
Submitted 30 June 2022
Accepted 14 December 2022
Published 18 January 2023

Corresponding author
Yixuan Wang,
200612052@sust.edu.cn

Academic editor
Ananya Sen Gupta

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.1208

Copyright
2023 Gao et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A filter design for T-S fuzzy systems
based on moving horizon estimator with
measurement noise
Hui Gao1, Yixuan Wang1 and Jing Hu2

1 School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an, China
2College of Information and Intelligent Transportation, Fujian Chuanzheng Communications College, Fuzhou,
China

ABSTRACT
In this article, a filter based on moving horizon estimator is proposed with Takagi-
Sugeno (T-S) fuzzy controllers for a kind of unknown discrete-time system. The
T-S fuzzy control algorithm is employed to handle the unknown system dynamics, thus
ensuring the property of input-to-state stability (ISS) of the system, which guarantees
the boundedness of all states. Besides, the proposed filter and controller can significantly
improve the robustness of the system with external disturbance, even if the disturbance
has non-Gaussian characteristics. Finally, the effectiveness of the presented algorithm
is demonstrated by simulation examples under two kind of noise situations.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Moving horizon estimator (MHE), Takagi-Sugeno (T-S) fuzzy systems, Input-to-state
stability, Filter

INTRODUCTION
TheTakagi-Sugeno (T-S) fuzzymodel is a simple pattern to describe realistic systems, which
has attracted vast interest of researchers in the systems and control field (Su et al., 2012;
Zeng et al., 2019; Yang, Xia & Liu, 2011). Traditional fuzzy control systems are rule-based,
which work well when there is no need to establish an reliable mathematical model for
the system (Dong, Wang & Gao, 2009; Nguang, Shi & Ding, 2007). In contrast, T-S fuzzy
patterns require mathematical expressions to represent the fuzzy results and reasoning
under study. Filter designs for T-S fuzzy form are intended to estimate the system states by
using the measured noise inputs so as to obtain the best estimation of unknown real signals
or system states, and such designs have been considered useful in practical engineering
aspects. The most common approach to resolve the problem of system state estimation,
which has enjoyed wildly popularity, is the Kalman filter in the engineering field (Anderson
& Moore, 2012;Mendel, 1995). However, the existing T-S fuzzy system is subject to various
conditions when dealing with filtering problems, for example, the disturbance is Gaussian.
It is essential to plan a filter that makes use of the data within a period of time instead of
only the data at the previous moment to resolve the problem of the filtering process and
improve the robustness of the T-S fuzzy system. This kind of filter can show a good effect
in the T-S fuzzy method even without considering the form of external disturbance (Ban
et al., 2007).
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To investigate and synthesize nonlinear systems and hence depict complicated nonlinear
relations, a T-S fuzzy control system is frequently utilized by establishing several simple
linear relations (Tseng, Chen & Uang, 2001; Xie et al., 2019; Chadli, Abdo & Ding, 2013). It
can also perform fuzzy reasoning and defuzzification on the outputs of several models.
Many advances have been achieved in the study and control of T-S fuzzy systems in recent
years. For example, to tackle the control problem for a type of nonlinear and unpredictable
packet loss systems, a modified T-S fuzzy model was presented (Dong, Wang & Gao, 2009).
In addition, the filtering problem of T-S fuzzy control scheme in discrete time system is
studied, with the examples including `2- `∞ filtering (Su et al., 2012), H∞ filtering (Qiu,
Feng & Yang, 2009), and Kalman filtering (Simon, 2003; Duncan & Horn, 2002; Bryson &
Ho, 2018). Kalman filtering is the most commonly used method to solve filtering and
estimation problems in the T-S fuzzy systems, but it is suitable for linear systems (Huang
et al., 2017). In other words, the applicability of Kalman filtering in T-S fuzzy system is
limited by the need for a linear observation equation (Kim & Bang, 2018; Goodwin et al.,
1991; Sorenson, 1970; Box et al., 2015). Also, the outliers of data sequence commonly affect
the performance of Kalman filter (Huber, 1992).

These problems can be addressed by developing a moving horizon estimator (MHE) in
the T-S fuzzy system. To our knowledge, there have been few studies on the use of MHE for
solving the filtering problem for these nonlinear systems. Therefore, we expect this study
will provide some important implications, both theoretical and practical, for this topic
of research. As an online problem solving approach, MHE has been recognized to deal
effectively with noise interference (Yin & Gao, 2019; Rao, Rawlings & Lee, 2001). Its basic
idea is to use current measurements to update the optimization problem with the length of
the time domain sliding window for processing data that remains unchanged (Boulkroune,
Darouach & Zasadzinski, 2010; Alessandri, Baglietto & Battistelli, 2003). By applying the
known state information for estimation, the rationality and accuracy of the estimation
condition of the system will be considerably improved. In particular, if the MHE does not
consider the time-domain constraints and the window length N = 1, it is the same as the
Kalman filter (Ling & Lim, 1999). Over the past few decades, the MHE method has been
widely investigated to support applications in several research areas. For example, it has
been used to successfully address the estimation problem for the auto-regressive-moving-
average with outliers contaminating the output (Yin, Liu & Gao, 2018; Su et al., 2012). The
author uses the combination of MPC and T-S fuzzy system to design a predictive control
method to solve the vehicle trajectory tracking problem, and uses the MHE to obtain the
estimation of the vehicle state (Alcala et al., 2020). AnMHE-based output feedback control
algorithm is proposed and enables the overall system to converge to the origin (Gharbi &
Ebenbauer, 2021). The authors introduce an MHE strategy to solve the estimation problem
in a linear system with unknown input (Zou et al., 2020). Since MHE uses the states in a
fixed-length time window to achive the filtering effect, this improves the robustness of the
T-S fuzzy system and makes estimated value closer to ideal value.

The methods currently studied for the unknown discrete-time system usually use the
T-S fuzzy control algorithm to deal with the unknown system dynamics. However, Kalman
filter is often used in noise processing, but it has a very big limitation: it can only accurately
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estimate linear process models and measurement models, and cannot achieve optimal
estimation in nonlinear scenarios. The noise needs to have Gaussian characteristics. So
we design a fuzzy controller filter based on the moving level estimator and guarantee
the input-to-state stability (ISS) of the system, thus guaranteeing the boundedness of all
states. Under the designed controller, the filter and controller can significantly improve the
robustness of the external disturbance system even if the disturbance is non-Gaussian.

For a class of discrete systems with unknown disturbance, we present a filter based
on MHE arithmetic and T-S fuzzy controller in this study. Firstly, for the studied system
containing external interference, we established a T-S fuzzy model, systematically designed
a filter based on MHE method, and obtained the relationship between estimated point and
the points within the estimated window. Then, an optimal function with MHE constraints
was proposed, so that the optimal solution satisfied the estimation relationship within
a fixed-length time window. Finally, it was demonstrated that using MHE filters in the
T-S fuzzy systems with bounded disturbance can guarantee input-to-state stability (ISS)
characteristics.

The rest of the article is equipped as follows: Section 2 describes the prerequisite
knowledge, including some definitions and basic properties of T-S fuzzy controllers. The
main expressions and formulas as well as the method for finding the extreme value are
introduced in Section 3. In Section 4, the ISS property of the T-S fuzzy system with MHE
is proved. Section 5 indicates and discusses the simulation results of the pattern that we
built. Finally, the conclusion is drawn in Section 6.

PRELIMINARIES
An abundance of information onT-S fuzzymethod andMHEhas been provided in previous
studies (Dong, Wang & Gao, 2009; Tseng, Chen & Uang, 2001; Rao, Rawlings & Lee, 2001;
Yin, Liu & Gao, 2018; Liu et al., 2016). Obviously, approximating the nonlinear system to
the form of a T-S fuzzy control system facilitates the subsequent processing. Therefore,
in this section, the information required in the next section to derive the MHE with the
measurement noise assumption is deduced, including the T-S fuzzy form representing the
plants of the nonlinear systems and the MHE algorithm steps.

Plant form
We think about a nonlinear device represented by way of a discrete-time T-S fuzzy model,
as follows: Rule i: IF θ1,m is Mi1 and ... and θp,m is Mip, then
xm+1=Aixm+B2ium+B1iωm

zm=Cixm+D2ium+ωm

xm=ψm

(1)

where in the premise rules, i= 1,2,. . . ,r, θm= [θ1,m,θ2,m,...,θp,m] is the premise variables
vector, M = [Mi1,Mi2,...,Mip] is the fuzzy set, xm ∈Ra is the state vector, zm ∈Rb is the
measured output, um ∈Rc is the input signal, ωm ∈Rl represents the disturbance input
vector, which is considered to be part of l2[0,∞), and r is the number of IF-THEN rules.
Ai,B1i,B2i,Ci,D2i are known matrices with the appropriate dimensions.
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The fuzzy basis functions are defined as follows:

hi(θm)=

∏p
j=1Mij(θj,m)∑r

i=15
p
j=1Mij(θj,m)

(2)

where, for all m values, we have
∏p

j=1Mij(θj,m) ≥ 0 (i = 1, 2, . . . , r), and∑r
i=1

∏p
j=1Mij(θj,m)> 0. Therefore, for all m values the fuzzy basis functions satisfy

the equations hi(θm)> 0 (i= 1,2,...,r) and
∑r

i=1hi(θm)= 1.
Combine the fuzzy basis functionwith the proposed nonlinear system to get the following

formula, which can be used for discrete systems under T-S fuzzy modeling:

xm+1 =
r∑

i=1

hi(θm)(Aixm+B2ium+B1iωm)

zm =

r∑
i=1

hi(θm)(Cixk+D2ium+ωm)

xm =ψm

(3)

For the convenience of calculation, we refer to experience to set the controller as a function
related to the state feedback (Dong, Wang & Gao, 2009), that is, u= kx . Then Eq. (3) can
be replaced by

xm+1 =
r∑

i=1

hi(θm)(Âixm+B1iωm)

zm =

r∑
i=1

hi(θm)(Ĉixm+ωm)

xm =ψm

(4)

where Âi = Ai+ kB2i, Ĉi =Ci+ kD2i. The MHE process for the T-S fuzzy system is still
difficult to develop using this approach, so we further define

Am =

r∑
i=1

hi(θm)Âi, Bm=
r∑

i=1

hi(θm)B1i

Cm =

r∑
i=1

hi(θm)Ĉi, Dm=

r∑
i=1

hi(θm)

Here, we design the filters of a general structure by
xm+1 =Amxm+Bmωm

zm =Cmxm+Dmωm

xm =ψm

(5)

The above formulas provide a great basis for our subsequent derivation.

MHE for the T-S fuzzy model
Using the known information during this period of time such as zm−L,zm−L+1,...,zm and
um−L,um−L+1,...,um with the integer L≥ 1, we get the estimate through the MHE at time
m. Using Eq. (5), we get the following formula between xm+1 and zm:

xm+1 = (Am−BmD
−1
m Cm)xm+BmD

−1
m zm (6)
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For brevity, the following formula is used:

xm+1 =8mxm+�mzm (7)

where 8m=Am−BmD
−1
m Cm, �m= BmD

−1
m . Using Eqs. (5) and (7), L+1 equations are

iterated as shown below:

zm−L =Cm−Lxm−L+Dm−Lωm−L

zm−L+1 =Cm−L+18m−Lxm−L+Cm−L+1�m−Lzm−L+Dm−L+1ωm−L+1

zm−L+2 =Cm−L+28m−L+18m−Lxm−L+Cm−L+28m−L+1�m−Lzm−L
+Cm−L+2�m−L+1zm−L+1+Dm−L+2ωm−L+2
...

zm =Cm

L∏
i=1

8m−ixm−L+Cm

L−1∑
j=1

j∏
i=1

8m−i�m−j−1zm−j−1+Cm�m−1zm−1+Dmωm

(8)

From Eq. (8) we know that the evaluate of measured output at the present time m can
be solved by the measured outputs at the time m−1,m−2,m−3,...,m−L, the state of
the system at the time m−L and the measurement noise at the current time m.

Remark 1: Here, we define Dm is an expression about fuzzy basis function in
Dm=

∑r
i=1hi(θm), without the coefficient matrix in the state space expression. Obviously,

Dm here is an invertible matrix of dimension one.
Remark 2: Kalman filter algorithm is based on accurate mathematical model and is

sensitive to error. So the MHE in the T-S fuzzy system is proposed, which uses a fixed
number of measurements for estimation. In this article, we derive a series of iterative
formulas in order to obtain the relationship between xm−L and zm−L,zm−L+1,...,zm within
the fixed-length estimation window set by MHE.

MAIN RESULTS
We introduce the simple expressions of explicit model by Zm,L and Wm,L, and propose an
optimal function for the MHE. The output estimation of the T-S fuzzy system is taken as
the target task, and the optimal value is obtained by amethod in which the partial derivative
is zero.

Using the second part of the recursive method, we define the following vectors:

Zm,L = [zTm−L,z
T
m−L+1,...,z

T
m−1,z

T
m]

T

Wm,L = [ω
T
m−L,ω

T
m−L+1,...,ω

T
m−1,ω

T
m]

T

and we assume that Zm,L=TLZm,L, where

TL=



I 0 ··· 0
−Cm−L+1�m−L I ··· 0
−Cm−L+28m−L+1�m−L −Cm−L+2�m−L+1 ··· 0
...

...
. . .

...

−Cm(
L−1∏
i=1

8m−i)�m−L −Cm(
L−2∏
i=1

8m−i)�m−L+1 ··· I
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and the equation for Zm,L and xm−L can be written as

Zm,L=HLxm−L+ELWm,L (9)

where

HL=



Cm−L 0 ... 0
0 Cm−L+18m−L ... 0
...

...
. . .

...

0 0 ... Cm

L∏
i=1

8m−i



EL=


Dm−L 0 ... 0
0 Dm−L+1 ... 0
...

...
. . .

...

0 0 ... Dm


The least squares criterion becomes the natural choice for deriving MHE when xm−L is a
priori prediction and

∑
m−L is the corresponding covariance matrix. We define x̂m−L|m as

the estimation of xm−L at the time m. As a result, our goal at time m is to determine the
value of x̂m−L|m which minimizes the following cost function J .

J =‖Zm,L−HLxm−L‖25−1m,L
+‖x̂m−L|m−xm−L‖26−1m−L

(10)

where

5−1m,L=


Rm−L 0 ··· 0
0 Rm−L+1 ··· 0
...

...
. . .

...

0 0 ··· Rm


From formula Eq. (8), once the value of x̂m−L|m is obtained, we can get the value of
x̂m−L+1|m,x̂m−L+2|m,...,x̂m|m by

x̂i+1|m=8mx̂i|m+�mzi (11)

with i=m−L,m−L+1,m−L+2,...,m−1, so that the estimation of output ẑm|m can be
solved by

ẑm|m=Cmx̂m|m (12)

A variety of methods can be used to obtain the prior prediction xm−L of the cost function.
In this article, the most common method is used, which is expressed as follows Camacho
& Alba (2013):

xm−L =8m−L−1x̂m−L−1|m−L−1+�m−L−1zm−L−1 (13)

Corresponding to Eq. (13), the correlation covariance 6m−L satisfies the following:

6m−L=8m−L−1Pm−L−1|m−L−18T
m−L−1 (14)

For Eq. (10), the smaller the cost function J is, the closer the estimated value is to the true
value.
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STABILITY ANALYSIS
With the bounded external signal input, if the state response is within the bounded range,
the system satisfies ISS. In other words, if any external input and initial conditions are
bounded, the state bounded. The system will always have the ability to return to the
equilibrium point when the external input is 0.

Input-to-state stability (ISS)
Non-linear systems with external disturbances are considered as follows:

xm+1=Amxm+Bmωm. (15)

Here, we provide two ISS definitions.
Lemma 1 Alessandri, Baglietto & Battistelli (2008) The system in Eq. (15) is input-to-

state stable (ISS) if there exist the function β ∈KL and the function γ ∈K∞ such that for
each external input ω(m) and each initial condition x0= xm−L, solutions exist and satisfy

‖xm,x0,ωm‖≤β(‖x0,L‖)≤ γ (ωm) (16)

where ‖xm,x0,ωm‖ is the solution to the system in Eq. (15) at time m.
Lemma 2 Kim et al. (2006) The system in Eq. (15) is input-to-state stable (ISS) if and

only there exists the continuous ISS-Lyapunov function V : Rn
→R≥ 0 such that for the

functions λ1,λ2,λ3,σ ∈K∞, the Lyapunov function V satisfies

λ1‖xm‖≤V (xm)≤ λ2‖xm‖ (17)

and

V (xm+1)−V (xm)≤−λ3‖xm‖+σ‖ωm‖ (18)

or

V (xm+1)−V (xm)≤−λ3‖xm+1‖+σ‖ωm‖ (19)

ISS of the proposed MHE
Before proving ISS of the system in Eq. (15) under the MHE, we need to calculate the
estimation of xm−L considering the cost function J at time m having the smallest value,
such that the cost function J satisfies

∂J
∂ x̂m−L|m

= 0 (20)

By calculation, we obtain the equation for x̂m−L|m| as follows:

26−1m−L(x̂m−L|m−xm−L)= 0 (21)

Using Eq. (21), the solution can be obtained by

x̂m−L|m= xm−L. (22)
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This subsection introduces the stability characteristics of the estimation error of the
proposed unconstrained estimator. Using Eq. (22), the estimated error em−L is given as
follows:

em−L= xm−L− x̂m−L|m
= xm−L−xm−L
=8m−L−1xm−L−1+�m−L−1zm−L−1−8m−L−1x̂m−L−1|m−L−1−�m−L−1zm−L−1

(23)

Then, we get the estimated error dynamics:

em−L=8m−L−1em−L−1. (24)

The pair (Cm,Am) is completely observable in L step.
Theorem : Consider a pair {xm−L and Zm,L} and suppose that Assumption 1 holds. If

there exists a scaler µ and symmetric matrices P1> 0, P2> 0 satisfy

‖8m−L−1‖< 1 (25)

P2−P1≤−Q1 (26)

P2−P1≥−Q2 (27)

for some Q1> 0,Q2> 0, then the estimation error dynamics em−L are ISS.
Proof: If ‖8m−L−1‖< 1, then ρ(8m−L−1)< 1 is obtained, that means that there is

always a matrix P1 that satisfies

8T
m−L−1P18m−L−1−P1≤−Q1 (28)

for any Q1=QT
1 > 0. Simple algebraic manipulations show that

‖8m−L−1em−L−1‖2P1−‖em−L−1‖
2
P1 ≤−‖em−L−1‖

2
Q1

(29)

Using Eq. (24), the following equality can be obtained:

‖8m−L−1em−L−1‖2P1−‖em−L−1‖
2
P1 =‖em−L‖

2
P1 (30)

Combining Eqs. (29) and (30) yields

‖em−L‖2P1 ≤‖em−L−1‖
2
Q1−P1 (31)

Consider the Lyapunov candidate V : V (em−L)=‖em−L‖2P2 , then

V (em−L)−V (em−L−1)
=‖em−L‖2P2−‖em−L−1‖

2
P1

≤‖em−L‖2P2−‖em−L‖
2
P1

≤‖em−L‖2P2−P1
≤−‖em−L‖2Q2

≤−δ‖em−L‖

(32)

where δ = 1
2λmin(Q2)r2. As a result, Theorem 1 is derived. The ISS analysis result is

presented in Eq. (15).
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SIMULATION AND EXPERIMENTS
To validate the aforementioned statements, the control problem for some examples of the
proposed MHE is considered.

Considering the T-S fuzzy system in Eq. (4), we know
xm+1 =

r∑
i=1

hi(θm)(Âixm+B1iωm)

zm =

r∑
i=1

hi(θm)(Ĉixm+ωm)
(33)

Assume that θm ∈ [−M ,M ] and M > 0. The nonlinear term θ2m can be accurately
expressed as Su et al. (2012)

θ2m= h1(θm)(−M )θm+h2(θm)Mθm (34)

where h1(θm),h2(θm)∈ [0,1] and h1(θm)+h2(θm)= 1. Through the above equations, the
membership functions h1(θm) and h2(θm) are solved as

h1(θm)=
1
2
−
θm

2M
,h2(θm)=

1
2
+
θm

2M
(35)

The following conclusion can be obtained from the above expressions that h1(θm)= 1 and
h2(θm)= 0 when θm is −M and that h1(θm)= 0 and h2(θm)= 1 when θm is M . Then, to
approximate the nonlinear system, the T-S fuzzy model suggested below can be used:

plant form:
Rule 1: IF θk =−M , THEN{
xm+1 = Â1xm+B11ωm

zm = Ĉ1xm+ωm

Rule 2: IF θm=M , THEN{
xm+1 = Â2xm+B12ωm

zm = Ĉ2xm+ωm

and the following are the system matrices:

Â1=

[
AM 0.1
A 0

]
,B11=

[
1
0

]
,Ĉ1=

[
A 0

]

Â2=

[
−AM 0.1
A 0

]
,B12=

[
1
0

]
,Ĉ1=

[
A 0

]
In the example, xm= [xT1,mx

T
2,m]

T , A= 0.6,M = 0.2, so that

Â1=

[
0.12 0.1
0.6 0

]
,B11=

[
1
0

]
,Ĉ1=

[
0.6 0

]
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Â2=

[
−0.12 0.1
0.6 0

]
,B12=

[
1
0

]
,Ĉ1=

[
0.6 0

]
The proposed method uses simulation and experimental data to test performance. We
present an algorithm that summarizes the steps involved in the MHE proposed in the T-S
fuzzy system. For some intermediate steps, we need to repeat some calculation formulas
cyclically.

After research, our algorithm process is following:

Algorithm
• Give the initial values x0 and set L= 5.
• Establish T-S fuzzy control system model Eq. (22).
• Solve xm and zm in the form of the system.
• Solve 8m and �m by formula Eq. (7).
• Obtain the prior prediction xm−L by formula Eq. (13).
• Calculate the estimation x̂m−L|m| so that x̂m|m| and ẑm|m| using the MHE.
• Set m=m+1 and go back to step 5.
• Get the estimated value of all state data and end the algorithm.

In the T-S fuzzy control system, two different noise conditions are given to verify the
effect of the proposed MHE. The first case is that the noise function is given as the noise
gradually decreases over time, and the other case is that the noise is Gaussian noise.

Case 1 (Gaussian noise):
Let the initial condition be zero, that is, x0= 0 (x̂0= 0), and suppose the disturbance

input ωk is N (0,1). Under the above-mentioned setting conditions, in order to better
illustrate the universality that MHE can achieve the goal, we randomly select Gaussian
noise and obtain the estimation result using MHE of the system.

The estimation result of the T-S fuzzy system with Gaussian noise is shown in Fig. 1.
Obviously, under the influence of Gaussian noise, the output of the system changes more
widely, and the output after addingMHE is more gradual. It shows that when the measured
noise satisfies the normal distribution, the performance of estimation is remarkable, and
the estimated value curve fluctuates within a smaller range than the true value curve.

Case 2 (non-Gaussian noise):
Let the initial condition x0= 0 (x̂0= 0), and assume the disturbance input ωm is

ωm=
3∗ sin(0.85m)
(0.55m)2+1

(36)

The simulation results are shown in Figs. 2 and 3. Figure 2 is the noise, obviously, the
external interference is bounded and non-Gaussian. Figure 3 shows the simulation run for
the T-S fuzzy system with the MHE filter. The proposed MHE can effectively counteract
the influence of the sine-form noise in the T-S fuzzy system. In this case, the noise decays
with time, and the estimation performance of the MHE is most pronounced during the
initial period. A clear improvement of the smoothness can be observed for the T-S fuzzy
system, which is the result of the MHE filter reducing noise.

Case 3 (non-Gaussian noise):
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Figure 1 The true measured output z(m) and its estimations ẑ(m) based on theMHEwith Gaussian
noise.
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Figure 2 The noise of T-S fuzzy system in case 2.
Full-size DOI: 10.7717/peerjcs.1208/fig-2

To make our proposed MHE estimation scheme more convincing in systems with
unknown dynamics, we add a case when the noise is uniformly distributed.

The added noise in this case is shown in Fig. 4 and the effect of the designed MHE
filter is shown in Fig. 5. It can be seen from the figure that adding the MHE filter to the
T-S fuzzy control model with uniformly distributed noise can make the output smoother.
To increase the convincing power, a uniformly distributed noise is added to the designed
multi-threaded control system, andMHE filtering is used. It can be seen from the simulation
figures that the proposed estimator can work well in systems with unknown factors.

Through the above two kinds of different noise simulations, we find that it is feasible to
use MHE to solve the discrete-time filtering problem. The filter based on the MHEmethod
we designed shows a good effect in the T-S fuzzy system with external disturbance, even if
the disturbance is non-Gaussian.
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Figure 3 The true measured output z(m) and its estimations ẑ(m) based on theMHEwith function
noise.
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CONCLUSIONS
This article presents a design to solve the filtering problem for the performance of MHE
in discrete-time T-S fuzzy systems. An MHE different from the traditional Kalman filter
was proposed. At first, a presentation mode of the discrete time system was employed to
convert the authentic machine into T-S fuzzy system. Based on the T-S fuzzy model, the
proposed MHE was used to obtain a more precise estimate for the filtering error system.
Then, the analytical solution for the proposed MHE as well as the result when the cost
function has the smallest value was obtained. Next, the ISS property of the proposed
MHE was examined. Finally, the proposed method was demonstrated to be effective by
simulation examples.

Gao et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1208 12/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1208/fig-3
https://doi.org/10.7717/peerjcs.1208/fig-4
http://dx.doi.org/10.7717/peerj-cs.1208


0

0.02

0.04

0.06

m
ea

su
re

d 
ou

tp
ut

 z

0 5 10 15 20 25 30 35 40
time(s)

z
ture

z
MHE

Figure 5 The true measured output z(m) and its estimations ẑ(m) based on theMHEwith uniform
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