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CodonGenie, freely available from http://codon.synbiochem.co.uk , is a simple web

application for designing ambiguous codons to support protein mutagenesis applications.

Ambiguous codons are derived from specific heterogeneous nucleotide mixtures, which

create sequence degeneracy when synthesised in a DNA library. In directed evolution

studies, such codons are carefully selected to encode multiple amino acids. For example,

the codon NTN, where the code N denotes a mixture of all four nucleotides, will encode a

mixture of phenylalanine, leucine, isoleucine, methionine and valine. Given a user-defined

target collection of amino acids matched to an intended host organism, CodonGenie

designs and analyses all ambiguous codons that encode the required amino acids. The

codons are ranked according to their efficiency in encoding the required amino acids while

minimising the inclusion of additional amino acids and stop codons. Organism-specific

codon usage is also considered.
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11 Abstract

12 CodonGenie, freely available from http://codon.synbiochem.co.uk, is a simple web application 

13 for designing ambiguous codons to support protein mutagenesis applications. Ambiguous codons 

14 are derived from specific heterogeneous nucleotide mixtures, which create sequence degeneracy 

15 when synthesised in a DNA library. In directed evolution studies, such codons are carefully 

16 selected to encode multiple amino acids. For example, the codon NTN, where the code N 

17 denotes a mixture of all four nucleotides, will encode a mixture of phenylalanine, leucine, 

18 isoleucine, methionine and valine. Given a user-defined target collection of amino acids matched 

19 to an intended host organism, CodonGenie designs and analyses all ambiguous codons that 

20 encode the required amino acids. The codons are ranked according to their efficiency in 

21 encoding the required amino acids while minimising the inclusion of additional amino acids and 

22 stop codons. Organism-specific codon usage is also considered.

23 Introduction

24 Site-directed mutagenesis of DNA is an established technique of generating libraries of DNA 

25 variants in a controlled manner, and has applications in a range of fields, primarily that of protein 

26 engineering (Jäckel, Kast & Hilvert, 2008), but also in more fundamental research including the 

27 study of sequence-to-fitness relationships (Hietpas et al., 2011). The design of mutant protein 

28 libraries typically involves a manual process in which required sites for mutation are selected and 

29 ambiguous codons (those containing mixtures of nucleotides) designed to introduce controlled 

30 variation in these positions.

31 In this process, one may wish to design a codon to specify any subset of amino acids in a given 

32 position. Since each amino acid may be included in the subset or otherwise, the number of 

33 possible subsets is 220 – 1, i.e. there are 1,048,575 possible subsets of 20 amino acids. (Each of 
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34 the sets can be represented by a 20-digit binary number, where a one at position n indicates that 

35 amino acid n is included in the set, and a zero indicates that it is absent. There are 220 such 

36 numbers, but one of them represents the empty set and is thus not counted here.) Not all of these 

37 1,048,575 subsets of 20 amino acids are uniquely designable using ambiguous codons, of which 

38 there are only 3375. (There are 15 (=24 – 1) relevant nucleotide codes (“letters”), ranging from 

39 the completely unambiguous A, C, G and T representing a single nucleotide, to the completely 

40 ambiguous N representing all 4 nucleotides (Cornish-Bowden, 1985). There are 153 = 3375 

41 triplet codons that can be assembled from this 15-letter alphabet of ambiguous codes, compared 

42 to the 43 = 64 codons that can be constructed from the standard 4-letter alphabet of unambiguous 

43 nucleotides.) 

44 Given the degeneracy of the codon table, there are often multiple ways to encode a chosen set of 

45 amino acids. The experimenter must a) decide if it is feasible to encode all desired amino acids 

46 (Mena & Daugherty, 2005); b) determine whether this creates an acceptable number of sequence 

47 combinations (depending on screening capability and throughput) (Currin et al., 2015; Kille et 

48 al., 2013; Lutz, 2010; Pines et al., 2015); and c) consider the codon usage of the organism to be 

49 used (Nakamura, Gojobori & Ikemura, 2000). It therefore follows that the design of ambiguous 

50 codons is non-trivial.

51 CodonGenie is therefore introduced to provide a quick and easy-to-use means of designing 

52 optimal ambiguous codons, considering the above parameters according to the user input, and 

53 ranking the ambiguous codons with respect to their suitability for expression in a target host 

54 organism. The tool is designed to be both human- and computer-readable, providing both a 

55 simple web browser interface and a RESTful webservice API.

56 Materials & Methods

57 Algorithm

58 The standard codon table is such that 17 of the 20 naturally occurring amino acids are encoded 

59 by codons with fixed bases in the first and second positions, with the third “wobble”-position 

60 allowing variation that accounts for the degeneracy of the DNA code. Determining optimal 

61 ambiguous codons for combinations of amino acids involves the following process, which is 

62 optimized for computational efficiency, compared to a brute-force examination of all possible 

63 ambiguous codons:

64 Align the first two positions and select the most specific ambiguous bases to encode the 

65 alignment. For example, with the combination asparagine and isoleucine (encoded by AA[CT] 

66 and AT[ACT] respectively), the alignment of the first two positions is A[AT], i.e. AW.

67 All combinations of aligned wobble positions are calculated, i.e. [CA], [CC], [CT], [TA], 

68 [TC], [TT]. These are then collapsed into unique sets, in this example giving [CA], C, [CT], 
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69 [TA] and T.

70 The first two and wobble position bases are combined to produce candidate ambiguous codons, 

71 which are scored as described below.

72 Three amino acids (leucine, arginine and serine) cannot be simply encoded by codons with fixed 

73 bases in the first and second positions. (For example, both CTN and TT[AG] encode leucine.) 

74 For combinations including these more complex residues, the above algorithm is performed for 

75 each encoding and the results combined.

76 Note that CodonGenie returns not only the most “specific” ambiguous codons, that is, the codons 

77 that provide the fewest DNA variants whilst encoding all target amino acids. Providing results 

78 that include less specific ambiguous codons, which may also encode additional amino acids, 

79 allows the user to perform a trade-off between library size and codon specificity, depending on 

80 the experimental objective. A smaller library is generally advantageous for screening purposes, 

81 but may contain codons that are unfavoured by the target host organism.

82 Scoring

83 The goal of the scoring scheme is to preferentially rank the most efficient ambiguous codons. 

84 That is, the ambiguous codons that encodes all of the required amino acids while minimising the 

85 encoding on non-desired amino acids.

86 The score for an ambiguous codon is therefore defined as the mean of the value, vi, of each of the 

87 codons that it encodes. For codons that encode required amino acids, vi is the ratio of the 

88 frequency of the codon fi and the frequency of the most frequent synonymous codon fj for the 

89 amino acid that it encodes. For codons that encode non-required amino acids, vi is zero.

90  , wherescore =  
1

|𝐶|
∑𝑖 ∈ 𝐶𝑣𝑖

91  𝑣𝑖 = {
𝑓𝑖

max ({𝑓𝑗 :𝑗 ∈ 𝑆𝑖})
𝑖 ∈ 𝑅

0 𝑖 ∉ 𝑅 �
92  𝐶 = {all variants of ambiguous codon 𝑐}

93  𝐴 = {target amino acids}

94  𝑎𝑖 : amino acid encoded by codon 𝑖 ∈ 𝐶
95  𝑓𝑖 : codon usage frequency of codon 𝑖 ∈ 𝐶
96 Set of synonymous codons of codon i𝑆𝑖 = {𝑗 :𝑎𝑗 = 𝑎𝑖}
97 Set of codon variants of c encoding target amino acids𝑅 = {𝑖 ∈ 𝐶 :𝑎𝑖 ∈ 𝐴}
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98 This scoring algorithm thus achieves a principled trade-off between codon specificity, library 

99 size and codon favourability (according to the codon usage preferences of the target organism).

100 Web service access

101 CodonGenie also offers a RESTful web service interface, supporting its integration with 

102 software pipelines. The Design method can be accessed by specifying required amino acids and 

103 required host organism (as an NCBI Taxonomy id (Federhen, 2012)) as follows:

104 http://codon.synbiochem.co.uk/codons?aminoAcids=DE&organism=4932

105 Similarly, the Analyse method can be accessed by specifying a variant codon and the required 

106 organism:

107 http://codon.synbiochem.co.uk/codons?codon=NSS&organism=4932

108 CodonGenie also provides web service interfaces for accessing supported organisms. The first 

109 allows all organisms to be listed, showing NCBI Taxonomy id and name, and the second allows 

110 the collection to be searched according to a given term:

111 http://codon.synbiochem.co.uk/organisms/

112 http://codon.synbiochem.co.uk/organisms/escher

113 In all cases, results are returned in json format.

114 Distribution

115 The web application is freely available from http://codon.synbiochem.co.uk. CodonGenie is 

116 written in Python (using the Flask framework) and HTML / Javascript (using the Bootstrap and 

117 AngularJS libraries) and is packaged as a Docker application for ease of deployment. Source 

118 code is available from https://github.com/synbiochem/CodonGenie.

119 Results and Discussion

120 CodonGenie provides a simple web interface affording two functions: a) the design, and b) the 

121 analysis of ambiguous codons. Considering the Design module, the user specifies the 

122 combination of amino acids to be encoded and an organism in which the library will be 

123 expressed. The codon usage table is automatically extracted from the Codon Usage Database 

124 (Nakamura, Gojobori & Ikemura, 2000), which as of May 2017 provided support for 35,792 

125 organisms. CodonGenie then calculates suitable ambiguous codons and presents these in an 

126 interactive table (see Figure 1).

127 The Analyse module provides the functionality of checking an existing ambiguous codon. Users 

128 specify a variant codon and required host organism, and the results returned indicate which 

129 amino acids are encoded along with their codon usage frequency.
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130 The benefit of CodonGenie can be exemplified by the design of an ambiguous codon to encode 

131 non-polar amino acids phenylalanine, leucine, isoleucine, methionine and valine. A simple and 

132 widely used ambiguous codon to encode this subset is NTN, which equates to 16 DNA variants. 

133 However, CodonGenie identifies that these same amino acids can be encoded by the DTK codon 

134 (where D denotes [AGT] and K denotes [GT]) using 6 variants. Selecting DTK therefore means 

135 fewer enzyme variants need to be screened to test all sequence combinations. This benefit is 

136 particularly significant when encoding multiple variant codons. For example, when using 3 DTK 

137 codons the library size is reduced from 4096 (163) to 213 (63) combinations.

138 An example of the importance of considering codon usage of the target host organism can be 

139 seen when considering the design of an ambiguous codon to encode the set of five non-polar 

140 amino acids (F, I, L, M and V) considered above. For E. coli, the preferred codon is DTK 

141 (ATG|T|GT), with a score of 0.88. DTS (ATG|T|GC) also encodes all five amino acids using 6 

142 variants, but with a score of 0.68. In Streptomyces coelicolor – a commonly used host for 

143 antibiotic production (Pickens et al., 2011), the ranking is reversed, with DTS being preferred 

144 with a score of 0.79, substantially higher than that of 0.29 for DTK. The reason for this can be 

145 found in the codon usage frequencies of each of these organisms, as shown in Table 1: The 

146 codons DTK and DTS differ by specifying either GT or GC in the third position, respectively. 

147 Taking the example of encoding phenylalanine, F, the codon TTT encoded by ambiguous codon 

148 DTK is preferred over TTC (encoded by DTS) in E. coli by a frequency of 0.64 to 0.36. By 

149 contrast, S. coelicolor strongly prefers TTC to TTT to encode F, with frequencies of 0.97 to 0.03, 

150 respectively. A similar preference is observable in the codon usage frequencies for encoding 

151 isoleucine, I, in S. coelicolor, where ATC has a frequency of 0.95 compared to that of 0.03 for 

152 ATT. Thus, S. coelicolor has a strong preference for the variant codon containing C in the 

153 “wobble” position, and this is reflected in the scores of 0.79 for DTS and 0.29 for DTK. 

154 Organism-specific codon usage is therefore a key consideration in the design of ambiguous 

155 codons for a given host.

156 CodonGenie adds to a toolkit of existing software tools for ambiguous codon selection, which 

157 includes AA-Calculator (Firth & Patrick, 2008) and DYNAMCC (Halweg-Edwards et al., 2016). 

158 In contrast to AA-Calculator, CodonGenie ranks designed ambiguous codon based on their 

159 suitability for use in a given host organism. DYNAMCC also scores designed codons but offers 

160 complementary functionality to CodonGenie, as it designs sets of ambiguous codons to encode a 

161 set of amino acids with no off-target amino acid encoding and minimal redundancy. CodonGenie 

162 designs single ambiguous codons to encode a desired set of amino acids, which may also include 

163 off-target amino acids, allowing users to make a conscious trade-off between a larger library and 

164 the ease of generating such a library with a single ambiguous codon.

165 The above example of Table 1 illustrates a key difference between CodonGenie and 

166 DYNAMCC. Where CodonGenie will provide a list of individual ambiguous codons that will 

167 encode all desired amino acids (and potentially additional, off-target amino acids), DYNAMCC 

PeerJ Comput. Sci. reviewing PDF | (CS-2017:02:16109:1:1:NEW 17 May 2017)

Manuscript to be reviewedComputer Science



168 returns a single, best-scoring set of ambiguous codons that encode all desired amino acids with 

169 minimal redundancy. In the case of F, I, L, M and V, DYNAMCC returns the set of codons WTT 

170 (encoding F and I and L) and VTG (encoding M and V). The advantage of the DYNAMCC 

171 approach is in increased efficiency of the library: five DNA variants encode the five desired 

172 amino acids, while CodonGenie’s solution of DTK or DTS encode six DNA variants, thus 

173 producing a larger library. The advantage of CodonGenie’s solution lies in the ease in which the 

174 library can be produced with a single ambiguous codon.

175 CodonGenie provides a clean, intuitive web-based user interface which requires minimal user 

176 input, and which takes advantage of modern web-application development libraries such as 

177 AngularJS and Bootstrap. AngularJS (https://angularjs.org), developed and maintained by 

178 Google, provides a framework for the rapid development of modular, testable single-page web 

179 applications. Bootstrap (http://getbootstrap.com), initially developed at Twitter, provides a 

180 library of reusable user interface “widgets”, such as forms, auto-fill boxes, tables, etc. Using 

181 freely available yet commercially developed libraries such as these confers a number of 

182 advantages: From a development perspective, the libraries are easy to use, are well documented 

183 and are thoroughly tested on a range of browsers (including those on mobile phones and tablets) 

184 being used perhaps billions of times a day worldwide. More importantly, the user experience is 

185 improved through use of well-developed modules that in many cases users have experienced 

186 numerous times previously in various other web applications. As a result, CodonGenie can 

187 provide a simple, easy-to-use interface that requires no documentation and can run on many 

188 platforms with the minimum of development effort.

189 CodonGenie is designed to follow the concept of “microservices” (Williams et al., 2016). 

190 Microservice architecture advocates the breaking down of large, monolithic applications into 

191 simple, atomic services of limited scope of functionality. By deconstructing large applications or 

192 pipelines (such as a DNA design tool) into a collection of independent units (such as a codon 

193 design module), the individual microservices can be developed, tested and deployed in isolation, 

194 increasing their reliability and reusability. CodonGenie follows this paradigm (the entire 

195 application consists of ~700 lines of code) and allows for integration into larger applications by 

196 providing a simple computer-readable RESTful web service API, as well as making itself 

197 available as a Docker container (Belmann et al, 2015; Leprevost et al., 2017), allowing users to 

198 easily redeploy their own instantiation on individual computers and services, or cloud-based 

199 platforms.

200 One example of the use of the CodonGenie as a microservice within a larger application is in 

201 automating the design of a synthetic DNA sequence to encode a protein sequence generated from 

202 a multiple sequence alignment. Consider a multiple sequence alignment of a hypothetic active 

203 site of an enzyme:

204 PFDMR

205 PIAMR
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206 PLHLR

207 PMNMR

208 PVHMR

209 The CodonGenie webservice facilitates the writing of a simple script to automate the process of 

210 designing a synthetic DNA sequence that captures the variation encoded in this alignment. By 

211 iterating through the alignment, the set of amino acids required at each position can be collected 

212 ({P} for position 1, {FILMV} for position 2, etc.). These sets can be submitted to the 

213 CodonGenie webservice (along with a desired host organism) and a synthetic DNA sequence 

214 built up from the highest-scoring ambiguous codon returned. In practice, CodonGenie would 

215 produce the following DNA sequence for E. coli:

216 CCG|DTK|VMT|MTG|CGT

217 In this example, the first codon (CCG) is not strictly an ambiguous codon, as it contains no 

218 ambiguous nucleotides, given that a single amino acid, P, is required in the first position. The 

219 codon returned is the therefore the most frequent codon for encoding proline in E. coli. The 

220 second codon is the optimum codon for encoding F, I, L, M and V, as shown previously.

221 This example shows the benefit of offering webservice access to the CodonGenie method. While 

222 manually designing an optimised DNA sequence for a short alignment such as this is tractable, 

223 performing a similar operation on a longer alignment or a number of alignments in a manual 

224 fashion would not be feasible. Example code performing this simple operation is available 

225 (https://github.com/synbiochem/CodonGenie/blob/master/codon_genie/example/align.py), 

226 giving an indication of the ease with which CodonGenie could be incorporated into more 

227 comprehensive DNA design pipelines.

228 Conclusion

229 CodonGenie provides two simple-to-use yet valuable tools that aid the design of variant protein 

230 libraries in mutagenesis and directed evolution studies. Through both its web and web service 

231 interfaces, CodonGenie is amenable to future integration with new and existing variant library 

232 design software tools (Swainston et al, 2014). Its modular and open-source format allows for 

233 straightforward adaptation to emerging needs in the synthetic biology community, in particular 

234 the consideration of augmented genetic codes and expanded genetic alphabets (Lajoie et al, 

235 2013; Zhang, 2017).
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Table 1(on next page)

Comparison of codon usage frequencies for ambiguous codons encoding F, I, L, M and V

in Escherichia coli and Streptomyces coelicolor.

Specific codons from two variant codons DTK and DTS are given, along with their codon

usage frequency in the two organisms. For the amino acids F, I and V, there is a preference

for codons with T in the third (“wobble”) position in E. coli, and a preference for C in the

wobble position for S. coelicolor. This preference is reflected in the differences in scores for

the ambiguous codons for the two organisms.
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Codon usage frequencyAmino Acid Codon Ambiguous codon

E. coli S. coelicolor

TTC DTS 0.36 0.97F

TTT DTK 0.64 0.03

ATC DTS 0.31 0.95I

ATT DTK 0.47 0.03

L TTG DTK and DTS 0.13 0.03

M ATG DTK and DTS 1.00 1.00

V GTC DTS 0.19 0.58

GTG DTK and DTS 0.29 0.36

GTT DTK 0.32 0.02

1
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Figure 1

CodonGenie Design interface.

Users specify required amino acid combinations in the left-hand side panel. (Amino acids are

grouped together in the interface in subsets of polar, non-polar, acidic and basic residues. In

this example, the non-polar residues A, F, G, I, L, M and V have been selected.) Variant

codons are listed in the Result panel, ordered by increasing number of Variants and

decreasing codon Score (see Methods). The most specific codons are prioritised (e.g., the

preferred codon in the above example, DBK, is [AGT][CGT][GT] and therefore encodes 18

DNA variants). Variant codons are shown in grey, with their encodings shown in green,

orange and red for required amino acids, additional amino acids and stop codons,

respectively. A given variant codon may encode an amino acid multiple times, and this is

displayed in the output. For example, the preferred codon DBK encodes valine twice (with

GTG and GTT) and these encodings and their codon usage frequencies may be visualised

through a tooltip.
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