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ABSTRACT
COVID-19 is now often moderate and self-recovering, but in a significant proportion
of individuals, it is severe and deadly. Determining whether individuals are at high
risk for serious disease or death is crucial for making appropriate treatment decisions.
We propose a computational method to estimate the mortality risk for patients with
COVID-19. To develop the model, 4,711 reported cases confirmed as SARS-CoV-2
infections were used for model development. Our computational method was
developed using ensemble learning in combination with a genetic algorithm. The
best-performing ensemble model achieves an AUCROC (area under the receiver
operating characteristic curve) value of 0.7802. The best ensemble model was
developed using only 10 features, which means it requires less medical information
so that the diagnostic cost may be reduced while the prognostic time may be
improved. The results demonstrate the robustness of the used method as well as the
efficiency of the combination of machine learning and genetic algorithms in
developing the ensemble model.
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INTRODUCTION
Since early 2020, approximately 600 million people have been victims of COVID-19, and
more than 6.5 million have lost their lives as a result of the epidemic (Ciotti et al., 2020).
The escalation in the number of reported cases has put massive pressure on healthcare
systems worldwide, especially when the new virus variants continue to become more
infectious (Ciotti et al., 2020). While many people have a moderate, self-recovering form
of illness, other people suffer from serious and lethal conditions (Altschul et al., 2020).
Identifying whether people have a higher probability of developing serious complications
or dying is crucial to gaining insight into this disease (Altschul et al., 2020). Zhou et al.
(2020) retrospective cohort analysis found a variety of comorbidities (e.g., diabetes,
hypertension, and coronary artery disease) whose incidence varied substantially between
the recovered and perished people. Also, they found that aged patients scored with higher
sequential organ failure assessment (SOFA) values and accumulated D-dimers had a

How to cite this article Lou L, Xia W, Sun Z, Quan S, Yin S, Gao Z, Lin C. 2023. COVID-19 mortality prediction using ensemble learning
and grey wolf optimization. PeerJ Comput. Sci. 9:e1209 DOI 10.7717/peerj-cs.1209

Submitted 14 November 2022
Accepted 15 December 2022
Published 24 February 2023

Corresponding authors
Zhihong Gao, gzh@wzhospital.cn
Cai Lin, 13025092850@163.com

Academic editor
Binh Nguyen

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.1209

Copyright
2023 Lou et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1209
mailto:gzh@�wzhospital.�cn
mailto:13025092850@�163.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1209
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


substantially higher inpatient mortality rate (Zhou et al., 2020). SOFA evaluates the
functioning of several organ systems in the body. A greater SOFA score indicates a greater
probability of death (Shahpori et al., 2011). Furthermore, medical signs and symptoms,
such as acute renal damage, acute liver injury, the requirement for mechanical ventilation,
increased C-reactive protein (CRP), interleukin-6 (IL-6), lymphocyte count, and
procalcitonin levels have been identified as additional markers of poor outcome (Yang
et al., 2020, Richardson et al., 2020; Cheng et al., 2020; Wu et al., 2020; Altschul et al.,
2020). COVID-19 not only causes sepsis and multiple organ dysfunctions but also results
in a strong inflammatory response to activate systematic multi-vascular thrombosis
(Altschul et al., 2020; Huang et al., 2020; Iba et al., 2020). To identify the mortality risk of
patients infected with COVID-19, several statistical scores were suggested (Altschul et al.,
2020). Since the SOFA score does not account for the extra thrombotic mitigating factors
of severe illness (Vincent et al., 1996), the disseminated intravascular coagulation (DIC)
score was suggested for use in guiding anti-coagulation for patients with COVID-19
(Thachil et al., 2020). The DIC score was originally created to assist in the growth
evaluation of disseminated intravascular coagulation (Taylor et al., 2001; Sivula, Tallgren
& Pettilä, 2005; Thachil et al., 2020). DIC is an uncommon but deadly disorder
characterized by irregular blood blockage throughout the blood arteries. Infected or
injured people having disrupted normal blood blockage may produce DIC (Colman,
Robboy & Minna, 1972).

In recent years, the expansion of computing platforms, powerful technologies, and
enormous databases has prompted scientists to devote more time and effort to the
development of advanced computational approaches to address multiple problems in a
variety of fields. Machine learning and deep learning have become effective analytic tools
for investigating the data narratives of numerous domains in order to support decision-
making (Deng & Yu, 2014; Jordan & Mitchell, 2015). To estimate the mortality risk score,
besides traditional mathematical modeling methods, several computational frameworks
were introduced with surprising performance. An enormous number of people infected
and killed by COVID-19 has strongly motivated scientists to develop prediction
frameworks to assess the mortality risk of COVID-19-infected patients based on their
clinical data collected from various periods. To quantitatively evaluate the survival and
mortality of matured patients admitted to the intensive care unit (ICU) from at least 48 h
to 7 days, Covino et al. (2020) gathered the matured patients’ clinical physiological data
during their hospitalized time from March 1 to April 15, 2020. Their findings indicated
that the Early Warning Score may accurately predict the risk of severe illness and mortality
under the circumstances of high demand for medical evaluation and triage in emergency
rooms (Covino et al., 2020). Allenbach et al. (2020) employed a logistic regression model to
predict differences in patients’ symptoms during 14-day hospitalized period. Their results
pointed out that older age, more impaired respiratory functions, higher CRP levels, and
lower lymphocyte counts were related to an elevated risk of ICU admission or high
mortality (Allenbach et al., 2020). Estiri et al. (2021) designed a full-staged machine
learning framework for predicting hospitalizations, ICU admissions, mechanical
ventilation demands, as well as mortality risk based on patients’ historical medical
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information. Their analysis showed that cardiovascular diseases, a history of neurological
illness, and other chronic diseases (e.g., diabetes and renal disorders) may contribute to
greater mortality (Estiri et al., 2021). Yadaw et al. (2020) analyzed 3,841 cases sourced from
Mount Sinai Health System with the reported time of between March 9 and April 6, to
construct a mortality prediction model using diverse information including personal
information (e.g., the patient’s age), testing results (e.g., minimum oxygen saturation), and
kind of patient contact (inpatient, outpatient, and telehealth visits). Altschul et al. (2020)
proposed a scoring metric to predict severity and death of COVID-19-infected case with
the expectation of helping doctors prognosticate patients’ condition. Wang et al. (2021)
created a prediction model using the same data as Altschul et al.’s study to estimate entry
mortality risk of COVID-19-infected cases. Smolderen et al. (2021) investigated all
COVID-19 hospital admission cases in the Yale region in 2020 and found that patients
with peripheral vascular disease had a greater mortality risk and serious adverse
cardiovascular illness than other patients without background diseases. Besides, several
meta-analysis studies were conducted to reveal the risk factors leading to higher mortality
(Lippi, Lavie & Sanchis-Gomar, 2020; Gerayeli et al., 2021). Information on discovered risk
factors is essential to the modeling stage due to their significant contribution to the model’s
efficiency.

In this study, we propose an effective computational model to identify the mortality risk
of COVID-19-infected patients using ensemble learning in combination with a genetic
algorithm (Katoch, Chauhan & Kumar, 2021). The variety of machine learning algorithms
is initially surveyed to find the most suitable base classifiers for constructing an ensemble
model. The grey wolf optimization (Rezaei, Bozorg-Haddad & Chu, 2018), a member of the
family of genetic algorithm, is used to optimize the weight of each base model to boost the
performance of the ensemble model. The weighted ensemble strategy was used in several
studies (Li et al., 2016;Nguyen et al., 2022). The objective of aggregating several learners via
an ensemble strategy is to create more a stronger framework by capturing the underlying
data distribution more precisely. Our ensemble model is expected to be a simple but
effective computational framework that is dependent on small feature sets to come up with
robust predictions.

MATERIALS AND METHODS
Dataset
The dataset comes from a study by Altschul et al. (2020). The dataset contains 4,711
COVID-19-infected cases confirmed by a real-time analyzer (characterized by reverse
transcriptase-polymerase chain reaction) in the period between March 1 to April 16, 2020.
Cases evaluated in the emergency zone but not admitted or died at the site were removed
from the study. The majority of patients had a single hospitalization, and the research only
evaluated the most recent cases for those with repeated hospitalizations over the study
period (Altschul et al., 2020).

The dataset has 85 variables, most of which are secondary variables created from the
original ones. In our study, we used original variables only, so all secondary variables were
removed. The “Derivation cohort” variable is a categorical variable used for grouping.
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Samples having “Derivation cohort = 1” were used as training samples, while samples
having “Derivation cohort = 0” were used as validation (25%) samples and test samples
(75%). The “Death” variable is the target class with two values: 0 (dead) and 1 (alive).
Variables whose majority of values were missing were also removed. After filtering the
whole set of variables, 20 original variables (features) were obtained for model
development. These original variables were “Age.1” (patient’s age), “Temp”
(Temperature), “OsSats” (oxygen saturation), “Lympho” (lyphocyte count), “WBC” (white
blood cell count), “Plts” (platelet count), “Creatinine” (creatinine level), “MAP” (mean
arterial pressure, in mmHg), “Sodium” (sodium level), “ALT” (alanine transaminase level),
“AST” (aspartate transaminase level), “INR” (international normalised ratio), “BUN”
(blood urea nitrogen), “Troponin” (troponin level), “CrctProtein”, “Ddimer” (D-dimer
level), “Glucose” (Blood glucose level), “Ferritin” (ferritin level), “Procalcitonin”
(procalcitonin level), “IL6” (interleukin-6 level). Table 1 shows descriptive statistics for 20
selected features (variables) in the two cohorts. Figure 1 visualizes the distributions of those
features in the training set (Cohorts 1).

Overview of the method
Figure 2 describes the main steps in developing our ensemble model. Initially, samples
were grouped into two cohorts: Cohort 0 and Cohort 1. The samples in Cohort 1 were used

Table 1 Descriptive statistics for 20 selected features in the data.

Variable Cohort 0 Cohort 1 Samples with missing data

N Mean SD N Mean SD Count Ratio

Age.1 2,357 58.6 17.14 2,354 72.55 13.05 0 0.00

Temp 2,281 37.13 3.33 2,277 36.93 5.06 153 0.03

OsSats 2,277 93.69 7.05 2,267 88.71 11.62 167 0.04

Lympho 2,234 1.52 5.97 2,298 1.15 2.54 179 0.04

WBC 2,234 9 8.35 2,298 9.42 5.86 179 0.04

Plts 2,234 242.16 107.3 2,294 218.1 101.75 183 0.04

Creatinine 2,224 1.79 2.53 2,297 2.71 3.02 190 0.04

MAP 2,234 89.02 13.91 2,255 73.24 22.5 222 0.05

Sodium 2,204 137.94 7.23 2,271 139.53 9.16 236 0.05

ALT 2,192 46.95 94.13 2,263 62.68 234.07 256 0.05

AST 2,172 62.49 127.89 2,234 115.97 500.28 305 0.06

INR 2,041 1.18 0.72 2,168 1.36 1.25 502 0.11

BUN 2,034 26.84 28.5 2,072 50.08 42.41 605 0.13

Troponin 1,963 0.04 0.12 2,107 0.15 0.66 641 0.14

CrctProtein 1,867 11.46 10.69 1,968 18.39 11.93 876 0.19

Ddimer 1,761 3.86 5.41 1,849 7.11 7.28 1,101 0.23

Glucose 1,647 175.56 120.03 1,691 201.81 135.22 1,373 0.29

Ferritin 1,608 1,333.1 3,161.78 1,696 2,185.21 4,467.89 1,407 0.30

Procalcitonin 1,462 1.72 6.07 1,535 5.46 11.56 1,714 0.36

IL6 986 235.99 4,008.91 1,089 528.63 4,229.52 2,636 0.56

Lou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1209 4/18

http://dx.doi.org/10.7717/peerj-cs.1209
https://peerj.com/computer-science/


as training data. For Cohort 0, the validation and test sets were created using random
sampling with the ratio of 25% and 75% of total samples, respectively. It is worth noting
that the validation set was used to find the optimal weights for selected base classifiers only.

Figure 1 Distribution of 20 selected features in the training set (Cohort 1) Full-size DOI: 10.7717/peerj-cs.1209/fig-1
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A 5-fold cross-validation was executed on the training set to discover the optimal hyper-
parameters for each model. Five learning algorithms, including gradient boosting (GB),
random forest (RF), extremely randomized trees (ERT), k-nearest neighbors (k-NN), and
support vector machines (SVM), were used to construct prediction models and these
models were ranked based on their performances. Three best-performing models were
selected as the base classifiers for the ensemble learning strategy. The top three classifiers
were then retrained on the whole training set using their optimal hyper-parameters. Our
proposed strategy is weighted ensemble learning which means each base model is allocated
a weight values (w1, w2, and w3) explored by using the grey wolf optimization (GWO)
algorithm (Rezaei, Bozorg-Haddad & Chu, 2018) on the validation set. Eventually, the test
set was used to evaluate the model’s performance. The ensemble model predicts a
probability for each sample in the form of pensemble = w1.p1 + w2.p2 + w3.p3.

Machine learning algorithms
Gradient boosting
Gradient boosting (GB) (Friedman, 2001, 2002) is a supervised ensemble learning
technique based on the idea that a poor learner may be improved to become better. The
“boosting” task involves filtering observations, keeping only those that the weak learner
can manage, and then training additional weak learners to handle the remaining
challenging data. All “boosting” methods may be generalized to tackle regression, multi-
class classification, and diverse problems by allowing the use of arbitrary differentiable loss
functions.

GB RF k-NNERT

Machine learning methods

Test data

Hyperparameter tuning
(using 5-fold cross-validation)

Prediction
outcomes

Validation data

Weight tuning
(using GWO)

Top3-Trained classifiers
(best hyperparameters)

Ensemble
classifier

Parameter

ranges

Weight

ranges

SVM

Cohort 1 Cohort 0

Validation data Test dataTraining data

25% 75%

Figure 2 Major steps in model development. Full-size DOI: 10.7717/peerj-cs.1209/fig-2
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Random forest
Random forest (RF) (Breiman, 2001), a resilient and efficacious supervised ensemble
learning method, was developed based on the “bagging” concept (Breiman, 1996) and
random feature selection (Ho, 1995). This approach is characterized by the generation of
numerous decision trees that are fairly distinct from one another. The produced outputs
are adjusted to subject to either the mode of the classes or the average of the projected
values of the multiple trees involved to cope with classification or regression issues,
respectively. RF can successfully overcome the primary flaw of the decision tree algorithm
known as “overfitting propensity towards the training data.”

Extremely randomized trees
Extremely randomized trees (ERT) (Geurts, Ernst & Wehenkel, 2006) is a supervised tree-
based ensemble learning method that can address classification and regression issues. The
core of this method is a process of significantly randomizing the selection of both the
variables and the cut points used to divide a tree node. In the most extreme scenario, it
constructs trees whose structures are completely random and unrelated to the output
values of the training sample. The parameter allows the randomization intensity to be
adjusted to meet the needs of a given situation. The algorithm’s biggest advantage, apart
from accuracy, is an improvement in computing speed compared to random forest,
another tree-based approach.

k-nearest neighbors
k-nearest neighbors (k-NN) is one of the most frequently used distance-based supervised
learning methods. It was first presented by Fix & Hodges (1989) in 1951 and later
developed in its complete form by Altman (1992) in 1992. k-NN can be implemented to
tackle not only classification but also regression problems. For an unknown sample, class
or value can be assigned to it after the algorithm calculates total distances from the its
positions to k nearest neighbors. As a distance-based algorithm, it requires data
normalization to avoid substantial biases caused by different scales of variables.

Support vector machines
Support vector machines (SVM) (Cortes & Vapnik, 1995) is one of the most robust
supervised learning algorithms. SVM was first developed to address binary classification
tasks before being expanded to cover multi-class classification issues. The SVM’s main idea
is to construct a n-dimensional hyperplane where n is the number of variables involved.
The hyperplane is optimized to maximize the distance between the two farthest data points
of two or more classes. Margin distance maximization, in other words, aims to push the
data points of each class away from those of the other classes, so that help improving the
classification boundary.

Hyperparameters tuning
In order to determine the optimal hyperparameters for each model, we conducted 5-fold
cross-validation which is an exhaustive searching process across selected parameter value
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grids. To fine-tune the GB, RF, ERT, k-NN, and SVM-based classifiers, we chose a set of
important parameters for each model (Table 2).

Grey wolf optimization
The grey wolf optimization (GWO) (Rezaei, Bozorg-Haddad & Chu, 2018) technique was
inspired by the cooperative hunting behavior of grey wolves. It was first presented by
Mirjalili, Mirjalili & Lewis (2014) as an efficient optimization technique among other novel
techniques of meta-heuristic optimization family. Later in 2015, Gholizadeh (Gholizadeh,
2015) continued to develop the GWO method to address the nonlinear behavior of a
double-layer grid optimization issue. His research revealed that GWO accomplished a
more satisfactory job than other algorithms at discovering the most promising strategy for
nonlinear double-layer grids.

GWO quantitatively simulates the social order of wolves in their hunting activities with
three wolves: Alpha (a), Beta (b), andDelta (d) whose leadership are decending. These a, b,
and d wolves represent the best solution, the second-best and third-best solutions,
respectively. The remaining wolves in the herd (other potential solutions) are calledOmega
(x). In a hunting activity (optimization), a, b, and d wolves manage the hunting while x
wolves follow their leaders. The GWO is characterized by three stages: (i) Encircling,
(ii) Hunting, and (iii) Attacking. In stage Encircling, the mathematical models for
encircling behavior are expressed as:

~D ¼ j~C:~XpðtÞ � ~XðtÞj; (1)

~Xðt þ 1Þ ¼ ~XpðtÞ �~A:~D; (2)

where t is the present iteration, ~X and ~Xp refer to the location vectors of the grey wolf and
the prey, respectively. ~A and ~C are coefficient vectors which are calculated as:

~A ¼ 2:~a:r1 �~a; (3)
~C ¼ 2:~r2; (4)

where~r1 and~r2 are vectors that are randomly initialized in the interval of between 0 and 1,
and vector~a is set to be decreased linearly from 2 to 0. A grey wolf at location (X,Y) may
move to the location of its prey (X�, Y�) using the preceding equations. In stage Hunting,
after the grey wolves recognize their prey’s location and encircle them, the a wolf drives the

Table 2 Model parameters and searching range.

Model Parameter Searching range

GB n_estimators learning_rate max_depth min_sample_leaf subsample [100, 300] {0.01, 0.05, 0.1, 0.2}{2, 3, 4, 5}{1, 2, 3}{0.4, 1.0}

RF n_estimators max_depth max_features min_sample_leaf [100, 300] {2, 3, 4, 5} [0.4, 1.0] {1, 2, 3}

ERT n_estimators max_depth max_features min_sample_leaf [100, 300] {2, 3, 4, 5} [0.4, 1.0] {1, 2, 3}

k-NN n_neighbors p [3, 20] {1, 2}

SVM C gamma {0.001, 0.005, 0.01, 0.05, 0.1, 1, 10, 100, 1000}
{0.001, 0.005, 0.01, 0.05, 0.1, 1, 10, 100, 1000}
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hunting activity. The b and d wolves sometimes participate in the activity. The hunting
behavior of the grey wolves is formulated as:

~Da ¼ j~C1:~Xa � ~Xj; (5)
~Db ¼ j~C2:~Xb �~Xj; (6)

~Dd ¼ j~C3:~Xd � ~Xj; (7)
~X1 ¼ ~Xa � ~A1:~Da; (8)
~X2 ¼ ~Xb � ~A2:~Db; (9)

~X3 ¼ ~Xd � ~A3:~Dd; (10)
~Xðt þ 1Þ ¼ ~X1 þ ~X2 þ ~X33: (11)

In an n-dimensional investigation space, the search agent uses these equations to adjust
its location based on a, b, and d. The investigation space parameters a, b, and d would
constitute a circle, and the ultimate location is estimated inside that circle. By the other way
of explanation, a, b, and d wolves estimate the prey’s location, whereas other wolves in the
herd update their locations to approach their prey. In stage Attacking, after the prey
(objective) stops moving, the grey wolves finish their hunting game by attacking the prey.

Ensemble learning strategy
To construct the ensemble model, the three best-performing classifiers (from 5-fold cross-
validation) were selected and termed as ‘base classifiers’. For each data point, the ensemble
model’s predicted probability is derived by successively multiplying the probabilities
predicted by the three base classifiers by their respective weights.

pensemble;i ¼ w1:p1;i þ w2:p2;i þ w3:p3;i; (12)

where pensemble;i is the obtained ensemble model’s probability; w1, w2, and w3 are the
weights of the three base classifiers; p1;i, p2;i, and p3;i are the predicted probabilities
computed by the three base classifiers. The sum of the weights is equal to 1 and these
weights are computed by the GWO algorithm to maximize the area under the receiver
operating characteristic (ROC) curve (AUC) value on the validation set.

RESULTS AND DISCUSSIONS
The model’s performance was evaluated using multiple metrics: balanced accuracy (BA),
sensitivity (SN), specificity (SP), precision (PR), Matthews’s correlation coefficient (MCC),
and the area under the receiver operating characteristic curve (AUC).

Five-fold cross-validation
To discover the optimal hyperparameters for individual model, we used a 5-fold cross-
validated randomized search across parameter settings. During the 5-fold cross-validation,
the first four folds were employed as the training fold, while the left fold was employed as
the validation fold. Each fold was iteratively used as a test fold until no unused fold was left.
Table 3 provides results of the hyperparameter tuning using 5-fold cross-validation. The
results indicate that the GB model achieves the highest cross-validated AUC value,
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followed by the RF and ERT classifiers. The k-NN and SVM classifiers have similar cross-
validated performance. Hence, the GB, RF, and ERT classifiers were selected as base
classifiers for the ensemble learning strategy. The GB, RF, and ERT classifiers were finally
retrained on the training set using their tuned hyperparameters.

Ensemble model
The trained GB, RF, and ERT models were termed ‘model’ numbered 1, 2, and 3,
respectively. The validation set was used to optimize the model’s weights (w1, w2, and w3)
that contributed to the ensemble model’s prediction. The ensemble model’s prediction has
the form of pensemble = w1.p1 + w2.p2 + w3.p3 where p1, p2, and p3 are the predicted
probabilities of ‘model’ 1, 2, and 3 respectively. The ensemble model was created with three
scenarios using the all-features set and two selected-features sets. An ensemble model
constructed from a smaller feature set while still giving a similar performance is preferable.
Table 4 gives information on base classifiers and their tuned weights in three ensemble
learning scenarios.

Ensemble model with all features
All 20 features were used in the construction of three base classifiers and an ensemble
model. Table 5 displays the performance of the three base classifiers and the ensemble
model. The ensemble model obtains AUC values of 0.7801 and MCC values of 0.3898,
which are greater than those of its base classifiers. The GB model achieves higher balanced
precision and sensitivity than the others. The ERT model outperforms other classifiers in

Table 3 5-fold cross-validation on the training set.

Model AUC Tuned hyperparameters

GB 0.9054 n_estimators = 290 learning_rate = 0.05 max_depth = 3 min_sample_leaf = 2 subsample = 0.66

RF 0.8798 n_estimators = 108 max_depth = 4 max_features = 0.75 min_sample_leaf = 2

ERT 0.8770 n_estimators = 294 max_depth = 4 max_features = 0.84 min_sample_leaf = 1

k-NN 0.8632 n_neighbors = 19 p = 1

SVM 0.8632 C = 1 gamma = 0.1

Table 4 Base models and their tuned weights in three ensemble learning scenarios.

Ensemble scenario Number of features Model Tuned weight

All features 20 GB 0.5950

RF 0.0687

ERT 0.3363

10 selected features 10 GB 0.6900

RF 0.0792

ERT 0.2308

5 selected features 5 GB 0.4198

RF 0.0893

ERT 0.4909
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terms of accuracy and specificity. Based on the tuned values, the GB model contributes the
most to the ensemble model’s predictive ability, followed by the ERT and RF classifiers
(Table 4). Figure 3 visualizes the feature importance ranking of three basic classifiers across
20 features. Variable ‘MAP’ has the greatest effect on all classifiers. Moreover, the ‘OsSats’
variable is ranked among the top five key features in three classifiers. While the ‘Age.1’
variable is regarded as the third most significant feature by the GB and ERT classifiers, it

Table 5 The performance on the test set of the models developed using 20 selected features.

Model AUC BA SN SP PR MCC

GB 0.7768 0.6828 0.4734 0.8921 0.5582 0.3885

RF 0.7598 0.6377 0.3519 0.9235 0.5697 0.3325

ERT 0.7695 0.6156 0.2785 0.9526 0.6286 0.3223

Ensemble 0.7801 0.6726 0.4304 0.9147 0.5923 0.3898

Figure 3 Feature importance ranking of the three base classifiers across 20 features. (A) GB model, (B) RF model, (C) ERT model.
Full-size DOI: 10.7717/peerj-cs.1209/fig-3
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has less of an effect on the RF classifiers. The GB and RF classifiers rank ‘Troponin’ among
their top five key features, but the ERT model mostly disregards it. In addition, there are
variables whose contributions may be ignored by the RF and ERT classifiers.

Ensemble model with 10 selected features

The ensemble model was developed by selecting the best five features of each base model
(Fig. 3). Since the top-five features of the three base classifiers are somewhat different from
each other, all features in the top five were preserved. Hence, 10 features were used to build
three basic classifiers and an ensemble model. In terms of the AUC value, the ensemble
model remains superior to its individual classifiers. The GB model exhibits a superior
balanced accuracy of 0.6844, a sensitivity of 0.4759, and an MCC of 0.3920 (Table 6).
Comparatively, the ERT model achieves greater specificity and accuracy compared to the
other classifiers. Based on the tuned values, the GB model still contributes the most to the
ensemble model’s predictive ability, followed by the ERT and RF classifiers (Table 4).
However, the contribution of the ERT model decreases while the contribution of RF
increases. Figure 4 visualizes the feature importance ranking of three basic classifiers across
10 selected features. The top-three features of the three base classifiers in the first and
second scenarios are unchanged. The performance of ensemble models developed with 10
and 20 features has equivalent predictive efficiency.

Ensemble model with five selected features
The ensemble model was created by picking the top three features of each base model
(Fig. 4). Since the top five features of the three base classifiers are distinct, the top five
features were all retained. The performance of the ensemble model and GB model drops
while those of RF and ERT classifiers increase. Although the ensemble model still has the
greatest AUC value compared to other classifiers (Table 7). The contribution of the GB
model significantly decreases. While the contribution of the ERT model double and that of
the RF model slightly increases. Since the performance of the ensemble model is closely
associated with the performance of the GB model, the decline in the performance of both
predictors is explainable.

Model’s robustness and stability
To assess the model’s robustness and stability, we repeated the experiments 10 times for
each model. Table 8 provides information on the model performance of three models over
ten random trials. Results show that the performances of the three models have small
variations and high repeatability. The performances of the model developed with 10

Table 6 The performance on the test set of the models developed using 10 selected features.

Model AUC BA SN SP PR MCC

GB 0.7783 0.6844 0.4759 0.8929 0.5612 0.3920

RF 0.7626 0.6489 0.3772 0.9206 0.5775 0.3513

ERT 0.7694 0.6135 0.2810 0.9461 0.6000 0.3090

Ensemble 0.7802 0.6725 0.4405 0.9045 0.5705 0.3804
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features and the model developed with 20 features are equivalent while the performance of
the model developed with five features is smaller. The repeated experimental outcomes
confirm the model’s robustness and stability. Besides, the model developed with 10
features is the best-performing model with a small number of variables used but still has
high predictive power. Figure 5 visualizes the ROC curves of base classifiers and ensemble
model.

Figure 4 Feature importance ranking of three base classifiers across 10 features. (A) GB model, (B) RF model, (C) ERT model.
Full-size DOI: 10.7717/peerj-cs.1209/fig-4

Table 7 The performance on the test set of the models developed using five selected features.

Model AUC BA SN SP PR MCC

GB 0.7734 0.6647 0.4430 0.8863 0.5287 0.3517

RF 0.7657 0.6496 0.3772 0.9220 0.582 0.3542

ERT 0.7728 0.6056 0.2608 0.9504 0.6023 0.2976

Ensemble 0.7782 0.6523 0.3899 0.9147 0.5683 0.3522
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CONCLUSIONS
According to the outcomes of three ensemble learning strategies, the ensemble learning
model developed with 10 features (the top five features of each base model) is the optimal
approach for constructing the model to identify the mortality risk of COVID-19 patients.
The model in the first scenario (using 20 features) has the same performance as the model
in the second scenario (using 10 features), but the model in the second scenario utilizes
fewer features, which means less information is needed in the risk prognosis. The
reduction of medical information used in predicting mortality risk can improve
prognostics as well as save a large budget on laboratory testing. The grey wolf optimization
is a fast, robust, and effective optimization technique to explore the suitable contributing

Figure 5 ROC curves of the models corresponding to different numbers of features used. Full-size DOI: 10.7717/peerj-cs.1209/fig-5

Table 8 The performance on the test set of three models over ten random trials.

Trial AUCs of models using

20 Features 10 Features 5 Features

1 0.7801 0.7802 0.7782

2 0.7800 0.7799 0.7766

3 0.7800 0.7798 0.7766

4 0.7799 0.7798 0.7766

5 0.7800 0.7798 0.7766

6 0.7800 0.7799 0.7766

7 0.7800 0.7798 0.7766

8 0.7799 0.7800 0.7766

9 0.7800 0.7798 0.7767

10 0.7799 0.7798 0.7766

Mean 0.7800 0.7800 0.7768

SD 0.0001 0.0001 0.0005

95% CI [0.7799–0.7800] [0.7798–0.7800] [0.7764–0.7771]
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weights for each base model to promote the prediction power in the ensemble learning
strategy. Repeated experiments confirm the model’s robustness and stability. However, the
proposed method has drawbacks, such as the inability of finding globally optimized weight
and the non-controlling of stochastic-based process, that need to be addressed in the
future.
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