, and kernels
(meta-kaggle).

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 5/19

https://www.apache.org/licenses/LICENSE-2.0
http://dx.doi.org/10.7717/peerj-cs.1230/fig-3
https://www.kaggle.com/datasets/kaggle/meta-kaggle
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

ML model to analyse or generate the sequence. Almost any Jupyter Notebook can be
translated into such a pipeline of repeating typical patterns.

To describe code blocks from a notebook, we have developed a set of categories and
combined them in a Taxonomy Tree. The tree has two levels: the upper level denotes a
high-level classification of an ML pipeline step. Each descendent vertex corresponds to a
more specific action. The second-level vertices are called semantic types. So, for example,
semantic type mising values in Visualisation category represents an action of
displaying missing values properties, such as quantities vs. features. In contrast, correct
missing values in Data Transform represents filling it with a default value or removing
the rows with missing values completely. There are 11 upper-level categories and �80
lower-level classes. Figure 4 illustrates the graph. Figure 5 shows examples of code snippets
corresponding to different graph vertices.

Figure 4 Machine learning taxonomy tree. Full-size DOI: 10.7717/peerj-cs.1230/fig-4

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 6/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-4
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

Creating the ML Taxonomy Tree relies on data science standards such as CRISP-DM
(Shearer, 2000) and ISOTR24029 (ISO/IEC TR 24029-1:2021, 2021), the experts’
experience in machine learning and data science.

CODE4ML DATASET STRUCTURE
The data is organized as a set of tables in CSV format. It includes several central entities:
raw code blocks collected from Kaggle (code_blocks.csv), kernels (kernels_meta.
csv) and competitions meta information (competitions_meta.csv). Annotated code
blocks are presented in a separate table markup_data.csv. Each code block is associated
with a semantic type assigned to it by an external assessor. A dictionary of semantic types is
stored in the table vertices.csv.

Code snippets information (code_blocks.csv) can be mapped with kernels metadata
via kernel_id. Kernels metadata is linked to Kaggle competitions information through
comp_name (Fig. 6). To ensure the quality of the data kernels_meta.csv includes only

Figure 5 Semantic typification of code snippets example.
Full-size DOI: 10.7717/peerj-cs.1230/fig-5

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 7/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-5
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

Jupyter Notebooks with a non-empty Kaggle score. The data is published online at the
Zenodo platform (Drozdova et al., 2022).

Each competition entry has the text description and metadata, reflecting competition,
dataset characteristics, and evaluation metrics. EvaluationAlgorithmAbbreviation is
collected from Meta Kaggle and provides additional information on competitions and
notebooks. EvaluationAlgorithmAbbreviation has 92 unique values, which make it
difficult to filter the kernels by scores concerning the metric. To tackle it, we group
EvaluationAlgorithmAbbreviation into 20 classes reflected in the metric_type
column. Figure 7 shows the distribution of the metric_type. The class description is
provided in Fig. 8.

The dataset for the corresponding competitions can be downloaded using Kaggle API:
kaggle competitions download -c data_source, where data_source is the name of
the dataset at Kaggle.

The code_blocks entry includes the code snippet, the corresponding kernel id, and the
code block id, which is the index number of the snippet in the Jupyter Notebook.

The corpus contains 107,524 notebooks. Most of those (23,104) are assigned to
competitions. Thus, 625,125 snippets belonging to those notebooks have a kernel score
value.

We use a web form for manual sorting of code snippets into semantic classes2. The form
allows marking code snippets according to their semantic type described in “Construction
of Code4ML” as well as cleanliness and the kind of data (i.e., table, image, etc.) To specify
the markup confidence level in the resulting class, one should choose the corresponding

Figure 6 Code4ML corpus structure. Each table is stored in a separate file with a unique key. It is
highlighted on the figure and used to reference its entries outside.

Full-size DOI: 10.7717/peerj-cs.1230/fig-6

2 Additional labeled data is always
welcome. You can participate at https://
nl2ml-form.coresearch.club/. Please keep
in mind that the registration of the
assessor needs to be approved by the
Code4ML team members.

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 8/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-6
https://nl2ml-form.coresearch.club/
https://nl2ml-form.coresearch.club/
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

value of marks (from 1 to 5). The too long flag denotes the purity of the snippet to be
marked up. The flag should be set if the cell code can not be unambiguously attributed to a
single semantic type, i.e., it contains many different semantic types. The detailed markup
rules are in Fig. 9. markup_data.csv includes data labeled by the Code4ML project team.
The interface of the web form is shown in Fig. 10. All assessors must follow the markup
rules.

The markup table contains the following fields: the id of the parent notebook, code
snippet text, the boolean too_long flag, the assessment confidence score in the range from 1
to 5 (best), and the id of the snippet class chosen by the assessor.

In total, assessors marked around 10,000 snippets (some snippets are similar across
notebooks, after that, there are �8,000 unique snippets). A total of �68% of marked
snippets got the highest confidence score (i.e., 5), while �18% and �11% got the
confidence score equal to 4 and 3, correspondingly.

To annotate the rest of the corpus, we provide the general assessment of the automatic
code snippets labeling.

We use the manually labeled code snippets for training the basic models. The class
distribution of the snippets can be found in Fig. 11. We report two metrics: accuracy and
F1-score.

Since the code block is a sequence of symbols, an encoding is required. We used
frequency-inverse document frequency (Papineni, 2001) as a vectorizer.

We use support vector machines (SVM) (Boser, Guyon & Vapnik, 1992) based models
for snippets classification. This method does not require much data for training, so this
approach is used as a reference ML method. We apply SVM with different kernels: linear,

Figure 7 Distribution of the competition’s metric type.
Full-size DOI: 10.7717/peerj-cs.1230/fig-7

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 9/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-7
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

polynomial, and Radial Basis Function (RBF). The hyperparameters are selected based on
cross-validation metrics on ten folds. The multiclass case is handled using a one-vs-all
scheme (Chang & Lin, 2011). Details of the model training are available in Fig. 12.

Figure 13 illustrates the level of similarity between the manually assessed sample and the
whole data. This plot shows the cumulative distribution function for the labeled and the
total samples. The horizontal axis shows the prediction of a calibrated SVM classifier with
a linear kernel trained on 80% of the labeled data. The probability ratio of the classes
predicted by the model that does not exceed the specified threshold is then compared for
the test part of the markup data (orange line) and the entire code_blocks.csv table (blue

Figure 8 Characterisation of metric type classes. Full-size DOI: 10.7717/peerj-cs.1230/fig-8

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 10/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-8
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

line). Although the data in the whole dataset is not identical to the labeled data, one can see
the closeness of the two lines, which allows us to conclude that the labeled sample is
moderately representative.

The semi-supervised models (Xie et al., 2020) for the snippets classification are applied
to deal with the lack of manually labeled data.

First, a linear kernel-based SVM model is trained on the marked-up dataset. We collect
the prediction of the trained model on the unlabeled part of the data. The predictions are
further used as pseudo labels in combination with marked-up data to train a different SVM
model with the RBF kernel. The results can be found in Table 2.

Figure 9 Manual code snippets labeling algorithm. Full-size DOI: 10.7717/peerj-cs.1230/fig-9

Figure 10 Interface of the WEB form. The web form allows the users to annotate the code snippets. On
the left there is an example of code snippet as well as the link to the original Kaggle kernel. On the right
there are fields for manual labeling. Due to a large amount of options, the selection of semantic class is
split into two parts. Full-size DOI: 10.7717/peerj-cs.1230/fig-10

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 11/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-9
http://dx.doi.org/10.7717/peerj-cs.1230/fig-10
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

Figure 11 Distribution of the markup data taxonomy type. The dominated data type of the corre-
sponding to the markup snippets competitions datasets is tabular. That leads to the imbalance in the
semantic class distribution. Full-size DOI: 10.7717/peerj-cs.1230/fig-11

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 12/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-11
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

DOWNSTREAM TASKS
The proposed corpus of the publicly available Kaggle code snippets, task summaries,
competitions, and dataset descriptions publicly enriched with annotation and useful
metadata is a valuable asset for various data-driven scientific endeavors.

ML code classification
As shown above, one can use Code4ML for a semantic code classification task, where each
ML code snippet should be labeled as one of the taxonomy tree classes illustrated by Fig. 4.
This task helps to summarize ML pipelines. One can use the proposed baseline models as a
starting point for the semantic ML code classification.

ML pipeline synthesis
The availability of the Kaggle competition description and the markup data makes training
NL to ML code generative models possible. As mentioned earlier, the implementation of
data analysis pipelines usually comes down to building a combination of repeating typical
patterns. Nevertheless, constructing such pipelines is a crucial skill for specialists in various

Figure 12 The resulted hyperparameters for automatic snippets classification model. The hyper-
parameters for SVM models are selected by cross-validation on ten folds using Akiba et al. (2019). The
kernel can be Linear, Poly or RBF. The regularization parameter C is selected from [0.1, 1000].

Full-size DOI: 10.7717/peerj-cs.1230/fig-12

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 13/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-12
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

subject areas that are not directly related to data analysis but rely on such competencies in
some works. An example would be biologists, chemists, physicists, or representatives of the
humanities. Code4ML provides the data for translating tasks described in a natural
language into a programming language (Python). The annotation of the code, gained by
snippets classification to semantic types, can serve as additional information or control
input for the code generation model.

ML code auto-completion
Code4ML also covers a lack of annotated data for ML code auto-completion. Code
completion is the most popular software development technique (Murphy, Kersten &
Findlater, 2006) and is found in every powerful IDE. It can be used as a typing assistant
tool for discovering relevant libraries and APIs.

Table 2 Ten-folds cross-validation performance of the baseline models for automatic data labeling.

Metrics

Model F1-score Accuracy

SVM + Linear 0.684 � 0.024 0.691 � 0.022

SVM + Poly 0.619 � 0.021 0.625 � 0.019

SVM + RBF 0.689 � 0.022 0.625 � 0.019

SVM with 20% of pseudo labels 0.831 � 0.014 0.834 � 0.014

SVM with 40% of pseudo labels 0.845 � 0.016 0.851 � 0.014

SVM with 100% of pseudo labels 0.872 � 0.004 0.872 � 0.004

Note:
The best results are in bold.

Figure 13 The valuation of the similarity of assessed and unassessed snippets. The plot lines show the
cumulative distribution function (CDF) for the labeled (markup) and full (all snippets) samples
depending on semantic class predicted probability. Full-size DOI: 10.7717/peerj-cs.1230/fig-13

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 14/19

http://dx.doi.org/10.7717/peerj-cs.1230/fig-13
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

Nevertheless, most existing code completion systems fail on uncommon completions
despite their importance for real-world efficacy (Hellendoorn et al., 2019). Training a code
completion model on domain-specific data can help determine the too-rare patterns in
generic code datasets and improve real-world accuracy.

LIMITATIONS
There are a few potential limitations and risks to consider when working with a corpus of
annotated code.

The corpus may only contain code for specific problems or a limited range of
programming languages, making it less useful for other types of data science work. The
corpus may be biased regarding the kinds of problems it covers or the approaches used to
solve them. This could lead to incomplete or misleading information if the corpus does not
represent the full range of problems and techniques used in data science.

Code4ML aggregates the most popular Kaggle competitions. This ML contest platform
divides challenges into several types. Community prediction competitions, full-scale
machine learning problems, relatively simple ML tasks, and more experimental (research)
issues are the most common. The Code4ML shares of these problem types are 50%, 25%,
11%, and 10%, respectively. The majority of the aggregated competitions operate with the
table data (52%), image (28%), and text (11%) data. Reinforcement learning or audio/video
processing problems are less widespread.

Depending on the source of the annotated code, the quality of the annotations and the
code itself may vary. It is important to carefully evaluate the credibility and accuracy of the
annotations to ensure that the corpus is reliable and valuable. We mitigate this threat by
providing the general confidence assessment and the ratio of ambitiousness for each
snippet annotation.

Legal considerations
Legal risks may be associated with using code from the corpus in the projects. It’s vital to
ensure one has the necessary permissions and licenses to use the code and adequately
attribute any code used.

Overall, it’s essential to carefully consider the limitations and risks of a corpus of
annotated code usage and to make sure that the researcher uses it in a way that is ethical,
legal, and useful for his specific needs. The corpus is published under Creative Commons
Attribution 4.0 International license.

CONCLUSION
This article describes a novel Large-scale Dataset of annotated Machine Learning Code
(Code4ML) containing ML code snippets in Python and corresponding ML tasks
metadata.

The dataset contains problem descriptions from �400 Kaggle competitions in natural
language. It also includes more than 20 thousand public Python 3 notebooks representing
machine learning pipelines for solving those competitions with the provided Kaggle score.

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 15/19

http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

Those notebooks comprise around �600 thousand code cells. We propose a taxonomy
graph to describe the code snippets as principal parts of the ML pipeline.

The current version of the dataset only covers part of the scope of Kaggle ML code
snippets, and it can be easily extended in the future.

Around ten thousand snippets have been manually labeled to date. We developed a data
markup web application that can help volunteers contribute to the extension of the
markup dataset and eventually cover it entirely. Consequently, we warmly welcome any
efforts from the community in this direction.

We are confident that the Code4ML dataset can be helpful for various vital modern ML
challenges, such as code classification, segmentation, generation, and auto-completion.
Hopefully, it can also open up new venues for AutoML research.

ACKNOWLEDGEMENTS
We want to acknowledge the considerable time and efforts spent annotating the Code4ML
corpus by Alexander Levin, Ivan Pyaternev, Marina Stepanova, Valery Berezovskiy,
Evgenia Yegorova, Julia Gorshkova, Anastasia Gorodilova, Aynur Nureyev, Anastasia
Denisenko, Maria Akimenkova, Daria Sapozhnikova, Alexander Myltsev.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The publication was supported by the grant for research centers in the field of AI provided
by the Analytical Center for the Government of the Russian Federation (ACRF) in
accordance with the agreement on the provision of subsidies (identifier of the agreement
000000D730321P5Q0002) and the agreement with HSE University No. 70-2021-00139.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Analytical Center for the Government of the Russian Federation (ACRF):
000000D730321P5Q0002.
HSE University: 70-2021-00139.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Anastasia Drozdova conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, authored
or reviewed drafts of the article, and approved the final draft.

� Ekaterina Trofimova conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 16/19

http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

� Polina Guseva conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

� Anna Scherbakova analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

� Andrey Ustyuzhanin conceived and designed the experiments, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Code4ML: a Large-scale Dataset of annotated Machine Learning Code (1.0.1) is
available at Zenodo: Anastasia Drozdova, Polina Guseva, Ekaterina Trofimova, Anna
Scherbakov, Andrey Ustyuzhanin, Anastasia Gorodilova, & Valery Berezovsky. (2022).
Code4ML: a Large-scale Dataset of annotated Machine Learning Code (1.0.0) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.7023415.

The source code for the data collection is available at GitHub: Ekaterina Trofimova.
(2022). ketrint/Code4ML: v1.0.0 (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.
7144838.

The code for the classification experiments is available at GitHub: Anastasia Drozdova.
(2022). ADrozdova/NL2ML-code-classification: v1.0 (v1.0). Zenodo. https://doi.org/10.
5281/zenodo.7144858.

REFERENCES
Agashe R, Iyer S, Zettlemoyer L. 2019. Juice: a large scale distantly supervised dataset for open

domain context-based code generation. ArXiv preprint arXiv:1910.02216
DOI 10.48550/arXiv.1910.02216.

Akiba T, Sano S, Yanase T, Ohta T, Koyama M. 2019.Optuna: a next-generation hyperparameter
optimization framework. In: Proceedsings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York: ACM.

Allamanis M, Barr ET, Devanbu P, Sutton C. 2018. A survey of machine learning for big code and
naturalness. ACM Computing Surveys (CSUR) 51(4):1–37 DOI 10.1145/3212695.

Alsolai H, Roper M. 2020. A systematic literature review of machine learning techniques for
software maintainability prediction. Information and Software Technology 119(2):106214
DOI 10.1016/j.infsof.2019.106214.

Austin J, Odena A, Nye M, Bosma M, Michalewski H, Dohan D, Jiang E, Cai C, Terry M, Le Q,
Sutton C. 2021. Program synthesis with large language models. ArXiv preprint
arXiv:2108.07732 DOI 10.48550/arXiv.2108.07732.

Bilgin Z, Ersoy MA, Soykan EU, Tomur E, Çomak P, Karaçay L. 2020. Vulnerability prediction
from source code using machine learning. IEEE Access 8:150672–150684
DOI 10.1109/ACCESS.2020.3016774.

Biswas S, Islam MJ, Huang Y, Rajan H. 2019. Boa meets python: a boa dataset of data science
software in python language. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). Piscataway: IEEE, 577–581.

Boser BE, Guyon IM, Vapnik VN. 1992. A training algorithm for optimal margin classifiers. In:
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. 144–152.

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 17/19

https://doi.org/10.5281/zenodo.7023415
https://doi.org/10.5281/zenodo.7144838
https://doi.org/10.5281/zenodo.7144838
https://doi.org/10.5281/zenodo.7144858
https://doi.org/10.5281/zenodo.7144858
http://dx.doi.org/10.48550/arXiv.1910.02216
http://dx.doi.org/10.1145/3212695
http://dx.doi.org/10.1016/j.infsof.2019.106214
http://dx.doi.org/10.48550/arXiv.2108.07732
http://dx.doi.org/10.1109/ACCESS.2020.3016774
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

Chang C-C, Lin C-J. 2011. Libsvm: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST) 2(3):1–27 DOI 10.1145/1961189.1961199.

ChenM, Tworek J, Jun H, Yuan Q, de Oliveira Pinto HP, Kaplan J, Edwards H, Burda Y, Joseph
N, Brockman G, Ray A, Puri R, Krueger G, Petrov M, Khlaaf H, Sastry G, Mishkin P, Chan
B, Gray S, Ryder N, Pavlov M, Power A, Kaiser L, Bavarian M, Winter C, Tillet P, Such FP,
Cummings D, Plappert M, Chantzis F, Barnes E, Herbert-Voss A, GussWH, Nichol A, Paino
A, Tezak N, Tang J, Babuschkin I, Balaji S, Jain S, Saunders W, Hesse C, Carr AN, Leike J,
Achiam J, Misra V, Morikawa E, Radford A, Knight M, Brundage M, Murati M, Mayer K,
Welinder P, McGrew B, Amodei D, McCandlish S, Sutskever I, ZarembaW. 2021. Evaluating
large language models trained on code. ArXiv preprint DOI 10.48550/arXiv.2107.03374.

Drozdova A, Guseva P, Trofimova E, Scherbakova A, Ustyuzhanin A, Gorodilova A,
Berezovskiy V. 2022. Code4ML: a Large-scale Dataset of annotated Machine Learning Code
(1.0.1) [Data set]. Zenodo DOI 10.5281/zenodo.7312803.

Goues CL, Pradel M, Roychoudhury A. 2019. Automated program repair. Communications of the
ACM 62(12):56–65 DOI 10.1145/3318162.

Gretton A, Borgwardt K, Rasch M, Schölkopf B, Smola A. 2006. A kernel method for the two-
sample-problem. In: Advances in Neural Information Processing Systems. Vol. 19. Cambridge:
MIT Press, 513–520.

Hellendoorn VJ, Proksch S, Gall HC, Bacchelli A. 2019.When code completion fails: a case study
on real-world completions. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). Piscataway: IEEE, 960–970.

Husain H, Wu H-H, Gazit T, Allamanis M, Brockschmidt M. 2019. Codesearchnet challenge:
evaluating the state of semantic code search. ArXiv preprint DOI 10.48550/arXiv.1909.09436.

ISO/IEC TR 24029-1:2021. 2021. Artificial intelligence (AI)—Assessment of the robustness of
neural networks—Part 1: overview. Geneva, CH: Standard, International Organization for
Standardization.

Iyer S, Konstas I, Cheung A, Zettlemoyer L. 2018. Mapping language to code in programmatic
context. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. 1643–1652.

Liu F, Li G, Wei B, Xia X, Fu Z, Jin Z. 2020. A self-attentional neural architecture for code
completion with multi-task learning. In: Proceedings of the 28th International Conference on
Program Comprehension. 37–47.

Lu S, Guo D, Ren S, Huang J, Svyatkovskiy A, Blanco A, Clement C, Drain D, Jiang D, Tang D,
Li G, Zhou L, Shou L, Zhou L, Tufano M, Gong M, Zhou M, Duan N, Sundaresan N, Deng
SK, Fu S, Liu S. 2021. Codexglue: a machine learning benchmark dataset for code
understanding and generation. ArXiv preprint DOI 10.48550/arXiv.2102.04664.

Murphy GC, Kersten M, Findlater L. 2006. How are Java software developers using the Elipse
IDE? IEEE Software 23(4):76–83 DOI 10.1109/MS.2006.105.

Papineni K. 2001. Why inverse document frequency? In: Second Meeting of the North American
Chapter of the Association for Computational Linguistics. Palo Alto: ACL.

Puri R, Kung DS, Janssen G, Zhang W, Domeniconi G, Zolotov V, Dolby J, Chen J, Choudhury
M, Decker L, Thost V, Buratti L, Pujar S, Ramji S, Finkler U, Malaika S, Reiss F. 2021. Project
codenet: a large-scale ai for code dataset for learning a diversity of coding tasks. ArXiv preprint
DOI 10.48550/arXiv.2105.12655.

Quaranta L, Calefato F, Lanubile F. 2021. Kgtorrent: a dataset of python jupyter notebooks from
kaggle. In: 2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR). Piscataway: IEEE.

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 18/19

http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.48550/arXiv.2107.03374
http://dx.doi.org/10.5281/zenodo.7312803
http://dx.doi.org/10.1145/3318162
http://dx.doi.org/10.48550/arXiv.1909.09436
http://dx.doi.org/10.48550/arXiv.2102.04664
http://dx.doi.org/10.1109/MS.2006.105
http://dx.doi.org/10.48550/arXiv.2105.12655
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

Raychev V, Bielik P, Vechev M. 2016. Probabilistic model for code with decision trees. ACM
SIGPLAN Notices 51(10):731–747 DOI 10.1145/3022671.2984041.

Roziere B, Lachaux M-A, Chanussot L, Lample G. 2020. Unsupervised translation of
programming languages. In:NIPS’20: Proceedings of the 34th International Conference on Neural
Information Processing Systems.

Shearer C. 2000. The crisp-dm model: the new blueprint for data mining. Journal of Data
Warehousing 5(4):13–22.

Svyatkovskiy A, Deng SK, Fu S, Sundaresan N. 2020. Intellicode compose: code generation using
transformer. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1433–1443.

Xie Q, Luong M-T, Hovy E, Le QV. 2020. Self-training with noisy student improves imagenet
classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 10687–10698.

Xu FF, Alon U, Neubig G, Hellendoorn VJ. 2022. A systematic evaluation of large language
models of code. ArXiv preprint DOI 10.48550/arXiv.2202.13169.

Yang Y, Xia X, Lo D, Grundy J. 2021. A survey on deep learning for software engineering. New
York: ACM Computing Surveys.

Yin P, Deng B, Chen E, Vasilescu B, Neubig G. 2018. Learning to mine aligned code and natural
language pairs from stack overflow. In: 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR). Piscataway: IEEE, 476–486.

Yu T, Zhang R, Yang K, Yasunaga M, Wang D, Li Z, Ma J, Li I, Yao Q, Roman S, Zhang Z,
Radev D. 2018. Spider: a large-scale human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. 3911–3921.

Drozdova et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1230 19/19

http://dx.doi.org/10.1145/3022671.2984041
http://dx.doi.org/10.48550/arXiv.2202.13169
http://dx.doi.org/10.7717/peerj-cs.1230
https://peerj.com/computer-science/

	Code4ML: a large-scale dataset of annotated Machine Learning code
	Introduction
	Related work
	Construction of code4ml
	Code4ml dataset structure
	Downstream tasks
	Limitations
	Conclusion
	flink8
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

