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ABSTRACT
The walking speed of pedestrians is not only a reflection of one’s physiological
condition and health status but also a key parameter in the evaluation of the service
level of urban facilities and traffic engineering applications, which is important for
urban design and planning. Currently, the three main ways to obtain walking speed
are based on trails, wearable devices, and images. The first two cannot be popularized
in larger open areas, while the image-based approach requires multiple cameras to
cooperate in order to extract the walking speed of an entire street, which is costly. In
this study, a method for extracting the pedestrian walking speed at a street scale from
in-flight drone video is proposed. Pedestrians are detected and tracked by You Only
Look Once version 5 (YOLOv5) and Simple Online and Realtime Tracking with a
Deep Association Metric (DeepSORT) algorithms in the video taken from a flying
unmanned aerial vehicle (UAV). The distance that pedestrians traveled related to the
ground per fixed time interval is calculated using a combined algorithm of Scale-
Invariant Feature Transform (SIFT) and random sample consensus (RANSAC)
followed by a geometric correction algorithm. Compared to ground truth values, it
shows that 90.5% of the corrected walking speed predictions have an absolute error of
less than 0.1 m/s. Overall, the method we have proposed is accurate and feasible. A
particular advantage of this method is the ability to accurately predict the walking
speed of pedestrians without keeping the flight speed of the UAV constant,
facilitating accurate measurements by non-specialist technicians. In addition,
because of the unrestricted flight range of the UAV, the method can be applied to the
entire scale of the street, which assists in a better understanding of how the settings
and layouts of urban affect people’s behavior.

Subjects Algorithms and Analysis of Algorithms, Autonomous Systems, Emerging Technologies,
Spatial and Geographic Information Systems
Keywords Walking speed, UAV, Pedestrian identification, Pedestrian tracking

INTRODUCTION
Walking speed is known as the sixth vital sign (Fritz & Lusardi, 2009), besides heart rate,
respiratory rate, blood pressure, body temperature and pain. It is the core parameter of the
urban pedestrian micro-model (Willis et al., 2004), which has important research
significance for urban planning, pedestrian traffic safety and public health, etc. In the field
of public health, researchers have studied the correlations between walking speed and
other factors such as a pedestrian’s gender, age (real age and subjective age) and health
status (Tolea et al., 2010; Nolan et al., 2018; Stephan, Sutin & Terracciano, 2015) using a
controlled variable method. Using this approach, authors have used walking speeds to
assess the general health of a population (Middleton, Fritz & Lusardi, 2015) and to predict
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the risk of mortality (Lusardi, 2012). In the area of urban planning, good pedestrian
facilities can encourage residents to maintain environmentally friendly travel patterns, and
can enhance street vibrancy. A large body of literature has used walking speed as an
important indicator (Rastogi, Thaniarasu & Chandra, 2011; Silva, da Cunha & da Silva,
2014; Al-Azzawi & Raeside, 2007; Chen, Zhao & Shi, 2016) to reflect the level of service of
facilities. On the other hand, unlike previous ways of assessing street walkability based on
objective indicators, walking speed can be used to reflect pedestrians’ willingness to stay
and move around on the street. It provides feedback on the pedestrian’s experience of the
environment from the perspective of the street user, which helps urban planners to make a
more comprehensive walkability assessment. In addition, pedestrian speed, as a key input
for various traffic engineering applications (Montufar et al., 2007), can assist in the design
of carriageways (Gore et al., 2020) and street crossings (Chandra & Bharti, 2013).
Measuring the walking speeds of special groups such as elderly people can also have
benefits in terms of adjusting the timing of traffic signals and reducing traffic fatalities
(Duim, Lebrão & Antunes, 2017).

Following recent developments in science and technology, methods of acquiring
walking speeds have changed. Initially, a stopwatch was used to calculate walking speed
by recording the time it took for a walker to pass a marker (Finnis & Walton, 2008;
Montero-Odasso et al., 2020; Youdas et al., 2006; Oh et al., 2019), but this method requires
large number of measurers, and is inefficient. To overcome the disadvantages of the field
observation method, new acquisition methods based on images, trails, and wearable
devices have been developed (MejiaCruz et al., 2021). However, these methods also have
their own drawbacks. The most common technique for trail-based methods is the timing
gate (van Loo et al., 2003; Martin et al., 2019; Kong & Chua, 2014; Warden et al., 2019),
which requires the walker to wear a sensor chip, but walking speed is significantly affected
when experimental participants are aware that they are being observed (Obuchi, Kawai &
Murakawa, 2020), and the installation of the timing gate also requires extensive hardware
investment. Image-based acquisition is a more efficient and practical data acquisition
method (Hussein et al., 2015; Liang et al., 2020; Sikandar et al., 2021; Franěk & Režnỳ, 2021;
Hediyeh et al., 2014), but requires multiple cameras in different locations for image
acquisition over a large geographical area, and the cost and technical requirements are high
due to the collaboration and placement of multiple cameras. If only a single camera is used
to collect data, the image-based acquisition method, like the previous two methods, can
only extract walking speeds over a very small area. Although wearable devices do not need
to be limited to fixed road sections (Cha et al., 2017; Morey et al., 2017; Silsupadol, Teja &
Lugade, 2017), the measurement of walking speeds through cell phone location data
compromises the user’s personal privacy, and it is difficult for experimental participants to
cooperate with the experiment over a long period, resulting in a low return rate of data and
a high overall cost.

Unmanned aerial vehicles (UAVs) have efficient scene capture capabilities, and have
gained popularity in fields such as digital forensics (Bouafif et al., 2018), potentially
dangerous event analysis (Rădescu & Dragu, 2019), and parcel delivery (Mekala & Baig,
2019). The camera is easy to place and operate, and the device can easily be moved to hover
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in locations where video surveillance cannot be installed (Yeom & Cho, 2019).
Furthermore, a UAV acquires data without interfering with pedestrians, and the cost and
technical requirements are not high. Hence, it is widely used for the acquisition of mobile
pedestrian video sequence data (Fang & Kim, 2020; Bian et al., 2016; Chang et al., 2018;
Kim, 2020;Miyazato, Uehara & Nagayama, 2019), as it is not subject to the shortcomings
of the above methods. After acquiring video data, the key step in extracting walking speed
is to perform pedestrian detection and tracking. This is an intensely researched problem in
computer vision: detection involves determining whether a pedestrian is present in an
image or video, while the main task of tracking is to associate the most similar pedestrians
in the previous and subsequent frames (Wang, Sun & Li, 2019). Deep learning has now
become mainstream, due to its good feature extraction ability (Xiao et al., 2021; Li, Wu &
Zhang, 2016; Saeidi & Ahmadi, 2018). This method allows for continuous tracking of a
large number of pedestrians using a multi-objective tracker, which facilitates the analysis of
individual or group behaviour patterns (Cao, Sai & Lu, 2020). It has been experimentally
demonstrated that nearly 1,000 people can be continuously and dynamically identified
using deep learning (Xue & Ju, 2021), and the accuracy may be greater than 0.95, even for a
pedestrian density of 9.0 per m2 (Jin et al., 2021).

In view of the advantages of UAVs and deep learning, we used a UAV to obtain videos
of pedestrians on city streets, and detected and tracked each pedestrian using You Only
Look Once (YOLO), a representative model of convolutional neural networks, detected
ground movement due to drone flight using the Scale-Invariant Feature Transform (SIFT)
and random sample consensus (RANSAC) algorithms, and finally extracted the walking
speeds of the pedestrians on the streets.

STUDY AREA
The commercial pedestrian street of Chuhe Hanjie, located in Wuhan, China, forms part
of Wuhan’s central cultural district. With a total length of 1.5 km, it is currently the longest
urban commercial pedestrian street in China. According to data provided by the Wuhan
Anti-epidemic applet, the average cumulative pedestrian traffic on Hanjie Street can reach
0.1 million in a single day. As shown in Fig. 1, Hanjie Street has three districts with more
than 200 domestic and foreign merchants, including shopping, food, culture, leisure,
entertainment and other types, and clear planning based on functional zoning. In addition
to commercial stores, Hanjie Street also hosts a popular theatre and several small squares.
There are no trees along the entire length of the street on both sides, which not only
provides good views for window shopping by pedestrians, but also allows us to extract
pedestrian walking speeds from videos captured by a UAV.

METHOD
Experimental design
As shown in Fig. 2, our experiment involved three steps: experimental design, pedestrian
identification, and extraction of relative pedestrian walking speeds. At the experimental
design stage, two pilot tests were carried out to obtain the optimal flight height and speed.
The environmental conditions and sensor parameters used for data collection are also
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explained in this section. Pedestrian detection was performed using You Only Look Once
Version 5 (YOLOv5). In the step involving the extraction of relative walking speeds,
pedestrian tracking was performed using an algorithm called Simple Online and Realtime
Tracking with a Deep Association Metric (DeepSORT). The SIFT and RANSAC
algorithms were employed to achieve ground tracking. The pedestrian speeds were then
calculated and the error in the speeds caused by image point displacement were corrected.

Pilot tests

The image resolution of videos acquired by a UAV varies at different flight altitudes, and
the accuracy of pedestrian recognition and walking speed extraction will be affected as a

Figure 1 The study area Hanjie Street. Full-size DOI: 10.7717/peerj-cs.1226/fig-1

Figure 2 Flowchart for our study. Full-size DOI: 10.7717/peerj-cs.1226/fig-2
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result. It is therefore necessary to find the optimal altitude at which both a high pedestrian
recognition rate and a large field of view can be obtained. The flight speed of the drone is
also a key factor affecting the accuracy of the walking speed calculations. Too low a speed
may result in a limited efficiency, while too high a speed may result in insufficient clarity of
the frames of the video recording. Pilot tests are therefore needed to determine the optimal
height and speed of the UAV before extracting street-scale pedestrian walking speeds.

The site used for the pilot tests met the following requirements: (i) it was a relatively
open area, without coverings such as trees; (ii) there were enough pedestrians passing by to
give a suitable sample size; (iii) it was paved with tiles of the same size, which enabled the
true values of the walking speeds of volunteers to be calculated based on the number of tiles
crossed per second.

After finding a suitable experimental site, the pilot tests were carried out in two parts.
Firstly, to explore the optimal flight height for the UAV, videos of pedestrians walking
were collected from an overhead view at different heights while the UAV was hovering.
Since the heights of most buildings were lower than 40 m, three heights of 40, 60 and 80 m
were chosen as experimental heights. In the second part, to determine an appropriate
horizontal flight speed for the UAV, videos of pedestrians walking were collected at
different UAV speeds and for three different pedestrian walking states (standing still, slow
walking, and fast walking) at the optimal height. Seven different flight speeds (0, 1, 2, 3, 4,
5, and 6 m/s) were used to find the optimal flight speed of the UAV for each walking state.

Collecting pedestrian data
A sunny weekday afternoon (from 3–5 pm) was chosen for the collection of pedestrian
data, and an open location at the end of the street was selected for take-off. When the
drone had reached the optimal flight altitude, we rotated the drone lens through 90° and
adjusted it to an overhead view angle, always flying forward along the direction of the
street, as shown in Fig. 3. During the flight, the drone maintained a selected constant speed,
and the white balance and ISO were kept automatic. In addition, considering that the UAV
needs to change batteries midway to maintain flight, the data are collected in segments
according to the functional partition of the study area and stored in MP4 mode with the
resolution set to 1,920 × 1,080 p.

Sensor parameters
In this experiment, we used a Mavic Air 2 to acquire the pedestrian walking videos. This is
a small, consumer-grade, rotary-wing UAV with a Sony IMX586 camera, 48 million
effective pixels, a maximum flight take-off height of 5,000 m, and a maximum horizontal
flight speed of 19 m/s. It is lightweight and flexible, weighs only 570 g, and the wings are
foldable. It also has low site requirements, and can hover at a fixed point for up to 33 min
(in an environment without wind). The key parameters of the drone are shown in Table 1.

Pedestrian identification
In order to perform pedestrian tracking from videos, pedestrians must first be detected in
single images. YOLO is a state-of-the-art, real-time object detection algorithm that allows
the user to manually find a trade-off between speed and accuracy (Redmon et al., 2016; Lan
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et al., 2018). The new YOLOv5 (Jocher, 2020) algorithm, proposed in 2020, provides data
enhancement through the use of data loaders for scaling, colour space adjustment and
mosaic enhancement, and is able to automatically learn the size of the anchor frame, which
makes it suitable for the detection of small targets. It also runs relatively fast and flexibly,
while maintaining accuracy. This algorithm was therefore selected to achieve pedestrian
detection.

Since the image dataset obtained in this experiment was small, the training, test and
validation sets were defined based on a ratio of 6:2:2.

Video data pre-processing
Before performing pedestrian detection, we removed footage containing few pedestrians
and serious tilting or swinging of the UAV, and then converted the remaining video to
images at a frame rate of 30 fps.

Due to the images are all from a high transmission frame rate conversion of the video,
resulting in hundreds of images that are similar and also increasing the likelihood of
overfitting the training model. Therefore, we randomly selected some converted images to
form the training dataset to avoid unnecessary duplication. There are three parts of

Figure 3 Flight heading along the direction of the street.
Full-size DOI: 10.7717/peerj-cs.1226/fig-3

Table 1 Basic parameters of the Mavic Air 2.

Image sensor 1/2 CMOS

Field of view 84°

Focal length 24 mm (35 mm isometric)

Photo resolution 8,000 × 6,000

Video resolution FHD: 1,920 × 1,080 p
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experiment: two pilots and walking speed extraction in the study area. Accordingly, we
obtained three images datasets called “altitude” (720 images), “flight speed” (1,890 images),
and “street” (1,300 images), all of which were captured on a weekday afternoon in
December and were stored in PNG format.

The “altitude” dataset contained 240 images at each of three altitudes (40, 60 and 80 m).
The “flight speed” dataset contained 90 images for each of the seven flight speeds for each
of the three pedestrian states. The “street” dataset consisted of images of pedestrians drawn
from nine video clips, including two clips captured from the first district (with a total of
389 images), three clips from the second district (611 images), and four clips from the third
district (300 images).

Image labelling
Since the acquired dataset was captured directly, annotation of the data was required
before training the images. The process of data annotation is a manual labelling process
that provides machine systems with samples used for learning. By manually selecting the
targets and marking the categories, allowing the computer to continuously learn the
features of this data, ultimately enabling the computer to recognize it autonomously. An
annotation tool called LabelImg was adopted to label the images of pedestrians. The final
YOLOv5 label file contained five parameters per line: the object class, the centre
coordinates of the detection object, and the width and height of the detection object.

The “altitude” dataset contained a total of 20,758 pedestrian labels, whereas the “flight
speed” dataset had a total of 10,368. The “street” dataset had a total of 19,443 pedestrian
labels, of which the training set had 780 images with 11,506 labels, the test set had 260
images with 3,970 labels, and the validation set had 260 images with 3,967 labels.

Model training and verification
The deep learning framework used in this experiment was PyTorch (GPU version 1.70),
and the Jupyter notebook tool Colab (GPU parameters: Tesla P100, CUDA 11.2, RAM
25GB), provided by Google, was used to train the model. The weights file used for training
in this experiment was YOLOv5x, which saves the weights of each layer of the network
trained by the pre-trained set. YOLOv5x is pre-trained based on COCO dataset (a large,
rich object detection dataset provided by the Microsoft team) and has the highest detection
accuracy of the YOLOv5 models. The iteration batch size was set to 16, the initial learning
rate was 0.01, and the momentum was set to 0.937. A total of 50 training rounds were
completed, at which the loss tends to be stable and the model begins to converge, and the
best training model was chosen for pedestrian detection.

As for verification, sufficient numbers of pedestrians (N > 100) for each of the three
UAV altitudes (40, 60, and 80 m), and each of the seven flight speeds (0, 1, 2, 3, 4, 5, and
6 m/s) were randomly selected to test the pedestrian recognition rate. When the pedestrian
recognition rate was 80% or more, the flight parameters were considered to satisfy the
experimental requirements for extracting pedestrian walking speeds. The confidence
threshold for detection was set to 0.15 (confidence levels below this value were not shown
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in the images), and the final detected image was marked with a rectangular box to indicate
the recognized object class and confidence level.

Relative walking speed of pedestrians
Pedestrian tracking
DeepSORT is a commonly used algorithm in multi-target tracking (Ciaparrone et al.,
2020) that offers cascade matching and trajectory confirmation (unlike its predecessor
algorithm SORT), which is beneficial for the short-term prediction of targets (Wojke,
Bewley & Paulus, 2017). In addition, the most important feature of DeepSORT is the
addition of an appearance feature description value, which can greatly improve the target
ID transformation after a long period of occlusion. Thus, the DeepSORT algorithm is
ideally suited for tracking moving targets in potentially obscured areas.

In this experiment, we used the best performing model from the previous model
training as the weight file for YOLOv5, while the DeepSORT weight file used the default
file obtained from pre-training based on the Market1501 dataset. The Market1501 dataset
is collected from six cameras on the Tsinghua University campus, with a total of 1,501
pedestrians labelled, making it one of the most commonly used datasets in the field of
pedestrian recognition. After inputting the original video, the DeepSORT algorithm first
obtains the target detection frame by the target detector YOLOv5, and then predicts the
trajectory of the pedestrian using Kalman filtering. Then features are extracted for the
corresponding pedestrians in the target frames, and the match between the pedestrians in
the before and later frames is calculated according to the Hungarian algorithm. Finally,
each pedestrian in the image is assigned a different ID. In the pedestrian track file, each line
contains six values, the first value indicates the frame in which the target appears, the
second value indicates the ID number of the target and the third to sixth values are the
coordinates and size of the bounding box. With the saved pedestrian track file, we can get
the position of each pedestrian in each frame of the video.

Ground tracking
To calculate the relative walking speed of the pedestrians, two distances needed to be
obtained: the distance of pedestrian movement in the image per fixed time interval, and the
“ground movement” relative to the image coordinate in that period of time. As the
movement of the UAV is affected by wind, an absolutely uniform speed without lateral
movement could not be guaranteed. A method was therefore needed to obtain the “ground
movement” in the non-hovering state. We first needed to obtain corresponding points
in the previous and subsequent frames by feature matching, and then to calculate the
single-response matrix based on these corresponding points.

In this experiment, we used a combination of the SIFT and RANSAC algorithms to
extract the distance moved by the ground in the image. The SIFT algorithm is a region
detection algorithm that was proposed by Lowe (1999) and further refined in 2004 (Lowe,
2004), which has high speed and local feature invariance. The opensource toolkit VLFeat
was utilised to compute the SIFT features of the images. The angle between the vectors was
used as the distance metric descriptor, and to enhance the robustness of matching, we
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performed bidirectional matching (in which we first computed the feature matching values
from the latter image to the former image, and then the feature matching values from the
former to the latter).

The corresponding image points in the previous and subsequent frames obtained by
matching with the SIFT algorithm may contain both correct and false matches. However,
the RANSAC algorithm can correctly estimate the parameters of a mathematical model by
iteration from a set of data containing a large amount of noise (Fischler & Bolles, 1981;
Derpanis, 2010), and was therefore applied to eliminate false matches, which improved the
accuracy of the subsequent single-response matrix calculation. The parameters of the
algorithm in the experiment were set as follows. The minimum number of data values
required to fit the model was 50; the maximum number of iterations allowed in the
algorithm was 5,000; the threshold value for determining when a data point fitted a model
was 7e3 as the default; and the number of close data values required to assert that a model
fitted the data well was 300.

Calculation of walking speeds

After using the DeepSORT algorithm to achieve pedestrian tracking, position information
was acquired on the pedestrians in each frame. The single-response matrix obtained using
the RANSAC algorithm after eliminating mismatched points was used to calculate the
distance moved by the ground in the image. The real walking distance of the pedestrian
could then be acquired, as shown in Eq. (1):

S2 ¼ S1 � dis X1;X2f g (1)

where S2 is the real walking distance of the pedestrian, S1 is panning distance of the ground
in the image, X1 is the position of the pedestrian in the previous frame, X2 is the position of
the pedestrian in the subsequent frame, and dis{X1, X2} is the distance moved by the
pedestrian in the image.

After determining the real distance moved by the pedestrian, the walking speed can be
obtained as shown in Eq. (2):

vm
0 ¼ S2=n � fps (2)

where vm′ is the pedestrian speed (in units of pixels/s at this point), S2 is the real walking
distance of the pedestrian, fps is the frame rate, and n is the interval between the two
selected frames.

The field-of-view diameter can be calculated as shown in Eq. (3):

d ¼ 2 �H � tanðFOV=2Þ (3)

where d is the field-of-view diameter, FOV is the field-of-view angle, and H is the height of
the UAV.

The size of the field of view can be calculated using Eq. (4):
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L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=ðl2 þ w2Þ

p
� l

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=ðl2 þ w2Þ

p
� w

(4)

where L andW are the length and width of the field of view, d is the field-of-view diameter,
and l: w is the aspect ratio of the image.

The speed can then be calculated using Eq. (5):

vm ¼ L=M � vm0 (5)

where vm is the pedestrian speed (m/s), L is the length of the field of view,M is the length of
the field of the image, and vm′ is the pedestrian speed (in pixels/s).

A Flowchart for describing the calculation steps and variables relationship in between is
shown in Fig. 4.

Correction to walking speeds
Since the image taken by the UAV is in essence a central projection of the ground, while
the YOLO5 locates the heads of pedestrian which are at a certain height of the ground. This
introduces an geometric error to the walking distance measurement, and hence a
geometric correction is needed to retrieve more accurate walking speed.

Figure 4 Flowchart for describing the calculation steps and variables relationship in between.
Full-size DOI: 10.7717/peerj-cs.1226/fig-4
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If we assume that the image film is horizontal, a displacement of the image point caused
by the height of the person will be caused as shown in Fig. 5, and Eq. (6) can be applied
based on the principle of similar triangles.

Dh=R ¼ h=ðH � hÞ
R=ðH � hÞ ¼ r=f

f =H ¼ dh=Dh

(6)

where Dh is the differential projection on the ground, h is the height of the pedestrian, H is
the flight height of the UAV, R is the horizontal distance from the ground point to the
ground nadir point, r is the image distance from the projection point of the pedestrian in
the image to the image centre point (r is positive when the projection point is on the upper
side of the image centre point and negative when the projection point is on the lower side),
f is the focal length, and dh is the displacement of the image point caused by the height of
the pedestrian.

Equation (7) can be derived from Eq. (6):

dh ¼ r � h=H (7)

where dh is the displacement of the image point caused by the height of the pedestrian, r is
the distance in the image from the projection point of the pedestrian in the image to the
image centre point, h is the height of the pedestrian, and H is the flight height of the UAV.

The speed correction can then be calculated from Eq. (8) as follows:

vc ¼ ðd2�d1Þ=n � fps (8)

where vc is the speed correction value (in pixel/s), n is the number of frames captured of the
pedestrian, fps is the frame rate, δ1 is the image point displacement at the starting point,
and δ2 is the image point displacement at the end point. Likewise, the speed correction
value can be obtained according to Eqs. (3) and (4), as shown in Eq. (9):

Figure 5 Schematic diagram showing displacement of image points due to the height of a pedestrian.
Full-size DOI: 10.7717/peerj-cs.1226/fig-5
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vc ¼ ðr2�r1Þ � h � fps � L=n=H=M (9)

where vc is the speed correction value (in m/s), r1 is the image distance from the projection
point of the starting point to the image centre point, r2 is the image distance from the
projection point of the end point to the image centre point, n is the number of frames
captured of the pedestrian, fps is the frame rate, H is the flight height of the UAV, L is the
length of the field of view, and M is the length of the field of the image.

In a two-dimensional plane, if the direction of flight of the drone is not parallel to the
direction of movement of the pedestrian, there will be a certain angle between these two
directions. Taking the centre point of the image as the origin of coordinates, this angle can
be calculated using Eq. (10):

h ¼ arctanð x � x0j j= y � y0j jÞ (10)

where h is the angle between the direction of flight and the pedestrian’s direction of
walking, (x0, y0) is the centre point of the image, and (x, y) is the position of the pedestrian
in the image.

The speed of the pedestrian after correction is shown in Eq. (11):

ðvcÞ ¼ ðr2 � r1Þ � h � fps � L � cosu=n=H=M (11)

where vc is the pedestrian’s speed (in m/s). This equation shows that the speed correction is
related to the relative speed of UAV and the pedestrian (as reflected by the value of r), the
height of the pedestrian, the height of the UAV, the angle between the pedestrian’s
direction of walking and the UAV heading, and certain camera parameters (video
conversion frame rate, field of view and focal length of the sensor).

RESULTS
Pilot tests
The results of the pilot tests are shown in Fig. 6. The pedestrian recognition rates at three
flight altitudes are shown in Fig. 6A, and it can be seen that the overall trend in the
pedestrian recognition rate decreased with an increase in flight altitude. A one-way
ANOVA indicated significant differences in the pedestrian recognition rates at the three
heights (P = 0.000 < 0.05). The optimal result was obtained at an altitude of 40 m, with an
average recognition rate of 89%. At a height of 60 m, the average recognition rate was
reduced to 85%, while the lowest average pedestrian recognition rate was obtained at 80 m,
at only 34%. Based on these results, 40 m was determined to be the best flight height, and
was used in the data acquisition process in our study area.

Figure 6B illustrates the pedestrian recognition rate obtained from a UAV hovering at
the optimal height (40 m) and travelling at different flight speeds for pedestrians with
varying walking states. The highest average recognition rate was 100%, while the lowest
was 82%. This shows that the recognition rate was affected by both the flight speed of the
UAV and the walking state of the pedestrian. Although a two-way ANOVA showed
significant differences in pedestrian recognition rates at different flight speeds and
pedestrian states (P = 0.000 < 0.05), the recognition rates were all higher than the threshold
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(80%) set for the extraction of walking speeds. According to the results, all seven flight
speeds met the standard, meaning that the optimal flight speed was 6 m/s or less, and a
speed of 3 m/s was chosen for data collection in the study area.

Speed error before and after correction
There is a systematic bias between the pedestrian speed extracted from the UAV video and
measured on the ground, since the object of observation (the pedestrian) is not always
located directly below the UAV and hence the centre of recognition is not always at the

Figure 6 Pedestrian recognition rates at each flight altitude and speed. (A) Pedestrian recognition
rates at each flight altitude (N = 111); (B) pedestrian recognition rates at each flight speed (three
pedestrian states, N = 120). Full-size DOI: 10.7717/peerj-cs.1226/fig-6
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pedestrian’s feet. Table 2 shows the average speed errors before and after correction. The
average error between the extracted value and the measured value on the ground before
correction increases gradually as the UAV speed increases, while there is no such trend
after correction. In addition, most average errors become smaller compared to before
correction; the maximum average error before correction reaches 0.065 m/s, but after
correction this is only 0.010 m/s.

Figure 7 shows a distribution histogram of the errors before and after correction, which
allows for a further comparison. Before speed correction, the average value of the error is
0.03 m/s, and the maximum absolute error is 0.17 m/s. After speed correction, the overall
trend in the speed error shows a decrease. The average value of the error is reduced to
−0.01 m/s, and the maximum value of the absolute error is 0.13 m/s.

Walking speeds along a commercial street
We applied our proposed method to our study area of a commercial street as an
application to verify the validity of the method. The results for the pedestrian walking
speed are shown in Fig. 8. In general, the speeds for the whole street exhibited spatial

Table 2 Average errors in walking speeds before and after speed correction.

Flight
speed (m/s)

Standing still (m/s) Walking slowly (m/s) Walking fast (m/s)

Before correction After correction Before correction After correction Before correction After correction

0 0.010 0.010 0.003 −0.013 0.006 0.008

1 0.012 −0.015 0.007 0.001 0.006 0.009

2 0.018 −0.008 0.019 −0.005 0.026 0.010

3 0.021 −0.028 0.021 −0.034 0.026 0.003

4 0.049 −0.018 0.029 −0.036 0.055 −0.002

5 0.046 −0.013 0.042 −0.050 0.055 −0.027

6 0.049 −0.024 0.052 −0.038 0.065 −0.024

Figure 7 Errors in pedestrian speeds before and after correction.
Full-size DOI: 10.7717/peerj-cs.1226/fig-7
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heterogeneity, with different speeds in the nine different segments, but the variation
between speeds is low for a given segment. The highest walking speed of 1.03 m/s was
found for the first district, a section containing ‘experience’ stores such as Lego and
Madame Tussauds, while the lowest speed of 0.56 m/s was found for the second district,
which is dominated by clothing stores, and contains a cosmetic store and an ice cream
store. In addition, for the second district, both of the first two segments had generally low
walking speeds, while the third segment showed a significant increase, with a walking
speed of 0.91 m/s.

To confirm that the type of stores on the street had an impact on the walking speeds of
the passing pedestrians, we identified the types of store in each of the nine segments, as
shown in Fig. 9. The average walking speed over these nine segments was 0.77 m/s, with
four segments each showing speeds greater and less than the average. It was found that the
slow walking pace exhibited association with street-side snack bars and food restaurants.
In addition, walking speeds were faster near stores selling electronic products; this may be
due to the fact that more male customers are interested in electronic devices, and according
to existing research (Tolea et al., 2010), men generally walk faster. The Wax Museum was
another place in which pedestrian speeds were raised, while certain stores did not show a
significant effect on pedestrian walking speeds, such as clothing and accessories,
department stores and homewares and toy stores.

DISCUSSION
As an exploratory attempt to extract the walking speeds of pedestrians using a UAV, the
results obtained from our experiment require discussion and reflection.

Optimal flight altitude
In the pilot test carried out to determine the optimal flight altitude, we found that the
recognition rate of pedestrians tended to decrease as the flight altitude increased. The
average recognition rate of pedestrians was 89% at 40 m, and only 34% at 80 m. The clarity
of acquisition of the pedestrians by the UAV camera decreases with an increase in the
flight altitude for constant values of the other flight parameters. In addition, when the
altitude increases, the pixel size of the pedestrians in the image decreases, and the detection

Figure 8 Pedestrian walking speeds extracted in Hanjie Street.
Full-size DOI: 10.7717/peerj-cs.1226/fig-8
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of small targets by deep learning tends to have a lower recognition rate. However, this does
not mean that we cannot obtain high pedestrian recognition rates at altitudes of 80 m or
even higher. In fact, our dataset for the pilot test was small (only 720 images), while in most
cases, if the dataset is large and well labelled, model training can be effectively improved
and high target recognition rates can be achieved with no changes to the models or training
settings (Jocher, 2021) (according to a view posted on GitHub by the author of YOLOv5).

Accuracy of corrected walking speed
Although a large number of experiments have been conducted to measure walking speeds,
the comparability between existing measurements and our results is low, as walking speed
is influenced by numerous parameters and there is no standardisation of measurement
conditions (Bosina &Weidmann, 2017). However, based on a comparison of our corrected
pedestrian speeds with the measured speeds on the ground, we found that 63.8% of the
corrected speeds had an absolute error of below 0.05 m/s, while 90.5% had an absolute
error of below 0.1 m/s, and the maximum absolute error was 0.13 m/s. It is clear that the
use of this correction means our method has high feasibility and overall accuracy.

As shown in Table 2, the overall error in the extracted pedestrian speeds increases
gradually with the UAV speed. According to the principle of central projection, the height
of the pedestrian creates an offset in the image compared to the actual position. In Fig. 10,

Figure 9 Types of stores on Hanjie Street that affected pedestrian walking speeds.
Full-size DOI: 10.7717/peerj-cs.1226/fig-9
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this offset is simplified to r, r1 for the offset at the starting position of the pedestrian and r2
for the offset at the end position of the pedestrian. The position of the solid black line
intersecting the image plane indicates the position of the pedestrian on the image, while the
position of the dotted black line intersecting the image plane is the centre point of the
image. When the pedestrian and the drone are moving in the same direction, there are
three scenarios for the relative speed of drone and pedestrians. If the drone speed is smaller
than the pedestrian speed, the offset increases the distance moved by the pedestrian in the
image in the two frames before and after. If the two speeds are equal, the offset has no effect
to the distance. If the drone speed is greater than the pedestrian speed, the offset decreases
the distance. In the pilot test, the UAVmoved in the same direction as the pedestrians, and
the flight speed was typically higher than the pedestrian walking speeds. According to
Eq. (1), as the distance moved by the pedestrian in the image decreases, the real distance
increases, leading to a higher calculated speed. The higher the speed of the UAV compared
with the pedestrian, the longer the distance moved by the pedestrian in the image will
become, resulting in a larger error in the speed.

To eliminate the displacement in the image points caused by the central projection, we
apply a speed correction. Although we describe it here for the case where the drone and
pedestrians are moving in the same direction, our speed correction formula can also be
applied to the case where the UAV and pedestrians are moving in the opposite direction
(Eq. (6)). In addition, as can be seen in Table 2, when pedestrians walk fast or UAVs fly
fast, it generally causes more difficulties in pedestrian recognition (it can be seen from the
absolute error before correction), but the correction can well correct these samples with
larger deviations. In other words, the correction can be well adapted to the difficult samples
and improve the overall computational accuracy.

Reduce the false detection rate
The issue of how to reduce the false detection rate is also a significant problem. Because our
study area is a pedestrianised street, no cyclists appeared in the captured video data.
However, we found in the relevant trials that interference can easily arise from cyclists

Figure 10 Measurement errors for various relative speed states of the pedestrian and UAV.
Full-size DOI: 10.7717/peerj-cs.1226/fig-10
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(bicycles or electric bikes). We tried to divide the people into walkers and cyclists at the
labelling stage, and eventually most of the walkers were correctly distinguished, but a small
fraction of the cyclists was still mis-detected. this is a problem worth considering when this
method is to be applied to neighbourhoods with mixed pedestrian and bicycle traffic.

There are two ways to solve this problem: the first is to ignore the classification of
cyclists when training the model, as there will be a clear double-peak pattern in the speed
distribution histogram plots that represents cyclists and pedestrians. A threshold can then
be set to distinguish between them. In the second approach, the false detection rate can be
reduced by adding negative samples, cropping the region of the original image containing
only cyclists for use as negative samples, and using these and the positive samples together
to train the model.

Limitations and future work
Finally, our method still has some limitations that need to be overcome. During the
pedestrian recognition process, a large number of annotated datasets are required for
model training, which imposes a high labour cost. Although many public pedestrian
datasets exist for use, they either do not have annotated labels or were not captured from
an overhead view, meaning that the precision of speed extraction cannot be guaranteed.
Although it is easy to capture numerous pedestrian images using a UAV, manual
annotation is required, and this is a problem that is also studied in deep learning.

We also found some interesting things from extracting walking speeds along Hanjie
Street. As shown in Fig. 8, there were clear differences in the walking speeds along the
different subdivisions of this street, which may be related to the category, brand and
decoration of the stores, or possibly to the season or the time of video collection. In
addition, it has been shown that pedestrian density also has an effect on walking speed
(Franěk, 2013; Minegishi, 2021). Our current study does not consider the effect of
pedestrian density on walking speed for the time being. In future work, we will incorporate
more influencing factors to further explore the correlations between street environments
and pedestrian speeds.

CONCLUSIONS
Unlike existing research methods, such as those based on timing gates and wearable
devices, our method can collect the walking speeds of numerous pedestrians within a large
area without disturbing them. It is also less expensive and does not require the placement
of measurement facilities. If high-quality video data can be collected using drones, it is
possible to extract the walking speeds of pedestrians on city streets. Real-time
measurements of walking speeds on urban streets can help us to gain a deeper
understanding of how the settings and layouts of urban spaces work for people, which is
one of the core issues of urban geography.
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