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ABSTRACT
Despite recent algorithmic improvements, learning the optimal structure of a Bayesian
network fromdata is typically infeasible past a few dozen variables. Fortunately, domain
knowledge can frequently be exploited to achieve dramatic computational savings, and
in many cases domain knowledge can even make structure learning tractable. Several
methods have previously been described for representing this type of structural prior
knowledge, including global orderings, super-structures, and constraint rules. While
super-structures and constraint rules are flexible in terms of what prior knowledge
they can encode, they achieve savings in memory and computational time simply
by avoiding considering invalid graphs. We introduce the concept of a ‘‘constraint
graph’’ as an intuitivemethod for incorporating rich prior knowledge into the structure
learning task. We describe how this graph can be used to reduce the memory cost
and computational time required to find the optimal graph subject to the encoded
constraints, beyond merely eliminating invalid graphs. In particular, we show that a
constraint graph can break the structure learning task into independent subproblems
even in the presence of cyclic prior knowledge. These subproblems are well suited
to being solved in parallel on a single machine or distributed across many machines
without excessive communication cost.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Distributed
and Parallel Computing
Keywords Bayesian network, Structure learning, Discrete optimization, Parallel processing, Big
data

INTRODUCTION
Bayesian networks are directed acyclic graphs (DAGs) in which nodes correspond to
random variables and directed edges represent dependencies between these variables.
Conditional independence between a pair of variables is represented as the lack of an edge
between the two corresponding nodes. The parameters of a Bayesian network are typically
simple to interpret, making such networks highly desirable in a wide variety of application
domains that require model transparancy.

Frequently, one does not know the structure of the Bayesian network beforehand,making
it necessary to learn the structure directly from data. Themost intuitive approach to the task
of Bayesian network structure learning (BNSL) is ‘‘search-and-score,’’ in which one iterates
over all possible DAGs and chooses the one that optimizes a given scoring function. Recent
work has described methods that find the optimal Bayesian network structure without
explicitly considering all possible DAGs (Malone, Yuan & Hansen, 2011; Yuan, Malone &
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Wu, 2011; Fan, Malone & Yuan, 2014; Jaakkola et al., 2003), but these methods are still
infeasible for more than a few dozen variables. In practice, a wide variety of heuristics
are often employed for larger datasets. These algorithms, which include branch-and-
bound (Suzuki, 1996), Chow-Liu trees (Chow & Liu, 1968), optimal reinsertion (Moore &
Wong, 2003), and hill-climbing (Tsamardinos, Brown & Aliferis, 2006), typically attempt to
efficiently identify a structure that captures the majority of important dependencies.

In many applications, the search space of possible network structures can be reduced
by taking into account domain-specific prior knowledge (Gamberoni et al., 2005; Zuo
& Kita, 2012; Schneiderman, 2004; Zhou & Sakane, 2003). A simple method is to specify
an ordering on the variables and require that parents of a variable must precede it in
the ordering (Cooper & Herskovits, 1992). This representation leads to tractable structure
learning because identifying the parent set for each variable can be carried out independently
from the other variables. Unfortunately, prior knowledge is typically more ambiguous than
knowing a full topological ordering and may only exist for some of the variables. A more
general approach to handling prior knowledge is to employ a ‘‘super-structure,’’ i.e., an
undirected graph that defines the super-set of edges defining valid learned structures,
forbidding all others (Perrier, Imoto & Miyano, 2008). This method has been fairly well
studied and can also be used as a heuristic if defined through statistical tests instead of
prior knowledge. A natural extension of the undirected super-structure is the directed
super-structure (Ordyniak & Szeider, 2013), but to our knowledge the only work done
on directed super-structures proved that an acyclic directed super-structure is solvable
in polynomial time. An alternate, but similar, concept is to define which edges must or
cannot exist as a set of rules (Campos & Ji, 2011). However, these rule-based techniques do
not specify how one would exploit the constraints to reduce the computational time past
simply skipping over invalid graphs.

We propose the idea of a ‘‘constraint graph’’ as a method for incorporating prior
information into the BNSL task. A constraint graph is a directed graph where each node
represents a set of variables in the BNSL problem and edges represent which variables are
candidate parents for which other variables. The primary advantage of constraint graphs
versus other methods is that the structure of the constraint graph can be used to achieve
savings in both memory cost and computational time beyond simply eliminating invalid
structures. This is done by breaking the problem into independent subproblems even
in the presence of cyclic prior knowledge. An example of this cyclic prior knowledge is
identifying two groups of variables that can draw parents only from each other, similar
to a biparte graph. It can be difficult to identify the best parents for each variable that
does not result in a cycle in the learned structure. In addition, constraint graphs are
visually more intuitive than a set of written rules while also typically being simpler than
a super-structure, because constraint graphs are defined over sets of variables instead of
the original variables themselves. This intuition, combined with automatic methods for
identifying parallelizable subproblems, makes constraint graphs easy for non-experts to
define and use without requiring them to know the details of the structure learning task.
This technique is similar to work done by Fan, Malone & Yuan (2014), where the authors
describe the same computational gains through the identification of ‘‘potentially optimal
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Figure 1 A constraint graph grouping variables. (A) We wish to learn a Bayesian network over 11
variables. The variables are colored according to the group that they belong to, which is defined by the
user. These variables can either (B) be organized into a directed super structure or (C) grouped into a
constraint graph to encode equivalent prior knowledge. Both graphs define the superset of edges which
can exist, but the constraint graph uses far fewer nodes and edges to encode this knowledge. (D) Either
technique can then be used to guide the BNSL task to learn the optimal Bayesian network given the
constraints.

parent sets.’’ One difference is that Fan et al. define the constraints on individual variables
instead of on sets on variables, as this work does. By defining the constraints on sets of
variables instead of individual ones, one can identify further computational gains when
presented with cyclic prior knowledge. Given that two types of graphs will be discussed
throughout this paper, the Bayesian network we are attempting to learn and the constraint
graph, we will use the terminology ‘‘variable’’ exclusively in reference to the Bayesian
network and ‘‘node’’ exclusively in reference to the constraint graph.

CONSTRAINT GRAPHS
A constraint graph is a directed graph in which nodes contain disjoint sets of variables
from the BNSL task, and edges indicate which sets of variables can serve as parents to
which other sets of variables. A self-loop in the constraint graph indicates that no prior
knowledge is known about the relationship between variables in that node, whereas a lack
of a self-loop indicates that no variables in that particular node can serve as parents for
another variable in that node. Thus, the naive BNSL task can be represented as a constraint
graph consisting of a single node with a self-loop. A constraint graph can be thought of as
a way to group the variables (Fig. 1A), define relationships between these groups (Fig. 1C),
and then guide the BNSL task to efficiently find the optimal structure given these constraints
(Fig. 1D). In contast, a directed super-structure defines all possible edges that can exist
in accordance with the prior knowledge (Fig. 1B). Typically, a directed super-structure is
far more complicated than the equivalent constraint graph. Cyclic prior knowledge can
be represented as a simple cycle in the constraint graph, such that the variables in node A
draw their parents solely from node B, and B from A.
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Any method for reducing computational time through prior knowledge exploits the
‘‘global parameter independence property’’ of BNSL. Briefly, this property states that
the optimal parents for a variable are independent of the optimal parents for another
variable given that the variables do not form a cycle in the resulting Bayesian network. This
acyclicity requirement is typically computationally challenging to determine because a cycle
can involve more variables than the ones being directly considered, such as a graph which is
simply a directed loop over all variables. However, given an acyclic constraint graph or an
acyclic directed super-structure, it is impossible to form a cycle in the resulting structure;
hence, the optimal parent set for each variable can be identified independently from all
other variables. A convenient property of constraint graphs, and one of their advantages
relative to other methods, is that independent subproblems can be found through global
parameter independence even in constraint graphs which contain cycles. We describe in
‘Solving a component of the constraint graph’ the exact algorithm for finding optimal
parent sets for each case one can encounter in a constraint graph. Briefly, the constraint
graph is first broken up into its strongly connected components (SCCs) that identify
which variables can have their parent sets found independently from all other variables
(‘‘solving a component’’) without the possibility of forming a cycle in the resulting graph.
Typically these SCCs will be single nodes from the constraint graph, but may be comprised
of multiple nodes if cyclic prior knowledge is being represented. In the case of an acyclic
constraint graph, all SCCs will be single nodes, and in fact each variable can be optimized
without needing to consider other variables, in line with theoretical results from Ordyniak
& Szeider (2013). In addition to allowing these problems to be solved in parallel, this
breakdown suggests a more efficient method of sharding the data in a distributed learning
context. Specifically, one can assign an entire SCC of the constraint graph to a machine,
including all columns of data corresponding to the variables in that SCC and all variables
in nodes which are parents to nodes in the SCC. Given that all subproblems which involve
this shard of the data are contained in this SCC of the constraint graph, there will never
be duplicate shards and all tasks involving a shard are limited to the same machine. The
concept of identifying SCCs as independent subproblems has also been described in Fan,
Malone & Yuan (2014).

It is possible to convert any directed super-structure into a constraint graph and vice-
versa though it is far simpler to go from a constraint graph to a directed super-structure.
To convert from a directed super-structure to a constraint graph, one must first identify
all strongly connected components that are more than a single variable. All variables in
a strongly connected component can be put into the same node in a constraint graph
that contains a self loop. Then, one would tabulate the unique parent and children sets
a variable can have. All variables outside of the previously identified strongly connected
components with the same parent and children sets can be grouped together into a node
in the constraint graph. Edges then connect these sets based on the shared parent sets
specified for each node. In the situation where a node in the constraint graph can draw
parents from only a subset of the variables in a node created by the identification of the
strongly connected components, the node must be broken into two nodes that both have
self loops and loops connecting to each other to allow for only a subset of those variables
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to serve as a parent for another node. In contrast, to convert from a constraint graph to a
directed super-structure one would simply draw, for each node, an edge from all variables
in the current node to all variables in the node’s children. We suggest that constraint
graphs are the more intuitive method both due to their simpler representation and ease of
extracting computational benefits from the task.

METHODS
Bayesian network structure learning
Although solving a component in a constraint graph can be accomplished by a variety
of algorithms including heuristic algorithms, we assume for this paper that one is using
some variant of the exact dynamic programming algorithm proposed by Malone, Yuan &
Hansen (2011). We briefly review that algorithm here.

The goal of the algorithm is to identify the optimal Bayesian network defined over
the set of variables without having to repeat any calculations and without having to use
excessive memory. This is done by defining additional graphs, the parent graphs and the
order graph. We will refer to each node in these graphs as ‘‘entries’’ to distinguish them
from the constraint graph and the learned Bayesian network. A parent graph is defined for
each variable and can be defined as a lattice, where the entries to some layer i correspond
to combinations of all other variables of size i. Each entry is connected to the entries in
the previous layers that are subsets of that entry such that (X1,X2) would be connected to
both X1 and X2. For each entry, the score of the variable is calculated using the parents
in the entry and compared to the scores held in the parent entries, recording only the
best scoring value and parent set amongst them. These entries then hold the dynamically
calculated best parent set and associated score, allowing for constant time lookups later on
the best parent set given a set of possible parents. The order graph is structured in the same
manner as the parent graphs except over all variables. In contrast with the parent graphs,
it is the edges that store useful information in the form of the score associated with adding
a given variable to the set of seen variables stored in the entry and the parent set that yields
this score. Each path from the empty root node to the leaf node containing the full set of
variables encodes the optimal network given a topological sort of the variables, and the
shortest path encodes the optimal network. This data structure reduces the time required
to find the optimal Bayesian network from O(n2n(n−1)) time in the number of variables to
O(n2n) time in the number of variables without the need to keep a large cache of values.

Structure learning is flexible with respect to the score function used to identify the
optimal graph. There are many score functions that typically aim to penalize the log
likelihood of the data by the complexity of the graph to encourage sparser structures.
These usually come in the form of Bayesian score functions, such as Bayesian-Dirichlet
(Heckerman, Geiger & Chickering, 1995), or those derived from information theory, such
as minimum description length (MDL) (Suzuki, 1996). Most score functions decompose
across variables of a Bayesian network according to the global parameter independence
property, such that the score for a dataset given a model is equal to the product of the score
of each variable given its parents. While constraint graphs remain agnostic to the specific
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score function used, we assume that MDL is used as it has several desirable computational
benefits. For review, MDL defines the score as the following:

MDL(D|M )= P(D|M )−
1
2
log(N )|B| (1)

where |B| defines the number of parameters in the network. The term ‘‘minimum
description length’’ arises from needing 1

2 log(N ) bits to represent each parameter in
the model, making the second term the total number of bits needed to represent the full
model. The MDL score function has the convenient property that a variable cannot have
more than log

(
n

log(n)

)
parents given n samples, greatly reducing computational time.

Solving a component of the constraint graph
The strongly connected components of a constraint graph can be identified using Tarjan’s
algorithm (Tarjan, 1971). Each SCC corresponds to a subproblem of the constraint graph
and can be solved independently. In many cases the SCC will be a single node of the
constraint graph, because prior knowledge is typically not cyclic. In general, the SCCs of
a constraint graph can be solved in any order due to the global parameter independence
property.

The algorithm for solving an SCC of a constraint graph is a straightforward modification
of the dynamic programming algorithm described above. Specifically, parent graphs are
created for each variable in the SCC but defined only over the union of possible parents for
that variable. Consider the case of a simple, four-node cycle with no self-loops such that
W→X→Y→Z→W . A parent graph is defined for each variable inW ∪X ∪Y ∪Z but
only over valid parents. For example, the parent graph for X1 would be over only variables
in W . Then, an order graph is defined with entries that violate the edge structure of the
constraint graph filtered out. The first layer of the order graph would be unchanged with
only singletons, but the second layer would prohibit entries with two variables from the
same layer because there are no valid orderings in which Xi is a parent of Xj , and would
prohibit entries in which a variableW is joined with a variable of Y . One can identify valid
entries by taking the entries of a previous layer and iterating over each variable present,
adding all valid parents for that variable which are not already present in the set.

A simple example illustrating the algorithm is a constraint graph made up of a four node
cycle where each node contains only a single variable (Fig. 2A). The parent graphs defined
for this would consist solely of two entries, the null entry and the entry corresponding to
the only valid parent. The first layer of the order graph would be all variables as previously
(Fig. 2B). However, once a variable is chosen to start the topological ordering the order of
the remaining variables is fixed because of the constraints, producing a far simpler lattice.

Because constraint graphs can encode a wide variety of different constraints, the
complexity of the task depends on the structure of the constraint graph. Broadly, the results
from Ordyniak & Szeider (2013) still hold, namely, that acyclic constraint graphs can be
solved in quadratic time. As was found in Fan, Malone & Yuan (2014), because each SCC
can be solved independently, the time complexity for constraint graphs containing a cycle
corresponds to the time complexity of the worst case component. Fortunately, although
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Figure 2 An example of a constraint graph and resulting order graph. (A) A constraint graph is defined
as a cycle over four nodes with each node containing a single variable. (B) The resulting order graph dur-
ing the BNSL task. It is significantly sparser than the typical BNSL task because after choosing a variable to
start the topological ordering the remaining variables must be added in the order defined by the cycle.

the complexity of a node engaging in a cycle is still exponential, it is only exponential with
respect to the number of variables that node interacts with. Adding additional, equally
sized nodes to the constraint graph only causes the algorithm to grow linearly in time and
has no additional memory cost if the components are solved sequentially.

The algorithm described above has five natural cases and are described below.
One node, no parents, no self loop: The variables in this node contain no parents, so
nothing needs to be done to find the optimal parent sets given the constraints. This
naturally takes O(1) time to solve.
One node, no parents, self loop: This is equivalent to exact BNSL with no prior knowledge.
In this case, the previously proposed dynamic programming algorithm is used to identify
the optimal structure of the subnetwork containing only variables in this node. This takes
O(n2n) time where n is the number of variables in the node.
One node, one or more parent nodes, no self loop: In this case it is impossible for a cycle
to be formed in the resulting Bayesian network regardless of optimal parent sets, so we
can justify solving every variable in this node independently by the global parameter
independence property. Doing so results in a significant improvement over applying
the algorithm naively because neither the parent graphs nor the order graph need to be
explicitly calculated or stored. The optimal parent set can be calculated without the need
for dynamic programming because the optimal topological ordering does not need to
be discovered. Because no dynamic programming needs to be done, there is no need to
store either the parent or order graphs in memory. This takes O(nmk) time, where n is
the number of variables in the node, m is the number of possible parents, and k is the
maximum number of parents that a node can have, in this case set by the MDL algorithm.
If k is set to any constant value, then this step requires quadratic time with respect to the
number of possible parents and linear with respect to the number of variables in the node.
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One node, one or more parents, self loop: Initially, one may think that solving this SCC
could involve taking the union of all variables from all involved nodes, running exact BNSL
over the full set, and simply discarding the parent sets learned for the variables not in the
currently considered node. However, in the same way that one should not handle prior
knowledge by learning the optimal graph over all variables and discarding edges which
offend the prior knowledge, one should not do the same in this case. Instead, a modification
to the dynamic programming algorithm itself can be made to restrict the parent sets on a
variable-by-variable basis. For simplicity, we define the variables in the current node of the
constraint graph as X and the union of all variables in the parent nodes in the constraint
graph as Y . We begin by setting up an order graph, as usual defined over X . We then add
Y to each node in the order graph such that the root node now is now comprised of Y
instead of the empty set and the leaf node is comprised of X ∪Y instead of just X . Because
the primary purpose of the order graph is to identify the optimal parent sets that do not
form cycles, this addition is intuitive because it is impossible to form a cycle by including
any of the variables in Y as parents for any of the variables in X . In other words, if one
attempted to find the optimal topological ordering over X ∪Y it would always begin with
the variables in Y but would be invariant to the ordering of Y . Parent graphs are then
created for all variables in X but are defined over the set of all variables in X ∪Y , because
that is the full set of parents that the variables could be drawn from. This restriction allows
the optimal parents for each variable in X to be identified without wasting time considering
what the parent set for variables in Y should be, or potentially throwing away the optimal
graph because of improper edges leading from a variable in Y to a variable in X . This step
takes O(n2n+m) time, where n is the number of variables in the node and m is the number
of variables in the parent nodes. This is because we only need to define a parent graph for
the variables in the node we are currently considering, but these parent graphs must be
defined over all variables in the node plus all the variables in the parent nodes.
Multiple nodes: The algorithm as presented initially is used to solve an entire component
at the same time.

RESULTS
While it is intuitive how a constraint graph provides computational gains by splitting
the structure learning task into subproblems, we have thus far only alluded to the idea
that prior knowledge can provide efficiencies past that. In this section we examine the
computational gains achieved in the three non-trivial cases of the algorithm presented in
‘Solving a component of the constraint graph’.

Acyclic constraint graphs can model the global stock market
First, we examine the computational benefits of an acyclic constraint graph modeling the
global stock market. In particular, we want to identify for each stock which other stocks
are predictive to its performance. We chose to do this by learning a Bayesian network
over the opening and closing prices of 54 top performing stocks from the New York Stock
Exchange (NYSE) in the United States, the Tokyo Stock Exchange (TSE) in Japan, and
the Financial Times Stock Exchange (FTSE) in England. Learning a Bayesian network
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Figure 3 A section of the learned Bayesian network of the global stock market. (A) The constraint
graph contains six nodes, the opening and closing prices for each of the three markets. These are con-
nected such that the closing prices in a market depend on the opening prices but also the most recent in-
ternational activity. (B) The most connected subset of stocks from the learned network covering 25 vari-
ables.

over all 108 variables is clearly infeasible, so we encode in our constraint graph some
common-sense restrictions (Fig. 3A). Specifically, opening and closing prices for the same
market are grouped into separate nodes, for a total of six nodes in the constraint graph.
There are no self-loops because the opening price of one stock does not influence the
opening price of another stock. Naturally, the closing prices of one group of stocks are
influenced by the opening price of the stocks from the same market, but they are also
influenced by the opening or closing prices of any markets which opened or closed in the
meantime. For instance, the TSE closes after the FTSE opens, so the FTSE opening prices
have the opportunity to influence the TSE closing prices. However, the TSE closes before
the NYSE opens, so the NYSE cannot influence those stock prices. The dataset consists of
opening and closing prices from these stocks between December 2nd, 2015 and November
29th, 2016, binarized to indicate whether the value was an increase compared to the prior
price seen.

The resulting Bayesian network has some interesting connections (Fig. 3B). For example,
the opening price of Microsoft influences the closing price of Raytheon, and the closing
price of Debenhams plc, a British multinational realtor, influences the closing price of GE.
In addition, there were some surprising and unexplained connections, such as Google and
Johnson & Johnson influencing the closing price of Cobham plc, a British defense firm.
Given that this example is primarily to illustrate the types of constraints a constraint graph
can easily model, we suggest caution in thinking too deeply about these connections.

Schreiber and and Noble (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.122 9/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.122


Table 1 Model comparison between naive Bayes, Bayesian network classifiers (BNC), and random for-
est. Three algorithms were evaluated on the UCI handwritten digits dataset, fed in the binarized value cor-
responding to whether the intensity of a pixel was above average. The fitting time and test set accuracy are
reported for each algorithm.

Model Train time (s) Test set accuracy

Naive Bayes 0.05 0.79
BNC 0.5 0.81
Random forest 1.4 0.89

It took only∼35 s on a computer with modest hardware to run BNSL over 250 samples.
If we set the maximum number of parents to three, which is the empirically determined
maximum number of parents, then it only takes∼2 s to run. In contrast it would be infeasi-
ble to run the exact BNSL algorithm on even half the number of variables considered here.

Constraint graphs allow learning of Bayesian network classifiers
Bayesian network classifiers are an extension of Bayesian networks to supervised learning
tasks by defining a Bayesian network over both the feature variables and the target variables
together. Normal inference methods are used to predict the target variables given the
observed feature variables. In the case where feature variables are always observed, only
the Markov blanket of the target variables must be defined, i.e., their parents and children.
The other variables are independent of the target variables and can be discarded, serving
as a form of feature selection.

A popular Bayesian network classifier is the naive Bayes classifier that defines a single
class variable as the parent to all feature variables. A natural extension to this method is to
learn which features are useful, instead of assuming they all are, thereby combining feature
selection with parameter learning in a manner that has some similarities to decision trees.
This approach can be modeled by using a constraint graph that has all feature variables X
in one node and all target variables y in its parent node, such that y→X .

We empirically evaluated the performance of learning a simple Bayesian network
classifier on the UCI Digits Dataset. The digits dataset is a collection of 8 × 8 images of
handwritten digits, where the features are discretized values between 0 and 16 representing
the intensity of that pixel and the labels are between 0 and 9 representing the digit stored
there. We learn a Bayesian network where the 64 pixels are in one node in the constraint
graph and the class label is by itself it another node in the constraint graph that serves
as a parent. We then train a Bayesian network classifier, a naive Bayes classifier, and a
random forest classifier comprised of 100 trees, on a test set of 1,500 images and test their
performance on a held out 297 images. As expected, the learned Bayesian network classifier
falls between naive Bayes and the random forest in terms of both training time and test set
performance (Table 1).

Futhermore, more complicated Bayesian network classifiers can be learned with different
constraint graphs. One interesting extension is that instead of constraining all features to be
children of the target variable, to allow features to be either parents or children of the target
variable. This can be specified by a cyclic constraint graph where y→X→ y , preventing
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Table 2 Algorithm comparison on a node with a self loop and other parents. The exact algorithm and
the constrained algorithm proposed here were on a SCC comprosied of a main node with a self loop and
one parent node. Shown are the results of increasing the number of variables in the main node while keep-
ing the variables in the parent node steady at five, and the results of increasing the number of variables in
the parent node while keeping the number of variables in the main node constant. For both algorithms
we show the number of nodes across all parent graphs (PGN), the number of nodes in the order graph
(OGN), the number of edges in the order graph (OGE) and the time to compute.

Exact Constraint graph

PGN OGN OGE Time (s) PGN OGN OGE Time (s)

Variables
4 2,304 512 2,304 0.080 1,024 16 32 0.033
8 53,248 8,192 53,248 1.30 32,768 256 1,024 0.545
12 1,114,112 131,072 1,114,112 27.03 786,432 4,096 24,576 9.56

Parents
4 2,304 512 2,304 0.087 1,280 32 80 0.045
8 53,248 8,192 53,258 1.401 20,480 32 80 0.356
12 1,114,112 131,072 1,114,112 27.22 327,680 32 80 4.01

the model from spending time identifying dependencies between the features. Finally, in
cases where some features may be missing, it may be beneficial to model all dependencies
between the features in order to allow inference to flow from observed variables not directly
connected to the target variables to the target variables. This can be modeled by adding a
self loop on the features variables X , allowing all edges to be learned except those between
pairs of target variables. Learning a Bayesian network classifier in this manner will suffer
from the same computational challenges as an unconstrained version, given the looseness
of the constraints.

Self-loops and parents
We then turn to the case where the strongly connected component is a main node with a
self loop and a parent node. Because an order graph is defined only over the variables in
the main node its size is invariant to the number of variables in the parent node, allowing
for speed improvements when it comes to calculating the shortest path. In addition, parent
graphs are only defined for variables in the parent set, and so while they are not smaller
than the ones in the exact algorithm, there are fewer. We compare the computational time
and complexity of the underlying order and parent graphs between the exact algorithm
over the full set of variables and the modified algorithm based on a constraint graph
(Table 2). The data consisted of randomly generated binary values, because the running
time does not depend on the presence of underlying structure in the data. We note that in
all cases there are significant speed improvements and simpler graphs but that there are
particularly encouraging speed improvements when the number of variables in the main
node are increased. This suggests that it is always worth the time to identify which variables
can be moved from a node with a self loop to a separate node.
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Figure 4 Cyclic constraint graphs. (A) This constraint graph is comprised of a simple two node cy-
cle with each node containing four variables. (B) The learned Bayesian network on random data where
some variables were forced to identical values. Each circle here corresponds to a variable in the resulting
Bayesian network instead of a node in the constraint graph. There were multiple possible cycles which
could have been formed but the constraint graph prevented that from occuring. (C) This constraint graph
now encodes a four node cycle each with four variables. (D) The learned Bayesian network on random
data with two distinct loops of identical values forced. Again, no loops are formed.

Cyclic constraint graphs
Lastly, we consider constraint graphs that encode cyclic prior knowledge. We visually
inspect the results from cyclic constraint graphs to ensure that they do not produce
cyclic Bayesian networks even when the potential exists. Two separate constraint graphs
are inspected, a two node cycle and a four node cycle (Figs. 4A and 4C). The dataset is
comprised of random binary values, where the value of one variable in the cycle is copied
to the other variables in the cycle to add synthetic structure. However, by jointly solving
all nodes cycles are avoided while dependencies are still captured (Figs. 4B and 4D).

We then compare the exact algorithm without constraints to the use of an appropriate
constraint graph in a similer manner as before (Table 3). This is done first for four node
cycles where we increase the number of variables in each node of the constraint graph and
then for increasing sized cycles with three variables per node. The exact algorithm likely
produces structures that are invalid according to the constraints and so this comparison is
done solely to highlight that efficiencies are gained by considering the constraints. In each
case using a constraint graph yields simpler parent and order graphs and the computational
time is significantly reduced. The biggest difference is in the number of nodes in the parent
graphs, as the constraints place significant limitations on which variables are allowed to be
parents for which other variables. Since the construction of the parent graph is the only
part of the algorithm which considers the dataset itself it is unsurprising that significant
savings are achieved for larger datasets when much smaller parent graphs are used.
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Table 3 Algorithm comparison on a cyclic constraint graph. The exact algorithm and the constrained algorithm proposed here were run for four
node cycles with differing numbers of variables, cycles with different numbers of nodes but three variables per node, and differing numbers of sam-
ples for a four-node, three-variable cycle. All experiments with differing numbers of variables or nodes were run on 1,000 randomly generated sam-
ples. Shown for both algorithms are the number of nodes across all parent graphs (PGN), the number of nodes in the order graph (OGN), the num-
ber of edges in the order graph (OGE) and the time to compute. Since the number of nodes does not change as a function of samples those values
are not repeated in the blank cells.

Exact Exact

PGN OGN OGE Time (s) PGN OGN OGE Time (s)

Variables
1 32 16 32 0.005 8 14 16 0.005
2 1,024 256 1,024 0.036 32 186 544 0.014
3 24,576 4,096 24,576 0.611 96 3,086 16,032 0.320
4 524,288 65,536 525,288 14.0 256 54,482 407,328 7.12

Nodes
2 192 64 192 0.111 48 56 150 0.008
4 24,576 4,096 24,576 0.634 96 3,086 16,032 0.217
6 2,359,296 262,144 2,359,296 60.9 144 168,068 1,307,358 26.12

Samples
100 24,576 4,096 24,576 0.357 96 3,086 16,032 0.311
1,000 – – – 0.615 – – – 0.211
10,000 – – – 2.670 – – – 0.357
100,000 – – – 243.9 – – – 10.41

DISCUSSION
Constraint graphs are a flexible way of encoding into the BNSL task prior knowledge
concerning the relationships among variables. The graph structure can be exploited to
identify potentially massive computational gains, and acyclic constraint graphs make
problems tractable which would be infeasible to solve without constraints. This is
particularly useful in cases where there are both a great number of variables and many
constraints present from prior knowledge. We anticipate that the automatic manner in
which parallelizable subtasks are identified in a constraint graph will be of particular
interest given the recent increase in availability of distributed computing.

Although the networks learned in this paper are discrete, the same principles can be
applied to all types of Bayesian networks. Because the constraint graph represents only a
restriction in the parent set on a variable-by-variable basis, the same algorithms that are
used to learn linear Gaussian or hybrid networks can be seamlessly combined with the
idea of a constraint graph. In addition, most of the approximation algorithms which have
been developed for BNSL can be modified to take into account constraints because these
algorithms simply encode a limitation on the parent set for each variable.

One could extend constraint graphs in several interesting ways. The first is to assign
weights to edges so that the weight represents the prior probability that the variables in the
parent set are parents of the variables in the child set, perhaps as pseudocounts to take into
account when coupled with a Bayesian scoring function. A second way is to incorporate
‘‘hidden nodes’’ that are variables which model underlying, onobserved phenomena and
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can be used to reduce the parameterization of the network. Several algorithms have been
proposed for learning the structure of a Bayesian network given hidden variables (Elidan
et al., 2001; Elidan & Friedman, 2005; Friedman, 1997). Modifying these algorithms to
obey a constraint graph seems like a promising way to incorporate restrictions on this
difficult task. A final way may be to encode ancestral relationships instead of direct parent
relationships, indicating that a given variable must occur at some point before some other
variable in the topological ordering.
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