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ABSTRACT
High-resolution remote sensing images have the characteristics of wide imaging
coverage, rich spectral information and unobstructed by terrain and features. All of
them provide convenient conditions for people to study land cover types. However,
most existing remote sensing image land cover datasets are only labeled with some
remote sensing images of low elevation plain areas, which is highly different from the
topography and landscape of highlandmountainous areas. In this study, we construct a
QilianCounty grassland ecological element dataset to provide data support for highland
ecological protection. To highlight the characteristics of vegetation, our dataset only
includes the RGB spectrum fused with the near-infrared spectrum. We then propose a
segmentation network, namely, the Shunted-MaskFormer network, by using a mask-
based classification method, a multi-scale, high-efficiency feature extraction module
and a data-dependent upsampling method. The extraction of grassland land types
from 2 m resolution remote sensing images in Qilian County was completed, and the
generalization ability of the model on a small Gaofen Image Dataset (GID) verified.
Results: (1) The MIoU of the optimised network model in the Qilian grassland dataset
reached 80.75%, which is 2.37% higher compared to the suboptimal results; (2) the
optimized network model achieves better segmentation results even for small sample
classes in data sets with unbalanced sample distribution; (3) the highestMIOUof 72.3%
is achieved in the GID dataset of open remote sensing images containing five categories;
(4) the size of the optimized model is only one-third of the sub-optimal model.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Remote-sensing image, Land cover type classification, Neural network, Transformer,
Vision transformer

INTRODUCTION
With the development of remote sensing technology, the resolution of remote sensing
images is constantly improved. Satellite images are widely used in the research of land
cover type classification methods in large areas, especially in urban planning (Zhang et
al., 2018), ecological environment monitoring (Treitz, 2000), ecological value estimation
(Sutton & Costanza, 2002) and other fields. At present, the interpretation of satellite images
information mainly relies on visual interpretation, machine interpretation and deep
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learning methods. Visual interpretation has the highest accuracy, but the time and labor
cost of manual interpretation of satellite images is often greater than its practical value.
Machine interpretation method utilizes the characteristics of satellite images with multiple
bands. The use of machine learning methods to interpret remote sensing images has certain
application value, such as satellite images classification based on the support vectormachine
(SVM) algorithm (Li, Lu & Chen, 2015), and remote sensing image forest vegetation
classification based on the random forest model (Juel et al., 2015). However, the spectral
information has the problems of ‘‘same thing different spectrum’’ and ‘‘foreign matter
same spectrum’’, which lead to poor segmentation accuracy and inaccurate boundary
segmentation. These algorithms usually handle only few categories and cannot cope with
complex scenes due to the limitations of artificial features.

Since the AlexNet model (Krizhevsky, Sutskever & Hinton, 2017) won the champion
in the 2012 ImageNet Competition, deep learning networks have been widely used in
the field of computer vision. The proposal of fully convolutional networks (FCN) (Long,
Shelhamer & Darrell, 2015) provides a solution for the pixel-by-pixel classification tasks
of images. However, FCN does not effectively utilize shallow features leading to too
coarse segmentation results. In order to effectively fuse features at different levels, U-Net
(Ronneberger, Fischer & Brox, 2015) and SegNet (Badrinarayanan, Kendall & Cipolla, 2017)
use encoder–decoder structure and skip connection structure to enrich feature map. Pan
et al. (2020) studied segmentation and classification for urban village using a worldview
satellite image based on the U-Net model and (Weng et al., 2020) realized water areas
segmentation from remote sensing images using a separable residual SegNet network.
DeepLab series models (Chen et al., 2014; Chen et al., 2017; Chen et al., 2018a; Chen et al.,
2018b), PSPNet (Zhao et al., 2017) network uses feature pyramids and atrous convolutions
to improve the feature fusion capability of the network. Lin et al. (2020) studied road
extraction from very-high-resolution remote sensing images via a nested SE-Deeplab
model, and Yuan, Wang & Xu (2022) researched the extraction of building from remote
sensing images based on shift pooling PSPNet. Naushad, Kaur & Ghaderpour (2021)
completed the land use and land cover classification of sensing images based on transfer
learning. Segmentation methods based on convolutional neural network (CNN) (Lecun
et al., 1998) completes the extraction of features by concatenating a series of convolution
and pooling operations such as VggNet (Simonyan & Zisserman, 2014), ResNet (He et
al., 2016) and HRNet (Sun et al., 2019). In this process, because of the limited size of the
convolutional kernel, the network only captures the local feature information of the image,
but it lacks an understanding of the global information of the image. In addition, the
convolutional neural network is sensitive to the rotation angle of the image. Different
rotation angles of the same image will activate different neurons. Although this problem
can be alleviated by data augmentation, it also increases the difficulty of training the
network. Therefore, some scholars have applied the transformer (Vaswani et al., 2017)
model from the field of natural language processing to the field of computer vision. Based
on the self-attention mechanism, Vision Transformer can model the global information
of the image, mining the long-distance relationship and parallel calculation, which has
achieved a good effect in the field of computer vision.
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Dosovitskiy et al. (2020) proposed the Vision Transformer network in 2020. The author
divided the image into many sub-blocks and composed these sub-blocks into linear
embedding sequences to simulate phrase sequence input in natural language processing.
Vision Transformer provides a new model for the application of transformer in the
field of computer vision and achieves competitive results in ImageNet (Deng et al., 2009)
dataset. Since 2020, Transformer-based vision models have developed rapidly. Wang et al.
(2021) introduced a pyramid structure to propose the Pyramid Vision Transformer (PVT)
for dense prediction tasks. Liu et al. (2021) proposed the Swin Transformer with sliding
window and hierarchical design. Ren et al. (2022) proposed the Shunted Transformer that
mixes features at multiple scales, allowing different attention heads within the same layer
to model objects at various scales simultaneously. Many scholars applied the transformer-
based visual model to the interpretation of remote sensing images. For example, Xu et al.
(2021b) used Swin Transformer as a feature extraction network to complete the remote
sensing image segmentation task, and Xu et al. (2021a) used Swin Trasformer based on
remote sensing images for target detection and instance segmentation.

Although the above works are based on different methods to complete the segmentation
task, most of them consider the semantic segmentation task and the instance segmentation
task as two different paradigms. Among them, semantic segmentation and instance
segmentation are regarded as per-pixel classification task and mask classification task
respectively. Cheng, Schwing & Kirillov (2021) proposed that MaskFormer unified the
semantic segmentation task and the instance segmentation task using themask classification
paradigm, which outperformed the current pixel-by-pixel segmentation processing
paradigm in performance. In addition, most of the current studies are based on ISPRS
Vaihingen (ISPRS, 2022a), ISPRS Potsdam (ISPRS, 2022b) and other datasets to segment
land cover types detection methods in urban scenes. Compared with buildings and roads
in urban scenes with relatively regular shapes, the extraction of irregular land cover types
for field grasslands is more complex.

In our work, we address the above issues and improve existing methods. We make the
following contributions in this article:
(1) We provide support for the extraction of wild grassland land cover types in high-altitude

mountain areas, and produced a dataset of grassland land cover types in Qilian County.
(2) We propose a Shunted-MaskFormer network for the classification of land cover types

from high-resolution satellite images. Our network offers better results on a smaller
scale compared with other advanced networks.

(3) We use the mask classification approach for image segmentation tasks to obtain higher
segmentation accuracy while effectively suppressing the influence of data imbalance in
satellite image datasets.

Chen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1222 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1222


Dataset construction
Overview of the study area
The study area, Qilian County, is located in the northern part of Qinghai Province, China.
The county is located in the Qilian Mountains with an area of approximately 13,900 km2

and an average altitude of 2,787 m. The types of land used in Qilian County are complex
and diverse, mainly consisting of grassland, bare land and woodland. The grasslands are
mainly natural pasture and other grasslands, and there are relatively few other land types
such as transport and building land. Figure 1 shows our study area.

Dataset production
In this study, the remote sensing images of the Qilian County area were acquired between
June and October 2020. A total of 24 scenes are from Gaofen-1, Gaofen-6 and Ziyuan-3
satellites. These original satellite images were from the Natural Resources Remote Sensing
Center of Qinghai Province. The original image is a multispectral image with four bands:
red, green, blue, and near-infrared. We enhance the vegetation in the image in order to
differentiate vegetation from other land covers. Specifically, we remove the near-infrared
band, multiply the near-infrared value by 0.2 and add it to the green band. The images
with less cloud interference are selected from the original images and then processed by
orthorectification, image fusion and image cropping to obtain high-resolution images with
a spatial resolution of 2 m in the study area (Li et al., 2022). Qilian County is located at a
high altitude and highland hills and gentle slopes dominate the terrain. In this study, several
locations were randomly selected in the area containing the above two types of landforms
to annotate and create a grassland dataset. The images are annotated as grassland and other
categories using ArcGIS tools, and saved as shape-format data. We crop both the label
image and the satellite image with base size 256×256 pixels, resulting in a total of 820
images. The grassland dataset of Qilian County is randomly divided into training set (80%,
656 images), the validation set (10%, 82 images) and the test set (10%, 82 images). Some
of the dataset images and corresponding labels are shown in Fig. 2.

MATERIALS & METHODS
In this study, the Shunted-MaskFormer network is improved based on the MaskFormer
network. We employ a more efficient feature extraction network and a data-dependent
decoder to restore the feature map to its original size.

Overall model framework
The MaskFormer network structure (Cheng, Schwing & Kirillov, 2021) treats the semantic
segmentation task of pixel-by-pixel classification as a mask classification task, which
predicts a set of binary masks, and each mask is associated with a global category label to
complete the image segmentation task, and the overall framework is shown in Fig. 3.

The model framework consists of three parts: the pixel-level module, the transformer
module, and segmentation module, which complete the feature extraction and feature map
upsampling functions, the mask prediction function, and the final segmentation function,
respectively. Specifically, the pixel-level module uses an encoder–decoder structure, with
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Figure 1 Qilian county study area, Qinghai province.
Full-size DOI: 10.7717/peerjcs.1222/fig-1

Figure 2 Several images fromQilian grassland dataset.
Full-size DOI: 10.7717/peerjcs.1222/fig-2

the input being an image of C ×H ×W and the output being εpixel ∈RCε×N×W ; the
transformer module uses the standard decoder structure to take as input the feature map
output from the encoder in the pixel-level module and the positional embedding of the
N learnable positions, and the output is Q ∈RCQ×N ; the segmentation module uses Q
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Figure 3 Architecture of MaskFormer.We use a pixel encoder to extract image features. A pixel decoder
upsampling the feature map to obtain the εpixel. A transformer decoder uses image features to produce N
mask embeddings. Finally, in the semantic segmentation module, we use matrix multiplication for N class
predictions and N mask predictions to obtain the final prediction results.

Full-size DOI: 10.7717/peerjcs.1222/fig-3

output from the transformer module to obtain the category probability
{
pi ∈RK+1}N

i=1
for each segment using a linear classifier, followed by a softmax activation. And transform
Q through the multi-layer perceptron of the two hidden layers into εmask ∈RCε×N . Then
the N predicted binary masks are generated by dot product between the pixel embedding
εpixel and the mask embedding εmask . Finally, in the segmentation module, we use simple
matrix multiplication to get the final prediction matrix K ×H ×W after removing the
empty target category. In this study, we use a more practical feature extraction network
and upsampling method based on the MaskFormer network to reduce network complexity
and improve the accuracy of image segmentation.

Encoders
We use the Shunted Transformer (Ren et al., 2022) as the feature extraction network,
and the network structure is shown in Fig. 4. The whole framework consists of a Patch
Embedding module and four cascade modules to produce four resolution outputs. Each
module contains a linear embedding and a Shunted Transformer Block module. The
Shunted Transformer Block module contains two normalisation layers, Shunted self-
attention and Detail Specific FeedForwad. The LN layer normalises the data to make the
training process more stable, while the Shunted self-attention layer captures information at
different granularities for each attention head, reducing computational effort while fusing
multi-scale attention information. Compared with the traditional feedforward layer, the
Detail Specific FeedForwad layer adds a detail convolution branch to specify the details in
the feedforward layer to supplement feature information. The details are as follows: Given
an input of 3×H×W (3 for RGB channels), the patch embedding module first generates
a non-overlapping input sequence of size H

4 ×
W
4 using the convolutional layers of 7×7

and 3×3.
At this point, the resolution of the original input H ×W is reduced to H

4 ×
W
4 and

the dimensionality is changed from 3 to 48. The linear embedding layer then maps the
dimensionality from 48 to C and feeds the features into the Shunted Transformer module.
Each attention head in the module computes attention at different scales and captures
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Figure 4 The overall architecture of the Shunted Transformer and details of the Shunted Self-
Attention block.

Full-size DOI: 10.7717/peerjcs.1222/fig-4

information of different granularities for global modelling. In each subsequent iteration
module, the resolution of the feature map is reduced to half of the output of the previous
module, and the number of channels is doubled.

Decoders
In the decoder part, the original model adopts the feature pyramid network (FPN) (Lin et
al., 2017) structure, using bilinear interpolation to upsample the featuremap twice, and then
fuses the featuremap layer by layer fromdeep to shallow to the original image size.However,
the relatively coarse use of nearest neighbor interpolation to upsample feature maps, whose
unlearnability may lead to ineffective transfer of high-level feature information. The
decoder of the Shunted-MaskFormer network adopts a data-dependent upsampling
method. First, the feature maps of different resolutions are uniformly downsampled to
the same resolution as the deepest feature map. Second, the feature selection module is
used to adaptively recalibrate channel-wise feature response. Finally use the DUpsample
(Tian et al., 2019) module to restore the feature map to the original resolution. The entire
upsampling process is shown in Fig. 5.

Feature selection module
Comparedwith the simple use the convolution of 3×3 in FPN, before using the featuremap
extracted by the encoder, it is important to emphasize the feature maps that contain a lot
of spatial detail information, while suppressing redundant feature maps. The Squeeze and
Excitation (SE) module is proposed by Hu, Shen & Sun (2018). This structure takes into
account the different importance of each channel to different categories and obtains the
weight vectors of different channels mainly through two operations, squeeze and excitation.
The details are as follows, the squeeze operation is used for the down-sampled feature map
to extract the global information of different channels using global average pooling, and
the excitation operation is used to calculate the dependencies between different channels
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Figure 5 Upsampling method.Middle: backbone denotes the feature extraction process from shallow to
deep. Left: the structure of the FSM-DUpsample method. Right: the structure of the FPN method.

Full-size DOI: 10.7717/peerjcs.1222/fig-5

and output the weight vector. Next, the original feature map is scaled using the weight
vectors and added to the original feature map to form a residual structure. The residual
structure is used to avoid some channels being over-scaled or suppressed, and the process
is defined as:

y = x ∗u+x (1)

u= fE (z), (2)

z = fS(x) (3)

where: x is the feature map input to the feature extraction module; fS(·) is the squeeze
operation; z is the global information for each channel; fE (·) is the excitation operation; u
is the calculated weight vector; y is the output of the feature selection module.

DUpsample module
The final layer of the decoder is usually a bilinear upsampling process that restores the
feature map to its original resolution. This upsampling method is data-independent and
does not consider the correlation between each pixel. Such an upsampling process may lead
to suboptimal results. Tian et al. (2019) proposed a data-dependent upsampling method
(DUpsample) to replace the bilinear interpolation method. DUpsample exploits the spatial
redundancy in segmentation labels to accurately restore the feature map to the original
scale, and does not require multiple upsampling strides, thus reducing the framework’s
computation time and memory footprint.

In the training process, we no longer use the interpolation method to upsample the
feature map, but complete the upsampling process of the feature map F by finding the
reconstruction matrix W . The segmentation label Y is not independent and identically
distributed, it contains structural information and can be compressed without causing too
much loss. In order to minimize the reconstruction error, we use the linear projection
method to compress Y to Ỹ ∈RH̃×W̃×C̃ with the same size as F . First, Y isdivided into
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Figure 6 The framework with Dupsample.DUpsampling: upsample the backbone outputs feature maps
twice. Left: denotes the feature maps extracted by the backbone. Right: denotes the resulting maps. W: the
inverse projection matrix. In our experiment, the upsampling ratio is 8.

Full-size DOI: 10.7717/peerjcs.1222/fig-6

sub-windows of size r× r(r represents the ratio of the original scale H to the compressed
scale H̃ ), after which each sub-window is deformed into a vector v and multiplied by the
matrix P to obtain x . Finally, stack x vertically and horizontally to obtain Ỹ . The formula
is expressed as:

x = Pv;ṽ =Wx. (4)

Here P ∈RC̃×N is used to compress v to x , W is the reconstruction matrix used
to reconstruct x back to v , and ν̃ represents the reconstructed v.W can be found by
minimizing the error between v and ν̃. Use the reconstruction matrix W to complete the
upsampling of F and calculate the error with Y as a loss function.

L(F ,Y )= Loss
(
softmax

(
DUpsample (F)

)
,Y
)
. (5)

With linear reconstruction,DUpsample (F) applies a linear upsampling to each feature in
the tensor F . This upsampling process is essentially the same as applying a 1×1 convolution
along the spatial dimension, with the convolution kernel stored in W . Decompression is
shown in Fig. 6.

Experiments and analysis
Software and hardware
As experimental hardware, we used two GeForce GTX 1080 Ti graphics cards with a
memory capacity of 11 GB each. We implemented the machine learning platform with
PyTorch 1.8.1, Python 3.8 and CUDA version 10.2.

Training settings
Optimizer. We use MMSegmentation (Contributors, 2020) and follow the default training
settings for each model. More specifically, we use AdamW (Loshchilov & Hutter, 2017)
and the WarmupPolyLR learning rate schedule with an initial learning rate of 10−3 and a
weight decay of 5 ·10−4for ResNet (He et al., 2016) backbones, and an initial learning rate
of 6 ·10−5 and a weight decay of 10−2 for Swin Transformer (Liu et al., 2021) and Shunted
Transformer (Ren et al., 2022) backbones.
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Batchsize. We set different batch sizes for other models in the two datasets to fully use
hardware resources. During the training, we set the batch size to 20 for all models except
Upernet (Xiao et al., 2018) and Shunted Transformer. According to the model size, the
batch size of the Swin Transformer is set to 8, and the Shunted Transformer is set to 32.

Pre-training. Backbones are pre-trained on ImageNet-1K (Russakovsky et al., 2015) if not
stated otherwise. U-net (Ronneberger, Fischer & Brox, 2015), SegNet (Badrinarayanan,
Kendall & Cipolla, 2017), Deeplab v3+ (Chen et al., 2018a), PsPnet (Zhao et al., 2017) and
Ocrnet (Yuan, Chen & Wang, 2020) used pre-trained ResNet50 (He et al., 2016) as their
backbone network. Upernet (Xiao et al., 2018) used the pre-trained Swin Transformer and
our method used the pre-trained Shunted Transformer.

Data augmentation
The inputs to the training were of three types: the original image, horizontal and vertical flip
input image, and rotate the input image at any angle. All semantic segmentation networks
randomly choose one or more as inputs during training to increase the diversity of the
dataset.

Evaluation metrics. The number of floating-point operations per second (FlOPs) and the
number of model parameters (Params) are used as the model complexity metrics, and the
mean intersection over union (MIoU) and mean pixel accuracy (MPA) are used as the
comprehensive evaluation metrics for the accuracy of the segmentation results.

MIoU =
1

k+1

k∑
i=0

pii∑k
j=0pij+

∑k
j=0pji−pii

(6)

MPA=
1

k+1

k∑
i=0

pii∑k
j=0pij

(7)

where there are k+1 classes (including a background class), pij denotes the number of
pixels that belong to class i but are predicted as class j, Pii denotes the number of correct
predictions for class i, pij and pji are false positive and false negative, respectively.

Dataset
Two datasets are chosen for the experiment, the Qilian grassland dataset and the Gaofen
Image Dataset (GID) (Tong et al., 2020). The construction of the Qilian grassland dataset
has been discussed previously. The GID dataset contains 150 images from the Gaofen-2
satellite, each with a size of 7,200× 6,800 pixels, containing five categories: buildings,
farmland, forest, grassland and water. The original data set provides RGB images and
near-infrared images. In this study only selected the red–green–blue version of the GID
dataset. We choose the typical morphology of each category in the GID dataset as shown
in Fig. 7.

This large dataset has an unbalanced number of samples in each category. In order
to balance the number of samples in each category and accommodate the limited
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Figure 7 Several images from the GID dataset.
Full-size DOI: 10.7717/peerjcs.1222/fig-7

computational resources. We randomly selected 15 images and cropped them to a size of
256×256. Subsequently, 3,000 images were selected from the cropped images to constitute
a small GID dataset for the experiment. The small GID dataset is randomly divided into
training set (80%, 2,400 images), the validation set (10%, 300 images) and the test set
(10%, 300 images). The percentage of data in each sample category is shown in Fig. 8.

RESULTS
Qilian grassland dataset
We compared Shunted-Transformer with several other state-of-the-art computer vision
networks on the Qilian grassland dataset for land cover types segmentation. Table 1
shows the results. DeepLab v3+ achieves the best segmentation results among several
models based on convolutional neural networks, but there is still a relatively large gap
in segmentation accuracy compared to the Vision Transformer network-based models.
Shunted-MaskFormer achieves the highest segmentation accuracy. The MIoU and MPA of
our method on this dataset are 80.75 and 88.89%. Furthermore, regarding the single-class
segmentation results, the grass achieved the best result of 85.74% and the other category
also achieved the best segmentation result of 75.76%.

Figure 9 illustrates the visualization of the results of our method compared with the
comparison method on the Qilian grassland dataset. From region 1 and region 2 in the
figure, it can be seen that in the comparison method of a convolutional neural network,
due to the inevitable spatial smooth processing of convolution kernel in the process
of convolution, some small areas of other categories and grassland cannot be clearly
distinguished and the edge segmentation is not satisfactory enough. Through the attention
mechanism, the two segmentation networks based on Vision Transformer are modeled
globally, and the segmentation results are better than convolutional neural networks
overall, but Upernet overcomes the disadvantage of too smooth boundary segmentation
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Figure 8 The per category distribution in each dataset. In the small GID dataset, we reduced the pro-
portion of farmland category and water category, and increased the proportion of the other three cate-
gories.

Full-size DOI: 10.7717/peerjcs.1222/fig-8

Table 1 Evaluation table for land cover type segmentation in the Qilian grassland dataset.

Methods backbone MIoU MPA Type of land cover

Others Meadow

U-net Res50 71.79 84.80 64.63 78.95
Segnet Res50 71.84 84.95 64.35 79.34
PsPnet Res50 74.35 85.11 68.27 80.43
DeepLab v3+ Res50 76.33 85.20 69.41 83.24
Ocrnet Res50 75.93 85.23 69.23 82.64
Upernet Swin_base 78.38 86.88 72.37 84.40
Our method Shunted_base 80.75 88.89 75.76 85.74

Notes.
Bold values indicate the highest values of every column.

while also leading to more fragmented meadows misclassified into other categories such as
region 1. And because only at a single scale calculating attention, it leads to discontinuous
boundary segmentation of grassland formed by some small rivers such as region 2 and
region 3. Our method used a multi-scale feature extraction network and a data-dependent
upsampling process to obtain the finest boundary segmentation results while ensuring the
integrity of objects with different land types.

GID dataset
Table 2 shows the results of land cover types segmentation on the small GID dataset for our
method and the comparison method. It can be seen that our method achieves the optimal
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Figure 9 Visual comparison of the classification results of different methods on the Qilian grassland
dataset. In the figure, green color represents the segmentation result of grass class and purple color repre-
sents the other class.

Full-size DOI: 10.7717/peerjcs.1222/fig-9

Table 2 Evaluation table for land cover type segmentation of the GID dataset.

Methods backbone MIoU Type of land cover

Built-Up Farmland Forest Meadow Water

U-net Res50 64.12 65.35 62.27 60.41 50.00 82.58
Segnet Res50 68.90 66.95 70.84 70.27 49.87 86.59
PsPnet Res50 69.05 45.11 74.31 75.61 57.17 88.72
DeepLab v3+ Res50 69.17 44.49 76.6 76.36 56.06 88.93
Ocrnet Res50 68.84 43.92 74.27 74.97 57.32 89.07
Upernet Swin_base 70.96 49.54 79.73 76.43 54.35 89.94
Our method Shunted_base 72.30 69.87 74.66 72.95 58.26 86.49

Notes.
Bold values indicate the highest values of every column.

segmentation results in the dataset. However, the improvement in MIoU accuracy is not
significant, and our main advantage is that we achieve the most balanced segmentation
results in each class of the dataset. From Fig. 8 we know that grass is a few-shot category
in this dataset, but our method still achieves the highest segmentation accuracy. It can be
seen that our method is able to overcome the effect of sample imbalance in the dataset.

Model size analysis
Through the accuracy analysis of the above two datasets, we proved the validity and
generalization ability of the model. In this section, we discuss the scale of the model.
We used the number of model parameters and the number of FlOPs as the indicators of
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Table 3 Model scale evaluation table.

Methods backbone Params(M) FlOPs(G)

U-net Res50 16.37 23.34
Segnet Res50 14.86 17.48
PsPnet Res50 48.96 44.72
DeepLab v3+ Res50 43.58 44.05
Ocrnet Res50 36.51 38.22
Upernet Swin_base 104.45 31.74
Our method Shunted_base 35.31 10.14

Notes.
Bold values indicate the best values of every column.

model size and complexity respectively. The image size of the input network is uniformly
256×256, and the number of parameters and FlOPs measured for each model are shown
in Table 3. SegNet has the lowest number of parameters and FlOPs. Upernet has the largest
model size with 104M parameters. Our model not only achieves the highest accuracy but
also has a relatively small model scale and small complexity among all the models. Our
approach achieves a good balance between segmentation accuracy andmodel complexity.

DISCUSSION
Remote sensing images are the true reflection of various types of land use on the ground,
so the proportion of different land types in remote sensing image datasets is relatively
unbalanced. For example, the distribution of various categories of buildings, cultivated
land, and grassland in remote sensing image data in every region is usually different. The
feature puts forward higher requirements for the segmentation ability of remote sensing
image semantic segmentation network. The experiment results show that our method
achieves high classification accuracy in small sample categories in multi-category GID
datasets. It may be related to the classification strategy we adopt, which uses N categories in
the Transformer module to classify (N is much greater than the actual number of categories
k), and further N categories are mapped to the actual category k in the Segmentation
module. Therefore, the impact of data set sample imbalance has been reduced.

Due to our network has smaller scale and lower computing requirements, our method
can obtain competitive results compared with other advanced image segmentation
methods. Under the condition of limited computing resources, the relatively larger batch
size can be supported in our method. However, experiments show that the segmentation
accuracy of our method does not improve significantly when we use the same batch size as
other advanced convolutional neural networks.

From the experimental results of the GID dataset, we can see that our method has
limited improvement compared with the Swin Transformer, and only has advantages in
certain classes. When there are more computing resources, the Swin Transformer with
more parameters may achieve better segmentation accuracy.

In addition, the grassland land cover type extraction model trained in this study has
certain limitations. The grassland dataset we constructed in Qilian County is relatively
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small in size, and only a single grassland cover type is labeled. At the same time, due to the
alpine shadow of the plateau and the patchy distribution of bare land and grassland, these
characteristics are essentially different from grasslands in low-altitude or plain areas. Our
model is only applicable to grassland land use in plateau mountainous areas. Whether our
model can be directly applied to grassland extraction tasks in other low-altitude or plain
areas remains to be further verified.

CONCLUSIONS
Many existing studies aim to use remote sensing images to extract specific land cover
types such as buildings (Chen et al., 2022; Dixit, Chaurasia & Kumar Mishra, 2021; Tiede
et al., 2021), coastlines (Aghdami-Nia et al., 2022; Seale et al., 2022) and crop planting land
(Pan et al., 2022; Zhang et al., 2021) to guide urban development, agricultural production
and marine ecological conservation efforts. These studies constructed various datasets for
different application areas. However, there is a lack of data to support the environmental
conservation efforts for the unique terrain of the Qinghai-Tibet Plateau region. In this
study, we constructed a grassland dataset for Qilian County to provide basic data support
for conservation work and environmental restoration of fragile ecosystems in the plateau
region.

According to the characteristics of remote sensing images, we propose a lightweight
Shunted-MaskFormer for the classification of land cover types in remote sensing images.
The model improves the model segmentation accuracy and reduces the model scale by
using a multi-scale efficient feature extraction network and a segmentation method based
on mask classification. From the experimental results, our method achieves more balanced
segmentation results in different remote sensing image datasets, while obtaining optimal
segmentation boundaries in the class of grassland with complex boundaries.

In this work, we basically implemented the transformer-based deep learning method
for segmentation of remote sensing image land cover types. Our method uses a multi-
scale global information modeling approach to reduce the model size. However, the
improvement in segmentation accuracy is limited, and how to further improve the model
to increase the segmentation accuracy is our next research direction in the future. In terms
of dataset construction, our Qilian County grassland dataset labels the most important
grassland land cover types in the study area, while the extraction of various land cover
types can help us better protect the ecological environment of the Qinghai-Tibet Plateau.
Therefore, we will continue to label more land cover types such as forest land and cultivated
land in the future. We will also try to improve the network by using semi-supervised or
unsupervised learning methods to reduce the workload of labeling.
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