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ABSTRACT
In this article, a data-driven model based on the incremental deep extreme learning
machine (IDELM) algorithm is proposed to predict the temperature distribution in
the furnace. To this end, computational fluid dynamics (CFD) simulations are carried
out first to get temperature distributions under typical working conditions. Based on
the air distribution mode, the simulation results are divided into six subclasses. Then
the K-means clusteringmethod is applied to find out the benchmark working condition
of each subclass. Moreover, the random sampling method is used to extract samples to
reduce computational complexity. Modeling inputs are selected according to the CFD
boundary conditions and combustion mechanisms, and data sets are reconstructed
based on the increments of each actual working condition from the benchmarkworking
condition. Finally, an IDBN-based prediction model is built in each subclass. The
experimental results show that the IDBN-basedmodel has a promising predictive ability
with less than 11% symmetric mean absolute percentage error.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning
Keywords Temperature distribution, IDELM algorithm, CFD simulation, K-means clustering

INTRODUCTION
Aiming at reaching the goals of the ‘‘Carbon peak and carbon neutrality’’ policy, clean
sources of energy have been greatly developed in the past few decades. In this regard,
numerous optimizations have been proposed in the field of power generation, which
account for 44% of total carbon emissions (Wang, Guo & Chen, 2021). Despite the rapid
development of clean sources of energy, coal-fired power generation still accounted for
71.13% of the total electricity generation in 2021 and it is still considered a stable source
to generate electricity (Li et al., 2021). Pulverized coal combustion in thermal power plants
is a multivariable coupled system that includes complex physical and chemical reactions.
Studies show that the temperature distribution of the furnace affects the combustion
stability and the generation of pollutants and unburned carbon losses. Accordingly, it is
considered the main indicator of the combustion state. The monitoring and control of the
temperature distribution can stabilize and optimize combustion, and prevent slagging and
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local overheating. It is worth noting that considering the high temperature of the furnace
and the necessity to monitor the furnace status rapidly, most temperature and speed
sensors cannot be directly installed in the furnace. Currently, the conventional methods for
measuring the furnace temperature are sparse temperature point measurements. However,
this method does not reflect the temperature distribution and does not support real-time
3D visualization of the furnace temperature. Therefore, it is of significant importance to
investigate new schemes and resolve shortcomings in this regard.

Research of furnace temperature distribution can bemainly classified into two categories,
including direct CFD simulation and indirect methods. With appropriate simplifications,
CFD simulation can solve partial differential equations of the combustion process and two-
phase flow numerically. The flow field, temperature field, and properties of combustion
products can be obtained (Dindarloo & Hower, 2015). Based on CFD simulations results,
the relationships between the temperature distribution and operating parameters are
analyzed. Accordingly, the influence of different parameters on the combustion process
can be analyzed, including the boiler load (Xu, Azevedo & Carvalho, 2001; Laubscher
& Rousseau, 2019), burner arrangement and tilt angle (Choi et al., 2020; Tan et al., 2017),
separated over-fire air (SOFA) ratio and SOFA location (Ma et al., 2015), yaw and tilt angles
(Jin et al., 2021), distribution modes [11], secondary air boundary conditions (Zadravec,
Rajh & Kokalj, 2022), and air staging combustion (Zhang et al., 2015;Wang & Zhou, 2020).
With the development of new sources of energy and deep peak-load regulations, it is
necessary to modify conventional thermal power units to work under ultra-low loads.
In this regard, CFD simulations show that operating conditions at lower boiler loads
considerably affect the flow and temperature fields and the concentrations of combustion
products (Chang, Wang & Zhou, 2022; Belosevic et al., 2019; Zhao et al., 2018; Yuan et al.,
2019). The temperature distribution of CFD can be used to the combustion stability
monitor under ultra-low loads. Recently, the combustion simulation was coupled with
steam generation model to obtain the flow behavior in the combustion chamber, the steam
generation, and distribution (Mahvelati et al., 2022). Then an intelligent algorithm was
used to improve the simulation accuracy of CFD (Secco et al., 2015; Debiagia et al., 2020).
It was found that CFD simulations can be applied to simulate the macroscopic phenomena
in the furnace and complex reactive flows. However, CFD is based on iterative methods
to solve the partial equations and simulate the physical and chemical processes, which
is a time-consuming process and cannot meet the requirements of real-time predictions.
Furthermore, most analyses involved a few operating parameters, which do not correspond
to multi-variable operating conditions in the actual field.

The second category is indirect combustion detection, which is the inversion or
reconstruction of the 2D and 3D distribution of the temperature field using optical
imaging or acoustic measurement methods. The optical method is based on the principle
that objects with different temperatures have different radiation wavelengths. In this
regard, heat-sensitive images of the flow field are captured by a CCD camera (Zhou, Han
& Sheng, 2002; Zhou et al., 2005). Then the Monte-Carlo method is applied to calculate
the radiation intensity and establish the relationship between the radiation flame image
and the temperature distribution. Tikhonov regularization and its improved algorithm
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and the least square QR decomposition (LSQR) method are the most widely used methods
to reconstruct the temperature field. Recently, flame light field imaging was proposed as
a new type of flame detection method (Liu et al., 2012). In this radiation-based method,
the reconstruction technique was developed on the backward Monte-Carlo methods.
The reconstruction matrix equations are solved using the LSQR method (Li et al., 2019).
The acoustic temperature field reconstruction method is based on the principle that the
propagation velocity of the sound wave is different at different temperatures. The inversion
algorithms in this regard include line-integrated measurements (Barth & Raabe, 2011),
ART iteration (Ma, Liu & Cao, 2019), radial basis function approximation polynomial
(Kong et al., 2020a), kernel regression model (Kong et al., 2020b), and artificial neural
network (Jeong et al., 2021). Zhou, Dong & Zhao (2020) combined the reflective sinusoidal
radial basis function and QR decomposition method and proposed a temperature field
reconstruction algorithm to solve the low accuracy problem of the temperature field edge
reconstruction caused by the traditional acoustic temperature measurement algorithms.
Accordingly, high-accuracy reconstruction of two-dimensional temperature fields was
achieved. It is worth noting that both the optical image radiation method and the acoustic
wave method can be applied to monitor the temperature field of the furnace under ideal
conditions. However, both methods require additional equipment to be installed in the
furnace. In such a high-temperature and complex furnace, there are uncertain factors such
as abrasion and ash deposition that affect the measurement accuracy. Considering the
interference originating from other devices and human measurement errors, large errors
in the temperature field inversion are unavoidable in single measurement methods.

With the rapid development of computer technology and artificial intelligence
technology, data-driven modeling based on deep learning has been widely used to predict
the concentration of NOx (Xie et al., 2020; Kang et al., 2017), unburned carbon (Dindarloo
& Hower, 2015), and predict thermal efficiency (Yan, Wza & Xi, 2019; Ren, Zhang &
Zhang, 2019) in thermal power plants. At present, the common algorithms in parameter
prediction of thermal power plants include artificial neural network (ANN), support
vector machine (SVM), extreme learning machine (ELM), deep neural network (DNN)
deep belief network (DBN) and long short-term memory network (LSTM). Although
remarkable achievements have been obtained, these methods have not been used to model
furnace distribution parameters. Based on the performed literature survey, it was intended
to propose a novel data-driven model based on the incremental deep extreme learning
machine (IDELM) algorithm to predict the furnace temperature distribution. To this end,
furnace temperature distribution under typical working conditions was calculated using
CFD simulation. Then different subclasses were defined in data-driven modeling according
to the combustion air distribution mode. The K-Means clustering method was adopted
to find out the benchmark working condition of each subclass and typical samples were
extracted by random sampling. Finally, the IDBN-based prediction model was built in each
subclass. The performance of the proposed model was further analyzed compared with
other algorithms.

The main contributions of this study are as follows:
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(1) CFD simulation results and boundary conditions are used as the data sets for furnace
temperature distribution modeling, realizing the combination of mechanism modeling
and data-driven modeling.
(2) For discrete variables such as the combustion air distribution mode and the coal mill
operation mode, special treatment is performed to accommodate data-driven modeling.
K-Means clustering is used to find the benchmark conditions and random sampling is
applied for representative sample extraction to achieve data set reconstruction.
(3) Based on the incremental changes of input and output of typical and benchmark
conditions, the IDELM algorithm is proposed to predict the furnace temperature
distribution.

This article is organized as follows: The research object is introduced in ‘Boiler
Description and Overall Modeling Framework’. Then CFD simulations under typical
operating conditions and the preparation of datasets are presented in ‘CFD Simulation’.
The modeling of the furnace temperature distribution based on the IDELM is displayed
in ‘Modeling the Temperature Distribution’, and the results of the experimental analysis
are presented in ‘Results & Discussion’. Finally, the main conclusions are summarized in
‘Conclusion’.

BOILER DESCRIPTION AND OVERALL MODELING
FRAMEWORK
Boiler description
In the present study, a 350 MW supercritical coal-fired boiler is selected as the research
subject. The boiler has a π-shaped arrangement with a single furnace chamber and a double
flue. The furnace is 58.3 m high and has a cross-sectional area of 14.627 m× 14.627 m. The
horizontal flue is 5.32 m long and the depths of the front and rear tail flue are 6.05 m and
6.82m, respectively. A new type of tangential combustion is adopted in the boiler. Six layers
of pulverized coal air chambers (A∼F) are distributed in the main combustion area of the
furnace, and each layer is arranged with four horizontal pulverized coal nozzles on the four
walls of the water-cooled wall. Moreover, eight layers of the secondary air (AA, AB, BC,
CC, DD, DE, EF, and FF) and four layers of separated over fire air (SOFA1∼SOFA4) enter
the furnace through the nozzles in the four corners of the chamber. The boiler structure
and the burner arrangement are schematically shown in Fig. 1.

The main operating parameters at the rated power of the boiler are shown in Table 1.

CFD SIMULATION
Figure 1 shows that the computational domain includes the furnace chamber, burner, SOFA
nozzles, and horizontal and vertical flues. Firstly, the geometric model was established in
the SolidWorks platform, and then the model was meshed using the ICEM preprocessor.
In order to ensure calculation accuracy, structured hexahedral and refined unstructured
meshes were used for the furnace body and the main combustion area, respectively. The
grid systemwas simulated using 2.5, 2.8, and 3millionmeshes, and the average temperature
along the height of the furnace chamber was used as the indicator. Based on the performed
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Figure 1 The overall boiler structure and burner arrangement.
Full-size DOI: 10.7717/peerjcs.1218/fig-1

Table 1 Main boiler operating parameters at the rated power.

Parameter Values Unit

pulverized coal 53.75 kg/s
total air 370.64 kg/s
average excess air coefficient 1.20 –
primary air 110.07 kg/s
second air 260.54 kg/s
SOFA 111.18 kg/s
primary air temperature 65.0 ◦ C
secondary air temperature 356.0 ◦ C

grid independence test and balancing simulation accuracy and computational speed of
the numerical simulation, a grid with 2.8 million meshes was selected to simulate the
combustion process.
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Table 2 Analysis of the pulverized coal.

Ultimate analysis (%) Proximate analysis (%) LHV (ar)

C H O N S Moisture Ash Volatile Fixed carbon Qnet

44.82 2.68 10.26 0.52 0.13 31.75 9.84 24.78 33.63 16310

In the present study, Fluent 15.0 software was applied to simulate the combustion
process. The gas-phase turbulence was calculated using a Realizable k- ε model, which
is closer to Reynolds averaged Navier–Stokes equations. The gas-solid two-phase flow
is calculated using the stochastic tracking model in the Euler–Lagrange method. The
combustion process includes the coal devolatilization, volatile combustion and char
combustion. Coal devolatilization is modeled by a two-step competitive reaction model,
volatile combustion is modeled by a non-premixed combustion model, and char
combustion is described by a diffusion/kinetic model. The discrete ordinates (DO) model
is used for the radiation. The coal quality is regarded as invariant during the simulation.
The ultimate and proximate analysis results are presented in Table 2.

To evaluate the accuracy of the CFD simulation, the results at 100% load were compared
with experimental data under the same conditions. In this regard, furnace exit gas
temperature (FEGT), platen-superheater bottom gas temperature (PBGT), economizer
exit temperature (EET), and oxygen content of outlet flue gas (O2%) were compared.
Table 3 shows that the absolute error of FEGT is 39.55 K, which is equivalent to 3.11%.
Furthermore, the absolute error of PBGT is 8.25K and the relative error is 0.52%. The
relative error of EET and O2 concentration at the boiler outlet is 4.37%. The performed
analyses demonstrate that the CFD model can be applied to accurately simulate the
combustion.

CFD simulations are carried out for different loads, burner arrangement modes,
secondary air distribution modes, SOFA distribution modes, and burner tilt angles. More
specifically, 120 operating conditions were simulated the temperature distribution and the
concentration of combustion products were obtained.

MODELING THE TEMPERATURE DISTRIBUTION
Framework of IDEM modeling
Modeling the temperature distribution in the furnace mainly consists of three steps,
including CFD simulation, data sets classification and reconstruction, and IDELM
modeling. The overall modeling process is presented in Fig. 2.

Step 1: Input parameters and boundary conditions are set according to the type of boiler
and the unit load. Then CFD simulation is carried out to simulate the combustion s and
flow process.

Step 2: Based on the secondary air distribution mode, the CFD datasets are divided
into 6 subclasses. The K-Mean clustering method is used to find the benchmark working
condition of each subclass. Representative samples of each working condition are selected
and then the dataset is reconstructed using data obtained by solving the corresponding
increments between other working conditions and the benchmark.
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Table 3 The comparison between CFD simulation and site values.

CFD
simulation

site values Relative error

FEGT (K) 1311.7 1272.15 3.11%
PBST (K) 1592.9 1601.15 0.52%
EET (K) 719.5 695.15 3.5%
O 2 (%) 3.94 4.12 4.37%

Figure 2 Flow chart of IDELM prediction model.
Full-size DOI: 10.7717/peerjcs.1218/fig-2

Step 3: Based on the reconstruction datasets of temperature increment of each working
condition, prediction models of each subclass are established based on the DELM.
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Figure 3 Air distributionmode of unit. (A) Balanced mode secondary air dampers openings (B) Pagoda
mode secondary air dampers openings (C) Balanced mode SOFA dampers openings (D) Pagoda mode
SOFA dampers openings (E) Waist mode SOFA dampers openings.

Full-size DOI: 10.7717/peerjcs.1218/fig-3

Table 4 Classification of working conditions.

Classification Secondary air
distribution

SOFA air
distribution

Datasets

Subclass 1 Balanced Balanced BB1∼BB20
Subclass 2 Pagoda Balanced PB1∼PB20
Subclass 3 Balanced pagoda BP1∼BP20
Subclass 4 Pagoda pagoda PP1∼PP20
Subclass 5 Balanced Waist drum BW1∼BW20
Subclass 6 Pagoda Waist drum PW1∼PW20

Classification of the working conditions
There are not only continuous variables among the inputs of the CFD model but also
variables such as burner arrangement mode and distribution mode of the air dampers that
have discrete nature. These variables affect the location of the center of the combustion
flame, the temperature distribution, and the combustion products.

Although the volume of secondary air and SOFA are different under different loads,
the flame center position and temperature distribution in the furnace are generally similar
under the same air distribution patterns. Figure 3 indicates that there are two kinds of
secondary air distribution: balanced mode and pagoda mode. Moreover, there are three
SOFA distributions, including balanced mode, pagoda mode, and waist drum mode. In
order to cover different air distribution modes, 120 working conditions are divided into
six subclasses, in which each subclass has 20 datasets. The subclasses are listed in Table 4.

Selecting clustering centers
The training sets for each subclass is limited. In order to improve the prediction accuracy,
a benchmark working condition was set for each subclass. Then the increment-based
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Table 5 Clustering centers of each subclass.

subclass1 subclass2 subclass3 subclass4 subclass5 subclass6

BB10 PB10 BP10 PP10 BW10 PW10

method was used to construct the temperature distribution model. Considering the high
dimensionality, large number, and complex nature of the simulated experimental data, the
K-means data clustering method was applied to select clustering centers. This method is
an iterative clustering algorithm, which continues iterative calculations until the criterion
function converges.

For each subclass, the temperature field data obtained from CFD simulation is extracted,
and the distance function is used as the evaluation index for the similarity measure of
the K-means clustering algorithm. Based on the minimum Euclidean distance between
the benchmark working condition and other working conditions of this subclass, the
benchmark working condition for each subclass is obtained. This can be mathematically
expressed as follows:

D=
k∑

j=1

√√√√ n∑
i=1

(xi−yi)2 (1)

Where, k is the number of cluster centers, xi is the temperature distribution value in the
benchmark working condition, yi is the temperature distribution value in other working
conditions, and D is the sum of the Euclidean distance.

The final cluster center selection is shown in Table 5. The clustering results show that the
benchmark working conditions of the six subclasses are 75% load, BCDEF mill operation,
and SOFA is 0 tilt angle.

Data preprocessing
The studied boiler is equipped with six coal mills, and the pulverized coal enters the
furnace through the burner nozzles on the four walls of the boiler. Three types of mill
operation modes are designed for each load. Figure 4 shows the temperature distribution
of YOZ planes in different coal mill operation modes at 100% load. Fig. 4A the case, in
which ABCDE mills operate. In this case, the flame center is higher than others, while
the temperature of the cold ash hopper is the highest. However, the lowest temperature
occurs in the SOFA area. In Fig. 4B, the mill distribution range is large so the cold ash
hopper area temperature and SOFA take the temperature between the middle. Fig. 4C
shows that the flame center moves upward, the high-temperature area is large, and the
highest temperature occurs in the SOFA area. Meanwhile, the lowest temperature occurs
in the cold ash hopper area. It is inferred that the coal mill operation mode significantly
affects the temperature field distribution.

The six mills in the actual plant are arranged at different furnace heights, but such
discrete variables cannot be used as input for data-driven modeling. In order to resolve this
problem, the coal mill operation mode is converted into a flame center position correction
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Figure 4 Temperature distribution contours on YOZ planes in different coal mill operationmodes.
(A) ABCDE coal mill, (B) ABCDEF coal mill, (C) BCDEF coal mill.

Full-size DOI: 10.7717/peerjcs.1218/fig-4

factor.

M=A−B(xr+1x) (2)

where M is the parameter that reflects the effect of the relative position of the highest
temperature along the furnace height. A and B are empirical coefficients that depend on
the fuel type and furnace structure, 1x denotes the relative position correction value of
the highest point of the flame (Li, Yan & Liu, 2017). Xr is the relative height of the burner,
which can be calculated in formula (3).

xr =
∑

niBjHri

HL
∑

niBi
(3)

where HL is the height of the furnace chamber, that is, the height from the bottom of the
furnace or the middle plane of the cold ash hopper to the middle of the furnace exit smoke
window middle height of the furnace chamber; Hr is the height of the burner arrangement,
that is the height of the burner axis from the middle plane of the cold ash hopper; HL is
the amount of coal burned corresponding to the burner; Hri is the height of the burner
arrangement corresponding to the layer; ni is the number of burners in the layer.

The variables in the 3D data set have different orders of magnitude. Table 6 lists the
value range of each parameter.

The min-max normalization is carried out to preprocess the data. This can be
mathematically expressed as follows:

x∗i =
xi−xmin

xmax−xmin
(4)

where xi is the original value, x∗i is the normalized value, xmax and xmin xmin is themaximum
and minimum value.
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Table 6 Simulation variables range.

Number Variables Unit Value range

1 unit load MW [175, 350]
2 total air volume t/h [603, 1305]
3 total coal volume t/h [90, 212]
4 primary air volume t/h [218, 452]
5 secondary air volume t/h [330, 897]
6 SOFA dampers opening % [5, 100]
7 secondary air dampers opening % [10, 90]
8 secondary air temperature ◦ C [320, 366]
9 x coordinates m [−7.62, 7.62]
10 y coordinates m [6.5, 64.8]
11 z coordinates m [−25.51, 7.62]
12 temperature in furnaces K [300, 1900]
13 correction factor M – [1.03, 1.69]

Reconstruction of the dataset
The training data in machine learning should be selected in a way to balance the trade-off
between computational complexity and accuracy. Based on the mesh independence
test, a model with 2.8 million meshes is selected in the simulation, so each dataset has
2.8 million data. However, the huge dataset in data-driven modeling will increase the
information redundancy and model complexity, thereby reducing the computational
efficiency. Therefore, information extraction is the main challenge for a data-driven
model.

The process of sample selection and dataset reconstruction is shown in Fig. 5. For 20
typical working conditions of each subclass, the increment between the data of 19 working
conditions and the corresponding variables of the benchmark working condition is firstly
calculated to obtain 19 new increment data sets. Similar to cross-validation, one dataset is
selected as the test dataset, and the remaining 18 newly constructed datasets are randomly
sampled. In the present study, 50,000 samples with the same spatial location are selected
for each working condition. Finally, the selected samples are reconstructed into one dataset
as the training and validation set.

IDELM modeling
Deep extreme learning machine (DELM), also known as multi-layers extreme learning
machine (ML-ELM), is a deep neural network formed by stacking multiple extreme
learning machine autoencoder (ELM-AE). Its structure is shown in Fig. 6. In this method,
ELM-AE is initially used as the basic unit for unsupervised learning to train and learn the
input data. Then input weights and bias (W, b) of ELM-AE are randomly generated and
the implied layer matrix H is formulated in the form below:

H = g (WX+b). (5)
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Figure 5 Flow chart of sample selection and dataset reconstruction.
Full-size DOI: 10.7717/peerjcs.1218/fig-5

The loss function of the ELM network is defined as follows:

minLELM−AE =
1
2
‖β‖2+

C
2
‖X−Hβ‖2. (6)

DELM adds the restriction of the output weight regular term, which can prevent
overfitting. The output weights β of ELM-AE can be calculated using the following
expression:

β =


(
I
C
+HTH

)
HTX ,N ≤ n

HT
(
I
C
+HTH

)
HTX ,N > n

(7)

Where C is the network regularization parameter, which is introduced to improve the
generalization performance of the ELM-AE method; X is the input sample matrix; n is
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Figure 6 Model structure of DELM.
Full-size DOI: 10.7717/peerjcs.1218/fig-6

the number of neurons in the hidden layer; N is the number of input samples, and g () is
the activation function. By training ELM-AE, unsupervised mapping of samples to depth
features is realized.

The input weights of the nodes in each hidden layer are transpositions of the output
weights between that layer and the previous layer forming the ELM-AE. Therefore, each
layer can be implemented to extract the features of the previous layer. This can be expressed
as follows:

H k
= g (βk)TH k−1,k> 1. (8)

Unlike other deep learning methods, DELM does not require fine-tuning. Both ELM-AE
and the final DELM regression layers use the least-squares multiplication method and only
one step of inverse calculation to obtain the updated weights. Consequently, DELM has
fast training so it is an appropriate model for online modeling and real-time prediction of
temperature fields.

In the present study, the DELM network is constructed using three hidden layers. It
should be indicated that the higher the number of hidden layers, the more complex the
network, and the higher the training time. To accurately predict temperature distribution,
trial simulations were carried out and the number of nodes in the three hidden layers is
set to 30, 50, and 50, respectively. Moreover, a tanh function was used as the network
activation function.

The following 11 variables were selected as inputs: x-coordinate, y-coordinate, z-
coordinate, load increment, total air volume increment, total coal volume increment,
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total primary air volume increment, total secondary air volume increment, secondary
air temperature increment, coal mill increment (relative position of the flame center),
and angle increment. In return, the difference in 3D temperature distribution between
the predicted working conditions and the benchmark working condition was the output
variable. After IDEMmodeling, the incremental prediction of the temperature distribution
for different working conditions was obtained separately. The actual temperature field
can be obtained by superimposing the incremental output and the benchmark working
condition.

RESULTS & DISCUSSION
Evaluation indicator
In this article, the IDELM algorithm was used to model six subclasses and obtain the
temperature distribution library of this unit under different operating conditions. The
IDELM-based prediction results are compared with the values obtained from CFD
simulation and ELM, deep belief network (DBN), and deep neural network (DNN)
algorithms. The generalization performance and prediction accuracy of algorithms are
evaluated using the mean absolute error (MAE), symmetric mean absolute percentage
error (SMAPE), and decision coefficient (R2). These indicators are defined as follows:

MAE =
1
N

N∑
i=1

∣∣yp(i)−yc(i)∣∣ (9)

SMAPE =
1
N

N∑
i=1

∣∣yp(i)−yc (i)∣∣
(yp(i)+yc (i))/2

(10)

R2
= 1−

[∑N
i=1
(
yp(i)−yc(i)

)2]/N[∑N
i=1

(
yp(i)−yc(i)

)2]/
N
. (11)

WhereN is the number of samples in the test set; yp represents average value of temperature
3D distribution, yc is numerical simulation value of temperature 3D distribution; yp
indicates prediction of temperature 3D distribution value.

The MAE indicator reflects the average deviation degree between the CFD simulation
data and the predicted data. Moreover, the SMAPE indicator is used to evaluate the
goodness-of-fit of the model. The lower the values of MAE and SMAPE, the better the
prediction performance. Finally, the R2 represents the matching degree between the
predicted and numerical simulation data. The closer its value to 1, the stronger the fitting
ability of the model.

Analysis of different sample sizes
In this article, the random sampling method is used to select representative samples
among 2.8 million data in each working condition. The distribution of samples in the
three-dimensional furnace is shown in Fig. 7. It is observed that samples cover the whole
spatial area of the furnace so the integrity of the information is guaranteed. In the main
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Figure 7 Scatter plot of samples distribution.
Full-size DOI: 10.7717/peerjcs.1218/fig-7

Table 7 Results of modeling with different number of samples.

Samples MR2 MMAE MSMAPE

30,000 0.84 106.50 11.75
50,000 0.85 103.53 11.13
80,000 0.84 107.13 11.57

combustion zone and SOFA zone, the combustion reaction is complex and the temperature
distribution varies greatly. Therefore, the selected samples in these zones are relatively
dense. Three models with 30,000, 50,000, and 80,000 samples were analyzed respectively.
19 increment-based datasets were used as test sets in turn, the remaining 18 working
conditions are randomly sampled, and the datasets were reconstructed. After IDELM
modeling, the average values of the performance indexes were calculated. Table 7 shows
that the performance indicators of the 50,000 samples are better than those with 30,000
and 80,000 samples. Accordingly, 50,000 samples were selected in all working conditions.
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Table 8 Performance indicators of different algorithms in subclass 2.

DELM DBN DNN ELM

max 0.99 0.97 0.98 0.98
R 2 min 0.70 0.59 0.69 0.68

mean 0.86 0.83 0.85 0.85
max 141.53 146.28 143.49 144.62

MAE min 26.85 32.47 31.84 34.59
mean 96.85 106.39 103.70 99.15
max 13.58 15.62 14.08 15.38

SMAPE min 2.87 4.51 3.73 3.92
mean 10.22 13.56 10.65 11.05

Comparative analysis of different algorithms
To verify the effectiveness of the temperature distribution model based on the proposed
method, the DELM prediction results were compared with the results obtained from deep
belief network (DBN), deep neural network (DNN), and ELM algorithms. The prediction
results in subclass 2 are presented in Table 8. It is observed that the prediction results of
the DELM-based model outperform the other models. The mean R2 of the DELM-based
prediction model is 0.86, indicating that the prediction model can accurately predict the
temperature distribution in the furnace. On the other hand, the DELM-based prediction
model has the smallest MAE value, and its SMAPE value is around 10%. Accordingly, it is
concluded that the DELM-based temperature distribution prediction model has promising
prediction accuracy and excellent generalization ability.

Figure 8 shows the error boxplot of the studied algorithms. It is observed that among the
studied algorithms, theDELMalgorithmhas the lowest absolute error while having a tighter
variation bandwidth. The variation of the predicted results using the DELM algorithm is
consistent with that of the CFD simulation. It is concluded that the DELM-based model
has a reasonable fitting effect and prediction ability.

The PB4 working condition is closest to the average performance of subclass 2. Figure
9 illustrates the PB4 prediction results of four algorithms. We can see that the prediction
results of the four algorithm models are consistent with the trend of the CFD target value.
The predicted value under the IDELM model is closer to CFD target value, and the results
of the other three prediction models of temperature distribution are higher than the target
data, and the DBN results have the most deviation.

Prediction analysis of different working conditions
To analyze the overall performance of the proposed model, the prediction results of the
six subclasses are validated respectively. Table 9 shows that the mean R2 of all subclasses
is higher than 0.82, which has a good consistency with experimental data. Furthermore, it
is found that Subclass 2 has the best model prediction with the highest average R2 and the
smallest MAE and SMAPE values. On the other hand, Subclass 3 has the smallest mean R2

and Subclass 5 has the largest prediction error with a mean MAE of 109.76 and SMAPE
of 11.02%. It is inferred that as the working condition is closer to the center of clustering,
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Figure 8 Error box plot of different algorithms.
Full-size DOI: 10.7717/peerjcs.1218/fig-8

Figure 9 Prediction results of different algorithms on the PB4 dataset.
Full-size DOI: 10.7717/peerjcs.1218/fig-9

the prediction results improve and all poor predictions occur near 50% load. The furnace
flame filling degree at a lower load is reduced and the temperature 3D distribution changes
significantly relative to the benchmark operating conditions.

CONCLUSIONS
In the present study, the IDELM model was established to predict the temperature
distribution in the furnace using CFD simulation. Based on the obtained results and
performed analyses, the main conclusions can be summarized as follows:

(1) Combining CFD simulation data of typical working conditions with data-driven
machine learningmodeling, the temperature distribution ismodeled accurately. Thismodel
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Table 9 Performance indicators of different subclasses.

Subclass1 Subclass2 Subclass3 Subclass4 Subclass5 Subclass6

max 0.98 0.99 0.99 0.99 0.97 0.99
R 2 min 0.7 0.70 0.69 0.67 0.71 0.71

mean 0.85 0.86 0.82 0.84 0.83 0.84
max 137.17 141.53 144.14 155.36 135.66 138.68

MAE min 33.19 26.85 27.56 25.34 47.76 32.14
mean 98.84 96.85 102.04 103.26 109.76 103.53
max 15.78 13.58 18.06 18.93 18.35 15.9

SMAPE min 3.75 2.87 3.61 3.25 8.34 3.4
mean 11.14 10.22 12.80 12.61 12.97 11.02

can be used in online reconstruction and visualization of the temperature distribution in
the furnace.

(2) Special treatments are used to reconstruct data sets. Discrete variables are used to
classify typical working conditions and the K-means clustering method is used to set the
benchmark conditions. Meanwhile, random sampling is applied to extract representative
samples.

(3) Compared with DNN, DBN and ELM algorithms, the IDELM algorithm combines
the advantages of deep learning and extreme learning machine to achieve data-driven
modeling of temperature distribution at a relatively fast speed. The model accuracy can
reach a mean R2 of 0.84, a mean MAE of 102.38, and a mean SMAPE of 11.79%.

Based on the obtained results and the performed analyses, it is concluded that the
proposed model can be used to accurately predict temperature distribution and optimize
boiler combustion.
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