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ABSTRACT
Background. Gene expression data are often used to classify cancer genes. In such
high-dimensional datasets, however, only a few feature genes are closely related to
tumors. Therefore, it is important to accurately select a subset of feature genes with
high contributions to cancer classification.
Methods. In this article, a new three-stage hybrid gene selection method is proposed
that combines a variance filter, extremely randomized tree and Harris Hawks (VEH).
In the first stage, we evaluated each gene in the dataset through the variance filter and
selected the feature genes that meet the variance threshold. In the second stage, we use
extremely randomized tree to further eliminate irrelevant genes. Finally, we used the
Harris Hawks algorithm to select the gene subset from the previous two stages to obtain
the optimal feature gene subset.
Results. We evaluated the proposed method using three different classifiers on
eight published microarray gene expression datasets. The results showed a 100%
classification accuracy for VEH in gastric cancer, acute lymphoblastic leukemia and
ovarian cancer, and an average classification accuracy of 95.33% across a variety of
other cancers. Compared with other advanced feature selection algorithms, VEH has
obvious advantages when measured by many evaluation criteria.

Subjects Bioinformatics, Computational Biology, Algorithms and Analysis of Algorithms, Data
Mining and Machine Learning
Keywords Gene selection, Microarray gene expression, Harris Hawks algorithm, Extremely
randomized tree

INTRODUCTION
In data analysis, data dimension may be much more than the number of samples (Diao
& Vidyashankar, 2013). The generally-used methods often perform poorly on such data,
because they can-not avoid the dimensionality curse (Myakalwar et al., 2015). Therefore,
it is necessary to datasets with feature that ensure the accuracy of subsequent analysis
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(Douglas & Shapiro, 2021). Microarray technology can simultaneously measure a large
number of cancer related gene expression data (Sandra, Shukla & Kolthur-Seetharam,
2020; Su et al., 2017), and the efficient selection of disease feature genes from microarray
data can improve the accuracy of disease classification and help to improve the treatment
of cancer (An, Wang & Wei, 2018). Because the number of gene expressions is much larger
than the number of cancer samples, and only a few feature genes in the gene expression
data are closely related to cancers, selecting highly discriminative feature genes for cancers
is a challenging task, and the existing methods are not effective.

Genes are closely related to tumors. Gene activation andmutation are one of the causes of
tumor occurrence. Feature selection of high-dimensional data is divided into four standard
methods: filter, embedded, wrapper, and hybrid (Dashtban & Balafar, 2017; Pashaei &
Pashaei, 2021; Pfeifer et al., 2020; Tang et al., 2021; Yu & Ni, 2014). The filter method is a
preprocessing method used for high-dimensional data. It evaluates each gene in the tumor
according to specific rules and removes genes unrelated to the follow-up learning process.
However, the filter method cannot analyze the mutual information between features, and
the selected feature subset may not be optimal (Wang, Wang & Chang, 2016). The wrapper
method uses the classification model including the heuristic algorithm and selects the
optimal feature subset according to the classification performance (Sahebi et al., 2020).
In the feature selection of high-dimensional medical data, the wrapper method is usually
more effective than the filter method (Fu et al., 2020). The hybrid method is the combined
application of the filter, embedded, and wrapper methods, as well as the improvement and
expansion based on these three methods (Castellanos-Garzón et al., 2018). For example,Qu
et al. (2021) proposed the Harris Hawks optimizer with variable neighborhood to screen
feature genes, by combining the wrapper and embedded methods. Zhang et al. (2021)
proposed a hybrid method that combined a Fisher score and gradient enhanced decision
tree, and selected the best feature gene set with robustness across 11 high-dimensional gene
expression datasets. Chuang et al. (2009), Deng et al. (2022), and Mandal et al. (2021) also
adopted the hybrid method by combining the filter and wrapper methods, and achieved
good results in multiple open cancer datasets. This article presents a three-stage feature
selection hybrid method VEH, that combines the filter and wrapper methods. Through the
analysis and comparison of the experimental results, we confirmed that the VEH method
has obvious advantages in the selection performance of feature genes, number of selected
genes and calculation time.

The chapters of this article are organized as follows: first, we summarize the researchwork
and corresponding algorithm principles related to variance filter, extremely randomized
tree, Harris Hawks algorithm and introduce the hybrid algorithm VEH in detail. In the
result, we compared the VEHmethod with 13 related feature selection algorithms, based on
eight published cancer gene expression datasets. Finally, we summarize the experimental
results.
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MATERIALS & METHODS
Variance filter
Variance is important when measuring the degree of data dispersion. Hackstadt & Hess
(2009) studied in detail the effect of using a variance filter on microarray data analysis.
In this article, we set the variance threshold to 0.05 to filter out all feature genes whose
variance was less than the threshold.

Extremely randomized tree
The extremely randomized tree is a machine learning algorithm constructed frommultiple
decision trees (Liang et al., 2021). Extremely randomized trees have the advantages of high
computing efficiency and are suitable for processing high dimensional data. Extremely
randomized trees constructs decision trees by randomly selecting attributes and splitting
nodes.

Harris Hawks algorithm
Heidari et al. (2019) proposed theHarris Hawks algorithm (HHO) according to the hunting
law of Harris hawks in nature. The Harris Hawks algorithm is a new type of swarm
intelligence optimization algorithm, that has strong search ability and high accuracy. In the
algorithm, prey rabbit represents the fitness optimal solution in the current iteration. The
whole algorithm is divided into two stages: exploratory and development. The exploratory
stage starts by initializing a value to detect the habitat position and then observing the prey.
During the development stage, the Harris Hawks carry out four attack modes based on the
energy of their prey and the possibility of escape. Figure 1 shows the HHO workflow.
During the exploratory stage, the escape energy factor is E . When |E| ≥ 1, Harris Hawks

randomly searches [lb,ub] and uses two strategies with the same probability to search for
prey globally. The location update formula is shown in Eq. (1):

X(t+1)=

{
Xrand(t )− r1 |Xrand(t )−2r2X(t )| q≥ 0.5

(Xrabbit (t )−Xm(t ))− r3(lb+ r4(ub− lb)) q< 0.5
(1)

where, Xrand is the randomly selected Harris Hawks position in the population; X(t ) is the
individual position in the iteration; Xrabbit is the prey position in the current iteration; Xm

is the average position information of the population; and r1, r2, r3, r4 is a random number
with (0,1) distribution. q is the conversion factor controlling the two strategies.

HHO controls the exploratory and development stages through the escape energy factor,
as shown in Eq. (2):

E= 2E0

(
1−

t
T

)
(2)

where T is the total number of iterations and E0 is the random number of initial energy
values (−1,1). When |E| ≥ 1, a global search is performed; otherwise, the development
stage begins.

During the development stage, when |E|< 1, the Harris Hawks raid and catch prey,
and the prey avoids predation. HHO is based on random numbers r ∈ (0,1), E and the
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Figure 1 HHOworkflow.
Full-size DOI: 10.7717/peerjcs.1229/fig-1

appropriate one is selected from the following four attack strategies to complete the location
update where |E| is the deciding factor of the strategy. When |E| ≥ 0.5, Harris Hawks selects
the soft besiege strategy; otherwise, it selects the hard besiege strategy. r is the probability
of prey being captured.
1. When r ≥ 0.5, Harris Hawks can capture prey; otherwise, the hunt fails. When r ≥ 0.5

and |E| ≥ 0.5, the prey jumps with sufficient energy to avoid predation, and Harris
Hawks uses prey energy to complete its predation using a soft besiege strategy, as shown
in Formula (3):
X(t+1)=D(t )−E

∣∣JXrabbit (t )−X(t )
∣∣

D(t )=Xrabbit (t )−X(t )
J = 2(1− r5)

(3)

where, r5 is a random number in (0,1), D(t ) is the distance between the prey and the
current individual, and J is the movement distance of prey in jumping mode.

2. When r ≥ 0.5 and |E|< 0.5, prey energy is insufficient, Harris Hawks carries out a hard
besiege strategy and quickly preys, as shown in Formula (4):
X(t+1)=Xrabbit (t )−E |D(t )| (4)
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3. When r < 0.5, and |E| ≥ 0.5, the prey has enough energy to escape. At this time,
Harris Hawks selects the soft besiege with progressive rapid dives strategy, as shown in
Formula (5). This strategy has two hunting methods. When the first fails, the second is
chosen.

X(t+1)=

{
Y :Xrabbit (t )−E |JXrabbit (t )−X(t )| f (Y )< f (X(t ))

Z :Y +S×LF(D) f (Z )< f (X(t ))
(5)

where S is a random vector, D is the spatial dimension, f is the fitness function, and
LF is the levy function, simulating the jumping behavior of prey.

4. When r < 0.5 and |E|< 0.5, prey lacks energy but has a chance to escape. At this time,
Harris Hawks chooses the hard besiege with progressive rapid dives strategy to narrow
the distance from prey and form an encirclement circle, as shown in Formula (6):

X(t+1)=

{
Y :Xrabbit (t )−E |JXrabbit (t )−X(t )| f (Y )< f (X(t ))

Z :Y +S×LF(D) f (Z )< f (X(t ))
(6)

Coding rules
When the HHO algorithm searches the optimal feature gene subset, it needs to encode the
feature dimensions of all feasible solutions in HHO using binary string to solve the discrete
space optimization problem. We used 1 and 0 to represent the retention and elimination
of the gene respectively, set the value range of the feature as [0,1], and updated the value
of the binary coding position using the rounding method.

Fitness function
The fitness function is used to evaluate the advantages and disadvantages of individuals
and determine the optimization direction of the algorithm. We selected KNN as the fitness
function of the classification problem, as shown in Formula (7):

fitness=α(1−KNNacc)+ (1−α)
fnum
Fnum

(7)

where, KNNacc is the classification accuracy using the KNN classifier, numc is the correct
classification quantity, nume is the number of wrong classifications, fnum and Fnum are the
feature subset and total feature number respectively, and α is an adjustment parameter (we
set α= 0.99).

VEH
In this article, we propose a three-stage gene selection method, VEH, which combines a
variance filter, extremely randomized tree, and Harris Hawks algorithm. First, we used the
variance filter method to select a subset of feature genes. Second, we used the extremely
randomized tree to calculate the importance score of each gene and obtain an effective
gene subset. Finally, we used Harris Hawks algorithm to obtain the optimal feature gene
subset. The pseudocode code of VEH is shown in algorithm 1. Figure 2 shows the gene
selection process of the VEH algorithm. In a large dataset, the running time of the wrapper
method is usually several orders of magnitude higher than that of the filter method and the
embeddedmethod. In the hybridmethod VEH, the running time is mainly concentrated on
the wrapper method HHO during the third stage, so the time complexity of the proposed
method is O(N× (T+T ·D+1)).
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Figure 2 VEHworkflow.
Full-size DOI: 10.7717/peerjcs.1229/fig-2

RESULTS
Data collection and experiment setting
In this article, eight microarray gene expression datasets we are used to test the performance
of each algorithm. The datasets used were from public websites: http://csse.szu.edu.cn/staff/
zhuzx/Datasets.Html (Qu et al., 2021) and https://github.com/Pengeace/MGRFE-GaRFE
(Peng et al., 2021). Table 1 provides a detailed overview of the eight microarray datasets,
including their sample size, number of genes, and class. In these datasets, the number
of genes rangeds from 2,308 to 22,283, and the number of samples was less than 300.
These datasets included central nervous system (CNS), leukemia (Leuk), diffuse large B-
cell lymphoma (DLBCL), prostate (Pros), gastric2 (Gas2), acute lymphoblastic leukemia 1
(ALL1), ovarian cancer (Ovarian) and small round blue cell tumor (SRBCT). Among these,
only SRBCTwas a four-class dataset and the otherswere binary datasets. The number of class
samples was uneven except in Prostate and Gas2. Therefore, the datasets used in this article
were determined to comprehensively test the performance of different algorithms. During
the data preprocessing, in order to operate simply and not change themean of the variables,
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Algorithm 1: VEH Pseudocode
Inputs: Initial data: S(F1,F2,··· ,FN )
Outputs: Xrabbit
S1(F1,F2,··· ,FN )= VF(S)
E-importance= ERT (S1)
for(int i=0; i<N; i++)

If E-importance[i]>0
add feature i into hawk(Xi)

endfor
While(stopping condition is not met) do

Calculate the fitness values of hawks
Set Xrabbit as the location of rabbit(best
location)
for (each hawk(Xi)) do

Update the initial energy E0 and jump
strength J

Update the E using Eq.()
if (|E| ≥ 1) then //Exploration phase

Update the location vector using Eq.()
if (|E|< 1) then //Exploitation phase

if(r ≥ 0.5 and |E| ≥ 0.5) then //soft
besiege

Update the location vector using Eq.()
else if(r ≥ 0.5 and |E|< 0.5) then //hard
besiege

Update the location vector using Eq.()
else if(r < 0.5 and |E| ≥ 0.5) then //soft
besiege with progressive

rapid dives
Update the location vector using Eq.()
else if(r < 0.5 and |E|< 0.5) then //hard besiege
with progressive
rapid dives
Update the location vector using Eq.()
Return Xrabbit

we used the mean substitution method to fill in missing values in the dataset and the min-
maxnormalizationmethod to eliminate the impact of data dimensions. All the experimental
results in this article were generated on a computer equipped with a corei7-8750 CPU, 16G
of memory, and 2.20 GHz frequency. All algorithms were implemented using Python 3.7.0
and two public machine learning libraries, scikit-learn and scikit- feature. In this article, we
used three different classifiers, Decision Tree (DT), Support Vector Machine (SVM), and
Logistic Regression (LR), to evaluate the performance of each algorithm. The classification
performances of each standard classifier were recorded after tenfold cross-validation.
The tenfold cross-validation method randomly divide the dataset into 10 parts, nine of
which divided into training sets and the rest were divided into test sets. We compared
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Table 1 Microarray dataset.

No Dataset Samples Genes Class

1 CNS 60(1:21, 2:39) 7,129 2
2 Leukemia 72(ALL:47, AML:25) 7,129 2
3 DLBCL 77(1:58, 2:19) 7,129 2
4 Prostate 102(1:52, 2:50) 1,2625 2
5 Gastric2 124(1:62, 2:62) 22,283 2
6 ALL1 128(1:95, 2:33) 12,625 2
7 Ovarian 253(Normal:91, Cancer:162) 15,154 2
8 SRBCT 83(1:29, 2:11, 3:18, 4:25) 2,308 4

the VEH method with 13 different methods from the literature. The 13 different methods
were the T -test (T), Wilcoxon-test (Wilcoxon), variance filter-extremely randomized tree
(VF-ERT), variance filter-Harris Hawks (VF-HHO), extremely randomized tree-Harris
Hawks (ERT-HHO), variance filter-genetic algorithm (VF-GA), extremely randomized
tree-genetic algorithm (ERT-GA), variance filter-particle swarm optimization algorithm
(VF-PSO), extremely randomized tree-particle swarm optimization algorithm (ERT-PSO).
variance filter-crow search algorithm (VF-CSA), extremely randomized tree-crow search
algorithm (ERT-CSA), variance filter- differential evolution algorithm (VF-DE), and
extremely randomized tree-differential evolution algorithm (ERT-DE), Table 2 lists the
specific parameter values of each algorithm and classifier. All experiments were run
independently 10 times and used seven evaluation criteria to reflect the performance of
each algorithm: the number of selected genes, classification accuracy (Acc), precision
rate (precision), recall rate (recall), F1-Score (f1), standard deviation (SD) and algorithm
running time. The calculation formulas for the four important evaluation criteria were as
follows:

Acc=
TN +TP
P+N

(8)

precision=
TP

TP+FP
(9)

recall=
TP

TP+FN
(10)

f1= 2∗
precision∗ recall
precision+ recall

(11)

Number of positive samples (P); Number of negative samples (N). True positive (TP):
the real category of the sample is positive, and the model prediction is also positive. True
negative (TN): the real category of the sample is a negative case, and the model prediction
is also a negative case. False positive (FP): the real category of the sample is negative, and
the model prediction is positive. False negative (FN): the real category of the sample is
positive and the model prediction is negative. Because the precision, recall, and f1 were for
a single class, we assigned the same weight to each class and calculated their average values.
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Table 2 Parameters of each algorithm and classifier.

Algorithm Parameter

VF Variance Threshold (VT): 0.05
ERT nEstimators:100, minSamplesLeaf:20, maxLeafNodes:10
T α= 0.0001
Wilcoxon α= 0.0001
HHO Population size n:30, number of generations T:100
GA Population size n:30, number of generations T:100, CR: 0.5,

MR:0.2
CSA Population size n:30, number of generations T:100, AP:

0.25, fl:1.5
DE Population size n:30, number of generations T:100, CR: 0.9
DT Random state:0, max depth:8, max features:10
SVM regularization parameter C:1.0, Radial Basis Function
LR regularization parameter C:1.0, RSP: l2

Comparison with other algorithms
In this section, we comprehensively compared the VEHmethodwith T, VF-ERT,Wilcoxon,
VF-HHO, ERT-HHO, VF-GA, ERT-GA, VF-PSO, ERT-PSO, VF-CSA, ERT-CSA, VF-DE
and ERT-DE. We performed 10 times tenfold cross-validation on the gene subsets selected
by each algorithm to obtain the average result, and the performance optimal values in
each dataset are highlighted in black bold. Tables 3–5 shows the performance values of the
four evaluation criteria of each algorithm on the three classifiers. Table 3 shows that, on
the DT classifier, the VEH method had obvious advantages over other methods, in which
the Acc, precision, recall and f1 winning times were 7, 6, 7, and 7, respectively. The VEH
average Acc reached 92.42% and achieved 100% classification performance on the Gas2
and ALL1 datasets. As shown in Table 4, on the SVM classifier, the winning times of the
VEH method on the four evaluation criteria were 6, 5, 6, and 5, respectively. The VEH
achieved 100% classification performance on the Gas2, ALL1, and Ovarian datasets. At
the same time, the average Acc reached its best of 95.33%. As shown in Table 5, on the
LR classifier, the VEH method has won 7, 4, 5 and 5 times on the four evaluation criteria,
respectively. The performance of the four evaluation criteria reached 100% on the Gas2,
ALL1 and Ovarian datasets. At the same time, the average Acc was higher than that of the
other 13 methods, reaching 95.05%. In summary, compared with the other 13 methods,
VEH showed advantages in four evaluation criteria on the three classifiers, especially in the
DT classifier, and achieved the highest average Acc in the SVM classifier, which also proves
that the hybrid method proposed in this article could deliver an effective and improved
performance. Table 6 lists the number of genes selected by each algorithm in the eight
datasets. The results show that the VEH method selected the smallest average number of
genes. The number of genes selected by the VF-HHO, ERT-HHO, VF-GA, and ERT-GA
methods in the five datasets was fewer than that of the VEH method, but as shown in
Tables 3–5, the VEH method had significant advantages in many evaluation criteria. In
addition, the number of genes selected by the VEH method was only 1/20 to 1/80 of the
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VF-ERTmethod, 1/3 to 1/400 of the T -test andWilcoxon-test method, 1/50 to 1/100 of the
VF-CSA method, and 1/20 to 1/50 of the ERT-DE method, but it performeds better. The
above results show that VEH can better evaluate the correlation between genes through the
hybrid method and improve performance. We compared VEH with other algorithms from
recent years. Table 7 lists the comparison results between VEH and other methods, and ‘‘/’’
indicates the corresponding missing data. According to the results in Table 7, compared
with the existing methods, the VEH method also showed certain competitiveness in Acc.

Table 8 lists the average running time of each algorithm on each dataset. By comparing
the results, we found that the Wilcoxon-test method had the shortest running time and
the VF-PSO method had the longest running time. In combination with the results in
Tables 3–7, we found that although the VF-ERT, T -test, and Wilcoxon-test methods had
a short run time, this was at the expense of Acc and the number of selected genes. The
VF-HHO, ERT-HHO, VF-GA, ERT-GA, VF-PSO, ERT-PSO, VF-CSA, ERT-CSA, VF-DE
and ERT-DE methods had a long run time, but their other performance was significantly
lower than VEH. This also shows that VEH can effectively improve performance and
shorten the overall run time by combining various methods. Of all the evaluation criteria,
Acc was the most important, so we tested the performance of the VEH method in the
dataset when α tooks different values. As shown in Table 9, when α= 0.99, the algorithm
performance was the best. Therefore, we set α= 0.99.

Gene analysis
Because the VEHmethod had certain randomness, wemay have seen the same performance
during the process of feature selection. To address this issue, we followed the following
principles: (1) select the high Acc subset; (2) when the Acc is the same, select small subsets;
and (3) when the Acc and the number of subsets are the same, select the highest frequency.
Table 10 lists the optimal number of gene subsets, probe/Uniprot ID, and Acc on different
classifiers in each dataset. We have biologically described the best subset of genes selected
in five datasets, and the corresponding results are listed in Tables 11–15. Liddelow & Hoyer
(2016) found that NCAM1 represents a potential drug target for many inflammatory
diseases of the CNS. Clark & Stein (2020) also found that CD33 can target leukemia.
Tanhaei et al. (2014) found that GAPDH can be used as a valuable indicator to distinguish
DLBCL. Li, Ge & Franceschi (2021) found that RUNX2 plays a key role in the development
of the prostate. Hu et al. (2016) found that the EPOR pathway can promote the formation,
proliferation, and migration of Gas2.

DISCUSSION
The purpose of VEH is to select effective feature genes from high-dimensional gene
expression data. Unlike other similar methods (Bir-Jmel, Douiri & Elbernoussi, 2019; Ge et
al., 2016), VEH is a three-stage hybrid method that combines three different methods. The
results in Tables 11–15 show that our method can select important genes related to a tumor
in multiple datasets (Endo et al., 2018; Forgione et al., 2020), and the results of other studies
also verify the effectiveness and practicability of genes selected using the VEHmethod from
a medical perspective.
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Table 3 Performance comparison of algorithms on classifier DT.

Data-set Mea-sure T VF-ERT Wil-coxon VF-HHO ERT-HHO VF-GA ERT-GA VF-PSO ERT-PSO VF-CSA ERT-CSA VF-DE ERT-DE VEH

Acc 58.33 64.27 66.67 61.91 63.09 60.71 54.76 66.67 73.33 63.88 58.33 62.50 63.89 83.36

SD 0.00 15.00 0.00 11.64 15.85 12.47 24.93 15.71 19.56 10.09 21.73 8.74 11.39 4.81

precision 70.83 68.25 74.29 69.22 68.73 74.95 61.63 67.17 76.83 70.56 69.03 71.31 72.39 84.57

recall 58.33 64.28 66.67 61.91 63.09 60.42 54.76 66.67 73.33 63.89 58.33 62.50 63.89 83.33
CNS

f1 61.11 65.20 68.75 63.65 64.36 61.84 56.67 66.92 75.04 65.47 60.41 64.43 65.55 83.17

Acc 93.33 89.52 86.67 80.95 81.90 86.67 88.57 89.11 91.79 88.89 88.89 90.00 92.22 95.24

SD 0.00 3.56 0.00 11.18 14.25 9.43 5.04 5.80 9.79 5.44 3.44 3.65 5.02 3.25

precision 93.94 91.51 88.89 81.52 68.73 74.95 61.63 91.50 94.08 90.90 90.47 91.68 93.53 84.57

recall 93.33 89.58 86.67 80.95 81.90 86.67 88.57 88.75 91.25 88.89 88.89 90.00 92.22 95.23

Leuk-

emia

f1 93.12 89.24 85.61 80.13 82.08 86.49 87.80 90.10 92.64 88.75 88.53 89.60 92.00 95.28

Acc 75.00 87.50 93.75 74.57 81.25 82.14 78.57 87.64 89.86 91.67 90.00 90.63 89.58 94.53

SD 0.00 5.10 0.00 12.55 7.22 6.68 11.89 11.04 6.35 3.23 8.39 3.42 5.10 4.01

precision 83.33 93.99 95.83 86.05 87.58 89.34 88.74 90.68 92.33 93.54 94.21 93.75 93.32 96.72

recall 75.00 87.50 93.75 74.57 81.25 82.14 78.57 87.25 89.25 91.67 90.05 90.63 89.58 94.64

DL-
BCL

f1 78.21 89.16 94.26 76.98 83.13 83.92 81.70 88.93 90.76 91.79 90.05 91.41 90.63 95.16

Acc 71.43 76.19 74.15 74.15 62.58 72.79 72.79 66.94 71.53 80.95 79.36 79.36 79.37 81.63

SD 0.00 7.77 0.00 8.63 10.80 5.30 6.57 12.61 15.37 6.73 8.87 5.76 7.78 4.28

precision 71.43 78.38 74.87 74.96 87.57 89.34 88.74 68.75 74.48 81.36 81.09 80.55 81.54 96.72

recall 71.43 76.19 74.15 74.15 62.58 72.79 72.79 66.50 71.50 80.59 79.36 79.36 79.37 81.63

Pros-
tate

f1 71.43 75.41 74.07 73.91 62.12 72.48 72.32 67.61 72.96 80.86 78.93 78.96 78.93 81.52

Acc 96.00 96.00 96.00 97.25 95.60 96.42 92.86 92.36 90.27 96.67 96.67 95.33 98.00 100

SD 0.00 2.31 0.00 3.66 4.67 5.48 6.45 5.89 6.68 1.63 3.01 3.27 4.90 0.00

precision 96.36 96.44 96.36 92.46 91.82 89.91 92.36 93.69 91.12 96.36 97.05 95.64 98.07 97.28

recall 96.00 96.00 96.00 92.00 90.59 89.71 91.43 92.50 90.33 96.00 96.67 95.33 98.00 97.14
Gas2

f1 96.03 96.03 96.03 92.03 90.62 89.73 91.51 93.09 90.72 96.03 96.67 95.33 98.01 97.15

Acc 96.15 97.25 96.15 93.96 95.60 94.42 92.86 97.33 98.67 96.80 99.36 96.79 96.16 100

SD 0.00 3.66 0.00 3.02 4.67 5.48 6.45 3.44 2.81 3.78 1.57 2.90 4.21 0.00

precision 96.70 97.88 96.70 94.68 96.40 96.87 93.16 97.71 98.75 97.53 99.45 97.39 96.48 100

recall 96.15 97.25 96.15 95.60 93.96 96.42 92.86 97.23 98.75 96.80 99.36 96.79 96.16 100
ALL1

f1 96.25 95.47 96.25 95.47 93.98 96.52 92.88 97.47 98.75 96.93 99.38 96.90 96.21 100

Acc 86.27 100 90.20 97.20 92.72 92.30 92.72 96.14 95.75 98.37 94.12 97.39 92.81 98.04

SD 0.00 0.00 0.00 2.74 5.40 3.17 4.19 5.13 5.57 0.80 3.04 1.01 5.91 1.60

precision 86.23 100 90.41 97.36 93.49 93.42 93.13 96.39 96.12 98.42 94.43 97.47 93.14 98.13

recall 86.27 100 90.20 97.20 92.72 93.00 92.72 96.15 95.77 98.37 94.12 97.39 92.81 98.04

Ova-
rian

f1 85.90 100 89.93 97.20 92.74 92.82 93.85 96.27 95.94 98.35 94.00 97.37 92.50 98.04
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Table 3 (continued)
Data-set Mea-sure T VF-ERT Wil-coxon VF-HHO ERT-HHO VF-GA ERT-GA VF-PSO ERT-PSO VF-CSA ERT-CSA VF-DE ERT-DE VEH

Acc 81.24 84.88 81.24 65.55 71.43 69.80 68.07 71.25 83.75 70.59 76.47 70.59 76.47 86.56

SD 0.00 4.63 0.00 6.29 7.91 12.72 12.18 13.24 10.29 5.88 8.67 10.57 12.45 4.45

precision 79.27 87.67 81.97 70.64 73.11 76.50 73.92 62.13 81.25 69.61 81.68 65.88 81.76 88.49

recall 81.24 84.88 81.24 65.55 71.43 71.43 68.07 66.67 82.08 70.59 76.47 70.59 76.47 86.56

SR-
BCT

f1 79.14 83.91 81.10 64.24 69.18 70.46 67.71 64.32 81.66 69.72 76.59 67.64 74.25 86.49

Acc 0 1 0 0 0 0 0 0 0 0 0 0 0 7

precision 1 1 0 0 0 0 0 0 0 0 0 0 0 6

recall 0 1 0 0 0 0 0 0 0 0 0 0 0 7
Win-
ner

f1 0 1 0 0 0 0 0 0 0 0 0 0 0 7

Mean Acc 82.22 86.95 85.60 80.69 80.52 81.91 80.15 83.43 86.86 85.98 85.40 85.32 86.06 92.42

Notes.
The values marked in black and bold represent the best performance values in this dataset.
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Table 4 Performance comparison of algorithms on classifier SVM.

Data-set Mea-sure T VF-ERT Wil-coxon VF-HHO ERT-HHO VF-GA ERT-GA VF-PSO ERT-PSO VF-CSA ERT-CSA VF-DE ERT-DE VEH

Acc 66.67 67.86 41.67 53.57 54.76 42.86 53.57 71.67 83.33 62.50 66.67 63.89 62.50 85.00

SD 0.00 5.75 0.00 6.55 15.86 21.21 18.55 19.33 13.61 4.57 7.46 4.31 14.67 14.59

precision 74.29 70.09 54.17 62.36 68.20 55.22 61.69 67.17 76.83 64.59 73.65 65.28 74.90 84.92

recall 66.67 67.86 41.67 53.57 54.76 42.86 53.64 66.67 73.33 62.50 66.67 63.89 62.50 78.33
CNS

f1 68.75 68.31 45.56 55.69 54.72 45.01 55.81 66.92 75.04 63.38 68.42 64.47 64.44 81.49

Acc 93.33 94.29 86.67 80.95 87.62 91.43 93.33 95.71 86.43 100 100 100 98.89 98.57

SD 0.00 6.00 0.00 11.82 8.10 6.34 7.70 9.64 11.24 0.00 0.00 0.00 2.72 4.52

precision 94.13 94.85 90.48 83.15 89.73 92.68 93.59 91.50 90.50 100 100 100 98.99 95.75

recall 93.33 94.34 86.67 80.95 87.62 91.43 93.33 88.75 85.83 100 100 100 98.89 94.58

Leuk-

emia

f1 93.24 96.03 87.04 80.44 87.50 91.55 93.28 90.10 88.10 100 100 100 98.85 95.16

Acc 93.75 93.75 93.75 86.36 80.36 81.25 83.04 86.53 89.86 93.75 91.67 93.75 93.75 93.75

SD 0.00 0.00 0.00 7.34 11.08 9.55 12.35 10.19 6.35 0.00 3.23 0.00 0.00 5.10

precision 95.83 95.83 95.83 92.55 87.77 88.12 92.20 89.32 91.58 95.83 95.14 95.83 95.83 96.31

recall 93.75 93.75 93.75 86.36 80.36 81.25 82.04 86.00 89.25 93.75 91.67 93.75 93.75 93.75

DL-
BCL

f1 94.26 94.26 94.26 87.97 82.70 83.46 85.57 87.63 90.40 94.26 92.01 94.26 94.26 94.43

Acc 85.71 87.75 85.71 72.11 80.27 80.27 79.59 81.39 85.97 84.92 86.89 84.92 86.66 87.87

SD 0.00 2.55 0.00 7.98 7.49 4.28 4.53 16.42 24.80 1.94 2.46 1.94 2.13 3.60

precision 85.98 88.46 85.98 72.70 81.08 80.77 80.28 68.75 74.48 85.14 86.95 85.14 87.17 87.75

recall 85.71 87.75 85.71 72.11 80.27 80.27 79.59 66.50 71.50 84.92 85.89 84.92 86.66 87.87

Pros-
tate

f1 85.65 87.66 85.65 71.92 80.08 80.17 79.48 67.61 72.96 84.87 86.78 84.87 86.59 87.81

Acc 100 100 100 92.62 93.71 98.86 98.86 97.18 98.09 100 100 100 100 100

SD 0.00 0.00 0.00 4.86 4.54 1.95 1.95 4.54 4.03 0.00 0.00 0.00 0.00 0.00

precision 100 100 100 93.51 94.45 98.96 98.96 93.69 91.12 100 100 100 100 100

recall 100 100 100 92.62 93.71 98.86 98.86 92.50 90.33 100 100 100 100 100
Gas2

f1 100 100 100 92.71 93.72 98.87 98.87 93.09 91.23 100 100 100 100 100

Acc 100 100 100 95.05 96.15 97.52 96.70 98.00 98.67 100 100 100 100 100

SD 0.00 0.00 0.00 2.91 3.14 2.88 2.65 3.22 2.81 0.00 0.00 0.00 0.00 0.00

precision 100 100 100 96.89 95.84 97.79 96.91 98.19 98.89 100 100 100 100 100

recall 100 100 100 95.05 96.15 97.52 96.70 98.04 98.57 100 100 100 100 100
ALL1

f1 100 100 100 95.19 96.26 97.44 96.70 98.11 98.73 100 100 100 100 100

Acc 100 100 100 96.92 98.04 99.19 98.88 99.23 97.66 100 100 100 100 100

SD 0.00 0.00 0.00 4.21 1.96 1.01 1.54 1.62 2.01 0.00 0.00 0.00 0.00 0.00

precision 100 100 100 97.49 98.17 99.20 98.97 96.11 97.83 100 100 100 100 100

recall 100 100 100 96.92 98.04 99.16 98.88 95.77 97.66 100 100 100 100 100

Ova-
rian

f1 100 100 100 96.98 98.04 99.16 98.89 95.94 97.74 100 100 100 100 100
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Table 4 (continued)
Data-set Mea-sure T VF-ERT Wil-coxon VF-HHO ERT-HHO VF-GA ERT-GA VF-PSO ERT-PSO VF-CSA ERT-CSA VF-DE ERT-DE VEH

Acc 76.47 100 85.56 84.04 89.08 75.63 86.56 90.00 83.75 82.35 88.24 83.82 82.35 97.48

SD 0.00 0.00 0.00 11.62 6.29 17.79 13.46 7.91 10.29 6.47 9.31 5.63 6.71 4.62

precision 86.93 100 87.08 82.64 90.53 78.34 88.26 62.13 86.25 87.25 90.39 79.50 85.71 98.23

recall 76.47 100 86.56 84.04 89.08 75.63 86.56 66.67 85.42 82.35 88.24 83.82 88.24 97.48

SR-
BCT

f1 75.13 100 86.12 82.48 88.94 74.69 86.66 64.32 85.83 81.39 87.85 80.99 85.85 97.59

Acc 4 5 4 0 0 0 0 0 0 5 4 5 4 6

precision 3 5 3 0 0 0 0 0 0 4 4 4 3 5

recall 4 4 4 0 0 0 0 0 0 5 4 5 4 6
Win-
ner

f1 3 5 3 0 0 0 0 0 0 4 4 4 3 5

Mean Acc 89.49 92.96 86.67 82.70 85.00 83.38 86.32 89.96 90.47 90.44 91.68 90.80 90.52 95.33

Notes.
The values marked in black and bold represent the best performance values in this dataset.
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Table 5 Performance comparison of algorithms on classifier LR.

Data-set Mea-sure T VF-ERT Wil-coxon VF-HHO ERT-HHO VF-GA ERT-GA VF-PSO ERT-PSO VF-CSA ERT-CSA VF-DE ERT-DE VEH

Acc 66.67 65.48 50.00 52.38 57.14 39.29 59.52 68.33 75.00 69.45 70.83 69.44 68.06 76.67

SD 0.00 5.75 0.00 15.75 13.97 12.47 18.28 18.34 14.16 8.61 10.21 12.55 6.27 17.92

precision 85.71 65.69 58.57 60.48 72.22 55.22 71.55 80.00 83.83 69.72 76.28 73.44 71.81 75.83

recall 66.67 65.48 50.00 52.38 57.14 39.29 59.52 78.33 80.00 69.45 70.83 71.11 68.06 76.67
CNS

f1 68.57 65.44 53.13 51.80 58.72 42.65 61.91 79.16 81.87 69.43 72.29 70.66 68.49 76.25

Acc 86.67 94.29 94.29 91.43 83.81 88.57 91.43 94.46 93.21 100 100 100 100 98.09

SD 0.00 6.00 0.00 7.42 8.48 10.69 8.36 7.17 7.18 0.00 0.00 0.00 0.00 3.25

precision 90.48 95.16 94.60 92.50 86.68 89.20 92.14 95.75 94.75 100 100 100 100 98.41

recall 86.67 94.29 94.29 91.43 83.81 88.57 91.40 94.17 92.92 100 100 100 100 98.09

Leuk-

emia

f1 87.04 93.97 94.32 91.57 84.09 88.64 91.77 94.95 93.83 100 100 100 100 98.13

Acc 87.50 92.85 87.50 74.82 78.57 79.46 78.57 88.61 88.75 91.75 89.58 91.75 89.58 92.85

SD 0.00 2.36 0.00 8.70 11.33 10.65 8.73 7.43 9.08 3.21 3.23 4.31 3.23 2.36

precision 93.75 95.53 93.75 88.27 90.38 91.52 90.95 90.65 91.15 92.83 92.44 92.83 92.44 93.47

recall 87.50 92.86 87.50 74.82 78.57 79.46 78.57 88.25 88.25 91.75 89.58 91.75 89.58 91.96

DL-
BCL

f1 89.10 93.52 89.10 78.02 81.45 82.52 81.94 89.43 89.68 92.26 90.82 92.26 90.82 92.58

Acc 85.71 87.75 85.71 68.03 78.91 82.99 74.15 90.69 90.56 88.89 89.68 85.71 86.66 94.03

SD 0.00 2.55 0.00 5.97 9.06 4.65 7.70 9.31 9.35 2.46 3.59 4.26 2.13 8.64

precision 85.98 88.53 85.98 68.38 79.85 83.92 74.61 68.75 74.48 89.95 90.57 86.29 87.17 90.89

recall 85.71 87.75 85.71 68.03 78.91 82.99 74.15 66.50 71.50 88.89 89.68 85.71 86.66 89.80

Pros-
tate

f1 85.65 87.66 85.65 67.99 78.71 82.76 74.13 67.61 72.96 88.78 89.59 85.65 86.59 89.65

Acc 100 100 100 95.45 90.86 95.47 97.71 96.18 97.09 100 100 100 100 100

SD 0.00 0.00 0.00 5.86 9.44 4.24 2.14 4.94 4.69 0 0 0 0 0.00

precision 100 100 100 95.73 91.83 96.32 97.92 93.69 91.12 100 100 100 100 100

recall 100 100 100 95.45 90.86 95.47 97.71 92.50 90.33 100 100 100 100 100
Gas2

f1 100 100 100 95.49 90.92 95.47 97.73 93.09 90.72 100 100 100 100 100

Acc 100 100 100 92.86 94.50 98.90 94.51 98.67 99.33 100 100 100 100 100

SD 0.00 0.00 0.00 6.44 4.89 2.91 5.37 2.81 2.11 0 0 0 0 0.00

precision 100 100 100 95.07 95.97 99.18 95.88 98.75 99.44 100 100 100 100 100

recall 100 100 100 92.86 94.50 98.90 94.51 98.75 99.29 100 100 100 100 100
ALL1

f1 100 100 100 93.14 94.76 98.95 94.74 98.75 99.36 100 100 100 100 100

Acc 100 100 100 99.16 99.16 98.04 100 99.62 97.26 100 100 100 100 100

SD 0.00 0.00 0.00 1.05 1.54 1.96 0.00 1.22 2.62 0 0 0 0 0.00

precision 100 100 100 99.21 99.23 98.13 100 96.12 97.39 100 100 100 100 100

recall 100 100 100 99.16 99.16 98.04 100 95.77 97.28 100 100 100 100 100

Ova-
rian

f1 100 100 100 99.16 99.17 98.05 100 95.94 97.33 100 100 100 100 100
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Table 5 (continued)
Data-set Mea-sure T VF-ERT Wil-coxon VF-HHO ERT-HHO VF-GA ERT-GA VF-PSO ERT-PSO VF-CSA ERT-CSA VF-DE ERT-DE VEH

Acc 76.47 98.32 78.15 76.47 84.03 73.95 84.04 93.75 90.00 88.24 84.12 82.16 88.24 98.75

SD 0.00 2.87 0.00 11.77 15.82 10.66 12.58 8.84 11.49 7.35 8.67 3.40 5.89 3.95

precision 86.93 98.60 81.82 79.94 92.33 81.23 87.07 62.13 85.83 89.41 79.22 82.35 87.45 94.17

recall 76.47 98.32 78.15 76.47 84.03 73.95 84.04 66.67 88.75 88.24 84.12 81.18 88.24 95.42

SR-
BCT

f1 75.13 98.33 77.12 76.42 85.52 75.03 83.94 64.32 87.27 88.34 81.44 81.23 87.62 94.79

Acc 3 4 3 0 0 0 1 0 0 4 4 4 4 7

precision 4 5 3 0 0 0 1 0 0 4 4 4 4 4

recall 3 5 3 0 0 0 1 0 0 4 4 4 4 5
Win-
ner

f1 3 5 3 0 0 0 1 0 0 4 4 4 4 5

Mean Acc 87.88 92.34 86.96 81.32 83.37 82.08 84.99 91.29 91.40 92.29 91.78 91.13 91.57 95.05

Notes.
The values marked in black and bold represent the best performance values in this dataset.
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Table 6 Comparison between the VEH based on the number of selected genes and other methods.

Data -set Mea-sure T VF- ERT Wilcoxon VF- HHO ERT-HHO VF-GA ERT-GA VF- PSO ERT-PSO VF- CSA ERT- CSA VF-DE ERT-DE VEH

Mean 16 424.42 3 6.14 12.71 6.86 6.71 375.67 188.3 392.0 226.8 360.2 183.0 5.14
CNS

SD 0 100.77 0 6.09 7.20 1.57 1.25 18.39 11.60 8.67 5.27 21.58 17.1 3.85

Mean 511 335.71 402 3.71 3.71 6 5.29 324.67 104.0 1425 127.2 1272 96.6 6.29
Leuk-
emia

SD 0 6.55 0 3.15 1.89 1.63 1.25 27.52 13.43 42.38 11.97 33.54 9.02 2.63

Mean 896 221.57 889 14.43 7.14 5.57 6.71 441.17 122.2 549.8 137.8 515.6 98.86 5.14
DLBCL

SD 0 14.58 0 12.71 7.24 1.27 1.89 39.49 8.98 18.64 9.33 29.10 5.46 2.61

Mean 100 513.14 89 4.86 9.57 6.86 6.43 682.17 265.7 622.5 287.6 554.8 261.5 6.71Pros-

tate SD 0 14.11 0 2.61 8.24 1.57 1.13 18.37 16.67 22.23 10.26 21.6 14.77 2.29

Mean 8066 296.57 8058 3.71 3.29 6.29 7.57 791.00 129.3 878.7 150.2 786.3 116.1 5
Gas2

SD 0 9.46 0 3.73 1.70 2.36 2.30 44.42 15.42 10.52 10.38 7.74 10.23 2.31

Mean 1972 100 1915 1.71 2.86 4.57 5.86 244.83 118.0 350.0 135.0 295.2 90.17 2.86
ALL1

SD 0 2.65 0 0.95 3.63 2.57 2.73 22.50 11.03 24.75 8.20 7.25 8.47 1.22

Mean 5235 99.14 5169 16.86 9.29 5.29 7.29 213.67 339.3 180.7 343.5 153.0 294.3 5.57
Ova-
rian

SD 0 5.46 0 18.35 8.24 2.22 0.95 14.22 26.49 9.77 14.17 4.20 11.88 2.23

Mean 55 140.29 65 23.57 22.57 8.86 8.57 157.50 213.5 179.0 218.6 168.8 179.3 7.57
SRB-
CT

SD 0 6.40 0 11.63 9.13 1.22 1.27 13.81 24.79 10.86 9.37 8.66 8.09 2.44

Mean 2106 266.36 2074 9.38 8.89 6.29 6.80 403.84 185.1 572.2 203.3 513.2 165.0 5.54

Notes.
The values marked in black and bold represent the best performance values in this dataset.
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Table 7 Comparison between the proposed method and other methods in Acc.

Methods CNS Leukemia DLBCL Prostate Gas2 ALL1 Ovarian SRBCT

MGRFE (Peng et al., 2021) / 91.10 / 78.30 95.60 100 / /
BIRS (Wang, Wang & Chang, 2016) 64.14 / / / / / 98.50 86.66
BCROSAT (Salcedo-Sanz et al., 2014) 81.67 / / / / / / 95.76
CFS (Deng et al., 2022) 68.33 76.25 67.50 89.27 / / / /
IGA-FBFE
(Aziz, Verma & Srivastava, 2016)

/ 94.20 / 88.12 / / / /

IWSSr (Attiya, Abd Elaziz & Xiong, 2020) / 87.50 81.23 78.70 / / / /
FCSVM-RFE (Deng et al., 2022) 58.33 79.11 / 78.27 / / 95.29 /
Grasp-IWSSr (Pirgazi et al., 2019) / 91.60 85.61 77.50 / / / /
Pso-Dica (Nguyen et al., 2020) / 88.89 / / / / / 96.00
Propose 85.00 98.57 94.53 94.03 100 100 100 98.75

Notes.
The values marked in black and bold represent the best performance values in this dataset.

The results in Tables 3–8 show that VEH significantly improves performance while
reducing run time. As shown in Table 9, we also tested the performance value of the VEH
method on different datasets when α takes different values, which proved the rationality of
our α value. By combining the filter method and wrapper method, VEH selects key genes
after quickly screening redundant genes in a large range, which also shows that our method
can improve performance and run time. Simple operation and flexible combination are
also important advantages of our method.

CONCLUSION
VEH combines the advantages of the filter and wrapper methods. In a variety of tumor
gene expression datasets, the average Acc of VEH reached 95.33%. Compared with other
algorithms, this method had obvious advantages in Acc, precision, recall, f1, and run
time. In future research, we will consider the progress of the Harris Hawk algorithm,
how to improve its performance in gene selection, and increase its testing across different
datasets.

Liu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1229 18/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1229


Table 8 Comparison of the running time (100S) between the VEH and other methods.

Dataset T VF-ERT Wil-coxon VF-HHO ERT-HHO VF-GA ERT-GA VF-PSO ERT-PSO VF-CSA ERT-CSA VF-DE ERT-DE VEH

CNS 17.22 10.65 17.27 54.15 36.84 33.06 54.19 51.83 42.65 49.49 36.88 36.00 26.57 25.63

Leuk 18.72 9.86 17.71 116.12 35.19 30.91 62.31 149.61 33.66 130.2 36.53 86.65 21.38 29.17

DLBCL 21.44 11.12 19.95 60.52 8.99 34.30 60.44 73.56 48.45 39.11 21.34 44.19 22.70 27.97

Prostate 10.03 6.56 9.15 64.97 36.30 34.51 35.73 85.73 51.61 78.62 52.06 47.60 32.51 24.10

Gas2 99.10 61.22 83.55 128.22 86.72 83.35 180.14 179.30 118.86 68.42 28.77 111.2 67.48 76.31

ALL1 38.30 70.67 34.53 105.44 96.67 89.23 180.22 128.95 118.86 172.9 153.1 136.7 129.1 87.42

Ovarian 90.82 148.05 84.44 188.49 198.57 178.27 282.35 200.29 219.13 170.53 189.1 139.1 152.7 174.22

SRBCT 6.59 5.96 7.15 33.06 42.05 28.66 29.98 36.44 37.50 39.46 44.74 23.38 27.65 24.07

Mean 37.78 40.51 34.22 93.87 67.67 64.04 110.67 113.21 83.84 93.59 70.32 78.12 60.01 58.61

Notes.
The values marked in black and bold represent the best performance values in this dataset.
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Table 9 Comparison of Acc between different α values in VEH.

Dataset Measure 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

DT 64.58 52.78 64.58 54.17 55.56 66.67 70.84 72.22 77.78 83.36
SVM 64.58 66.67 58.33 56.25 63.89 63.89 63.89 66.67 79.16 85.00CNS

LR 50.00 50.00 44.44 62.50 66.67 63.89 66.66 70.84 75 76.67
DT 85.00 80.00 78.36 81.67 86.67 85.00 86.67 88.89 90.00 95.24
SVM 80.00 75.56 80.00 80.00 85.00 86.67 86.67 93.33 93.33 98.57Leuk

LR 80.00 80.00 81.67 81.67 88.89 88.89 88.89 90.00 93.33 98.09
DT 82.81 85.42 81.25 85.94 77.00 85.94 90.63 90.63 93.75 94.53
SVM 81.25 85.42 83.33 82.81 81.25 85.94 85.94 87.50 90.63 93.75DLBCL

LR 77.08 84.38 84.38 81.25 81.25 84.38 87.50 87.50 90.63 92.85
DT 74.60 69.84 69.05 66.67 73.02 76.19 77.38 77.78 80.95 81.63
SVM 73.02 77.38 77.38 74.60 77.38 80.95 79.36 82.14 85.71 87.87Prostate

LR 75.00 77.38 74.60 77.78 76.19 79.76 80.95 85.71 90.48 94.03
DT 90.00 85.00 95.00 95.00 91.00 93.00 97.00 98.00 100 100
SVM 93.00 92.00 96.00 94.00 93.00 95.00 97.00 96.00 100 100Gas2

LR 93.00 96.00 94.00 92.00 94.00 97.00 97.00 99.00 99.00 100
DT 92.31 95.19 92.31 96.15 98.08 95.19 94.23 95.19 100 100
SVM 92.31 97.12 94.23 96.15 92.31 96.15 94.23 98.08 100 100ALL1

LR 91.35 94.23 95.19 93.27 93.27 93.27 98.08 98.08 100 100
DT 94.12 96.08 95.10 94.12 94.12 94.12 94.12 97.55 97.00 98.04
SVM 96.57 97.06 96.08 95.10 100 96.08 99.02 100 100 100Ovarian

LR 96.08 94.12 99.02 99.51 93.63 99.51 99.51 98.04 100 100
DT 64.71 64.71 76.48 70.59 70.59 76.47 82.35 76.47 82.35 86.56
SVM 70.59 76.47 88.24 82.35 86.27 94.12 88.24 88.24 94.12 97.48SRBCT

LR 70.59 76.47 82.35 84.31 82.35 76.47 94.12 88.24 94.12 98.75
DT 0 0 0 0 0 0 0 0 2 8
SVM 0 0 0 0 1 0 0 1 3 8Winner

LR 0 0 0 0 0 0 0 0 2 8

Notes.
The values marked in black and bold represent the best performance values in this dataset.
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Table 10 Optimal subset of genes selected by the proposed method.

Dataset Number Probe/uniprot ID DT SVM LR

CNS 4 M22092_at,M33521_at,U28687_at U95740_rna1_at 91.67 83.33 66.67
Leukemia 4 J05243_at,M23197_at, U79296_at

U05259_rna1_at
93.33 100 100

DLBCL 8 AFFX-HUMGAPDH/M33197_5_st
L42324_at,L49209_s_at,U00957_at
X60955_s_at,X67951_at
U19495_s_at,U89922_s_at

93.75 100 93.75

Prostate 7 1060_g_at,1315_at,198_g_at,
31509_at,32210_at,32242_at, 33102_at

85.71 90.48 100

Gastric2 5 396_f_at,202726_at,207392_x_at
212353_at,212462_at

100 100 100

ALL1 2 33039_at,41609_at 100 100 100
Ovarian 8 MZ0.008796743,MZ28.202695

MZ244.95245,MZ290.41236
MZ554.4233,MZ674.57738
MZ4101.0731,MZ8607.049

100 100 100

SRBCT 10 gene3,gene74,gene246 ,gene749
gene836 ,gene1084,gene1093
gene1210,gene1389,gene2186

88.24 100 100

Table 11 Description of CNS genes selected by the proposed method.

Probe/uniprot ID Gene Description

M22092_at NCAM1 neural cell adhesion molecule 1
M33521_at BAG6 BAG6 cochaperone 6
U28687_at ZNF157 zinc finger protein 157
U95740_rna1_at MARF1 meiosis regulator and mRNA stability factor 1

Table 12 Description of leukemia genes selected by the proposed method.

Probe/uniprot ID Gene Description

J05243_at SPTAN1 spectrin alpha, non-erythrocytic 1
M23197_at CD33 CD33 molecule
U79296_at PDHX pyruvate dehydrogenase complex component X
U05259_rna1_at CD79A CD79a molecule
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Table 13 Description of DLBCL genes selected by the proposed method.

Probe/uniprot ID Gene Description

M33197_5_st GAPDH glyceraldehyde-3-phosphate dehydrogenase
L42324_at GPR18 Gprotein-coupled receptor 18
L49209_s_at pRb RB transcriptional corepressor 1
U00957_at PRKA10 A-kinase anchoring protein 10
X60955_s_at TYRP1 tyrosinase related protein 1
X67951_at PRDX1 peroxiredoxin 1
U19495_s_at CXCL12 C−X−C motif chemokine ligand 12
U89922_s_at LTB lymphotoxin beta

Table 14 Description of prostate genes selected by the proposed method.

Probe/uniprot ID Gene Description

1060_g_at CENPC centromere protein C
1315_at COPB COPI coat complex subunit beta 1
198_g_at RUNX2 RUNX family transcription factor 2
31509_at CG12239 Is expressed in embryonic brain
32210_at COX1 cytochrome c oxidase subunit I
32242_at mRpL49 mitochondrial ribosomal protein L49
33102_at CG1494 Predicted to be involved in lipid transport

Table 15 Description of Gastric2 genes selected by the proposed method.

Probe/uniprot ID Gene Description

396_f_at EPOR erythropoietin receptor
202726_at LIG1 DNA ligase 1
207392_x_at UGT2B15 UDP glucuronosyltransferase family 2 member B15
212353_at SULF1 sulfatase 1
212462_at KAT6B lysine acetyltransferase 6B

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This project was supported by the National Natural Science Foundation of China
(grant number 81472860), the Key R & D Project of Hunan Province (grant number
2020DK2002), the Key Project of Developmental Biology and Breeding from Hunan
Province (2022XKQ0205) and the research start-up fund for Prof. Peng Xiaoning from
Jishou University (grant number 91602-111900). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 81472860.

Liu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1229 22/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1229


Key R & D Project of Hunan Province: 2020DK2002.
Key Project of Developmental Biology and Breeding fromHunan Province: 2022XKQ0205.
Jishou University: 91602-111900.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Junjian Liu conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Huicong Feng conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.
• Yifan Tang conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, and approved the final draft.
• Lupeng Zhang performed the experiments, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.
• Chiwen Qu analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.
• Xiaomin Zeng performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.
• Xiaoning Peng analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The data and code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1229#supplemental-information.

REFERENCES
An S,Wang J, Wei J. 2018. Local-nearest-neighbors-based feature weighting for gene

selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics
15:1538–1548 DOI 10.1109/TCBB.2017.2712775.

Attiya I, Abd Elaziz M, Xiong S. 2020. Job scheduling in cloud computing using a mod-
ified Harris Hawks optimization and simulated annealing algorithm. Computational
Intelligence and Neuroscience 2020:3504642 DOI 10.1155/2020/3504642.

Aziz R, Verma CK, Srivastava N. 2016. A fuzzy based feature selection from independent
component subspace for machine learning classification of microarray data. Genom
Data 8:4–15.

Liu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1229 23/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1229#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1229#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1229#supplemental-information
http://dx.doi.org/10.1109/TCBB.2017.2712775
http://dx.doi.org/10.1155/2020/3504642
http://dx.doi.org/10.7717/peerj-cs.1229


Bir-Jmel A, Douiri SM, Elbernoussi S. 2019. Gene selection via a new hybrid ant colony
optimization algorithm for cancer classification in high-dimensional data. Computa-
tional and Mathematical Methods 2019:7828590 DOI 10.1155/2019/7828590.

Castellanos-Garzón JA, Ramos J, López-Sánchez D, de Paz JF, Corchado JM. 2018.
An ensemble framework coping with instability in the gene selection process.
Interdisciplinary Sciences 10:12–23 DOI 10.1007/s12539-017-0274-z.

Chuang LY, Ke CH, Chang HW, Yang CH. 2009. A two-stage feature selection method
for gene expression data. OMICS 13:127–137 DOI 10.1089/omi.2008.0083.

ClarkMC, Stein A. 2020. CD33 directed bispecific antibodies in acute myeloid leukemia.
Best Practice & Research Clinical Haematology 33:101224
DOI 10.1016/j.beha.2020.101224.

DashtbanM, Balafar M. 2017. Gene selection for microarray cancer classification using
a new evolutionary method employing artificial intelligence concepts. Genomics
109:91–107 DOI 10.1016/j.ygeno.2017.01.004.

Deng X, Li M, Deng S,Wang L. 2022.Hybrid gene selection approach using XGBoost
and multi-objective genetic algorithm for cancer classification.Medical & Biological
Engineering & Computing 60:663–681 DOI 10.1007/s11517-021-02476-x.

Diao G, Vidyashankar AN. 2013. Assessing genome-wide statistical significance for large
p small n problems. Genetics 194:781–783 DOI 10.1534/genetics.113.150896.

Douglas GM, Shapiro BJ. 2021. Genic selection within prokaryotic pangenomes. Genome
Biology and Evolution 13:evab234 DOI 10.1093/gbe/evab234.

Endo S, Nishimura N, Kawano Y, Ueno N, Ueno S, Tatetsu H, Komohara Y, Takeya
M, Hata H, Mitsuya H, MasaoM, Okuno Y. 2018.MUC1/KL-6 expression confers
an aggressive phenotype upon myeloma cells. Biochemical and Biophysical Research
Communications 507:246–252 DOI 10.1016/j.bbrc.2018.11.016.

ForgioneMO,McClure BJ, Eadie LN, Yeung DT,White DL. 2020. KMT2A re-
arranged acute lymphoblastic leukaemia: unravelling the genomic complex-
ity and heterogeneity of this high-risk disease. Cancer Letters 469:410–418
DOI 10.1016/j.canlet.2019.11.005.

Fu GH,Wu YJ, ZongMJ, Pan J. 2020.Hellinger distance-based stable sparse feature
selection for high-dimensional class-imbalanced data. BMC Bioinformatics 21:121
DOI 10.1186/s12859-020-3411-3.

Ge R, ZhouM, Luo Y, Meng Q, Mai G, Ma D,Wang G, Zhou F. 2016.McTwo: a two-
step feature selection algorithm based on maximal information coefficient. BMC
Bioinformatics 17:142 DOI 10.1186/s12859-016-0990-0.

Hackstadt AJ, Hess AM. 2009. Filtering for increased power for microarray data analysis.
BMC Bioinformatics 10:11 DOI 10.1186/1471-2105-10-11.

Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. 2019.Harris hawks
optimization: Algorithm and applications. Future Generation Computer Systems
97:849–872.

Liu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1229 24/26

https://peerj.com
http://dx.doi.org/10.1155/2019/7828590
http://dx.doi.org/10.1007/s12539-017-0274-z
http://dx.doi.org/10.1089/omi.2008.0083
http://dx.doi.org/10.1016/j.beha.2020.101224
http://dx.doi.org/10.1016/j.ygeno.2017.01.004
http://dx.doi.org/10.1007/s11517-021-02476-x
http://dx.doi.org/10.1534/genetics.113.150896
http://dx.doi.org/10.1093/gbe/evab234
http://dx.doi.org/10.1016/j.bbrc.2018.11.016
http://dx.doi.org/10.1016/j.canlet.2019.11.005
http://dx.doi.org/10.1186/s12859-020-3411-3
http://dx.doi.org/10.1186/s12859-016-0990-0
http://dx.doi.org/10.1186/1471-2105-10-11
http://dx.doi.org/10.7717/peerj-cs.1229


HuW, Zhang Y, Jiang Z,Wang L, Li J, Chen S, Dai N, Si J. 2016. The tumor promoting
roles of erythropoietin/erythropoietin receptor signaling pathway in gastric cancer.
Tumour Biology 37:11523–11533 DOI 10.1007/s13277-016-5053-7.

KumarMyakalwar A, Spegazzini N, Zhang C, Kumar Anubham S, Dasari RR, Barman
I, Kumar GundawarM. 2015. Less is more: avoiding the LIBS dimensionality curse
through judicious feature selection for explosive detection. Scientific Reports 5:13169
DOI 10.1038/srep13169.

Li Y, Ge C, Franceschi RT. 2021. Role of Runx2 in prostate development and stem cell
function. Prostate 81:231–241 DOI 10.1002/pros.24099.

Liang Y, Zhang S, Qiao H, Yao Y. 2021. iPromoter-ET: Identifying promoters and
their strength by extremely randomized trees-based feature selection. Analytical
Biochemistry 630:114335 DOI 10.1016/j.ab.2021.114335.

Liddelow S, Hoyer D. 2016. Astrocytes: adhesion molecules and immunomodulation.
Current Drug Targets 17:1871–1881 DOI 10.2174/1389450117666160101120703.

Mandal M, Singh PK, Ijaz MF, Shafi J, Sarkar R. 2021. A tri-stage wrapper-filter feature
selection framework for disease classification. Sensors 21:5571 DOI 10.3390/s21165571.

Nguyen TTH, Nguyen PV, Tran QV, Vo NX, Vo TQ. 2020. Cancer classification
from microarray data for genomic disorder research using optimal discriminant
independent component analysis and kernel extreme learning machine. International
Journal for Numerical Methods in Biomedical Engineering 36(9):e3372.

Pashaei E, Pashaei E. 2021. Gene selection using hybrid dragonfly black hole algorithm:
a case study on RNA-seq COVID-19 data. Analytical Biochemistry 627:114242
DOI 10.1016/j.ab.2021.114242.

Peng C,Wu X, YuanW, Zhang X, Zhang Y, Li Y. 2021.MGRFE: multilayer recursive
feature elimination based on an embedded genetic algorithm for cancer classi-
fication. IEEE/ACM Transactions on Computational Biology and Bioinformatics
18:621–632 DOI 10.1109/tcbb.2019.2921961.

Pfeifer B, Alachiotis N, Pavlidis P, SchimekMG. 2020. Genome scans for selection and
introgression based on k-nearest neighbour techniques.Molecular Ecology Resources
20:1597–1609 DOI 10.1111/1755-0998.13221.

Pirgazi J, Alimoradi M, Esmaeili AT, Olyaee MH. 2019. An Efficient hybrid filter-
wrapper metaheuristic-based gene selection method for high dimensional datasets.
Scientific Reports 9(1):18580.

Qu C, Zhang L, Li J, Deng F, Tang Y, Zeng X, Peng X. 2021. Improving feature selection
performance for classification of gene expression data using Harris Hawks optimizer
with variable neighborhood learning. Briefings in Bioinformatics 22:bbab097
DOI 10.1093/bib/bbab097.

Sahebi G, Movahedi P, Ebrahimi M, Pahikkala T, Plosila J, Tenhunen H. 2020. GeFeS:
a generalized wrapper feature selection approach for optimizing classification
performance. Computers in Biology and Medicine 125:103974
DOI 10.1016/j.compbiomed.2020.103974.

Liu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1229 25/26

https://peerj.com
http://dx.doi.org/10.1007/s13277-016-5053-7
http://dx.doi.org/10.1038/srep13169
http://dx.doi.org/10.1002/pros.24099
http://dx.doi.org/10.1016/j.ab.2021.114335
http://dx.doi.org/10.2174/1389450117666160101120703
http://dx.doi.org/10.3390/s21165571
http://dx.doi.org/10.1016/j.ab.2021.114242
http://dx.doi.org/10.1109/tcbb.2019.2921961
http://dx.doi.org/10.1111/1755-0998.13221
http://dx.doi.org/10.1093/bib/bbab097
http://dx.doi.org/10.1016/j.compbiomed.2020.103974
http://dx.doi.org/10.7717/peerj-cs.1229


Salcedo-Sanz S, Del Ser J, Landa-Torres I, Gil-López S, Portilla-Figueras JA. 2014.
The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving
optimization problems. Scientific World Journal 2014:739768.

Sandra US, Shukla A, Kolthur-SeetharamU. 2020. Search and capture: disorder rules
gene promoter selection. Trends in Genetics 36:721–722 DOI 10.1016/j.tig.2020.07.005.

Su Q,Wang Y, Jiang X, Chen F, LuWC. 2017. A cancer gene selection algorithm
based on the K-S test and CFS. BioMed Research International 2017:1645619
DOI 10.1155/2017/1645619.

Tang F, Zhang L, Xu L, Zou Q, Feng H. 2021. The accurate prediction and characteriza-
tion of cancerlectin by a combined machine learning and GO analysis. Briefings in
Bioinformatics 22:bbab227 DOI 10.1093/bib/bbab227.

Tanhaei AP, Ziaei A, Mazrouei S, Keyhanian K, Salehi M. 2014. Livin, a novel
marker in lymphoma type distinction. Annals of Diagnostic Pathology 18:157–162
DOI 10.1016/j.anndiagpath.2014.02.008.

Wang L,Wang Y, Chang Q. 2016. Feature selection methods for big data bioinformatics:
a survey from the search perspective.Methods 111:21–31
DOI 10.1016/j.ymeth.2016.08.014.

YuH, Ni J. 2014. An improved ensemble learning method for classifying high-
dimensional and imbalanced biomedicine data. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 11:657–666 DOI 10.1109/tcbb.2014.2306838.

Zhang J, Xu D, Hao K, Zhang Y, ChenW, Liu J, Gao R,Wu C, DeMarinis Y. 2021.
FS-GBDT: identification multicancer-risk module via a feature selection algorithm
by integrating Fisher score and GBDT. Briefings in Bioinformatics 22:bbaa189
DOI 10.1093/bib/bbaa189.

Liu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1229 26/26

https://peerj.com
http://dx.doi.org/10.1016/j.tig.2020.07.005
http://dx.doi.org/10.1155/2017/1645619
http://dx.doi.org/10.1093/bib/bbab227
http://dx.doi.org/10.1016/j.anndiagpath.2014.02.008
http://dx.doi.org/10.1016/j.ymeth.2016.08.014
http://dx.doi.org/10.1109/tcbb.2014.2306838
http://dx.doi.org/10.1093/bib/bbaa189
http://dx.doi.org/10.7717/peerj-cs.1229

