
$�+DOR�DEVWUDFWLRQ�IRU�GLVWULEXWHG�Q�GLPHQVLRQDO
VWUXFWXUHG�JULGV�ZLWKLQ�WKH�&���3*$6�OLEUDU\�'$6+
��������

�

)LUVW�VXEPLVVLRQ

*XLGDQFH�IURP�\RXU�(GLWRU

3OHDVH�VXEPLW�E\���-XO������IRU�WKH�EHQHcW�RI�WKH�DXWKRUV���DQG�\RXU������SXEOLVKLQJ�GLVFRXQW���

6WUXFWXUH�DQG�&ULWHULD
3OHDVH�UHDG�WKH�
6WUXFWXUH�DQG�&ULWHULD
�SDJH�IRU�JHQHUDO�JXLGDQFH�

5DZ�GDWD�FKHFN
5HYLHZ�WKH�UDZ�GDWD�

,PDJH�FKHFN
&KHFN�WKDW�cJXUHV�DQG�LPDJHV�KDYH�QRW�EHHQ�LQDSSURSULDWHO\�PDQLSXODWHG�

3ULYDF\�UHPLQGHU��,I�XSORDGLQJ�DQ�DQQRWDWHG�3')��UHPRYH�LGHQWLcDEOH�LQIRUPDWLRQ�WR�UHPDLQ�DQRQ\PRXV�

)LOHV
'RZQORDG�DQG�UHYLHZ�DOO�cOHV
IURP�WKH�PDWHULDOV�SDJH�

���)LJXUH�cOH�V�
��/DWH[�cOH�V�
��5DZ�GDWD�cOH�V�

https://peerj.com/submissions/73385/reviews/1142162/materials/

)RU�DVVLVWDQFH�HPDLO�SHHU�UHYLHZ#SHHUM�FRP
6WUXFWXUH�DQG
&ULWHULD

�

6WUXFWXUH�\RXU�UHYLHZ
7KH�UHYLHZ�IRUP�LV�GLYLGHG�LQWR���VHFWLRQV��3OHDVH�FRQVLGHU�WKHVH�ZKHQ�FRPSRVLQJ�\RXU�UHYLHZ�
���%$6,&�5(3257,1*
���(;3(5,0(17$/�'(6,*1
���9$/,',7<�2)�7+(�),1',1*6
���*HQHUDO�FRPPHQWV
���&RQcGHQWLDO�QRWHV�WR�WKH�HGLWRU

<RX�FDQ�DOVR�DQQRWDWH�WKLV�3')�DQG�XSORDG�LW�DV�SDUW�RI�\RXU�UHYLHZ
:KHQ�UHDG\�VXEPLW�RQOLQH�

(GLWRULDO�&ULWHULD
8VH�WKHVH�FULWHULD�SRLQWV�WR�VWUXFWXUH�\RXU�UHYLHZ��7KH�IXOO�GHWDLOHG�HGLWRULDO�FULWHULD�LV�RQ�\RXU�JXLGDQFH�SDJH�

%$6,&�5(3257,1*

&OHDU��XQDPELJXRXV��SURIHVVLRQDO�(QJOLVK
ODQJXDJH�XVHG�WKURXJKRXW�
,QWUR�	�EDFNJURXQG�WR�VKRZ�FRQWH[W�
/LWHUDWXUH�ZHOO�UHIHUHQFHG�	�UHOHYDQW�
6WUXFWXUH�FRQIRUPV�WR�3HHU-�VWDQGDUGV�
GLVFLSOLQH�QRUP��RU�LPSURYHG�IRU�FODULW\�
)LJXUHV�DUH�UHOHYDQW��KLJK�TXDOLW\��ZHOO
ODEHOOHG�	�GHVFULEHG�
5DZ�GDWD�VXSSOLHG��VHH�3HHU-�SROLF\��

(;3(5,0(17$/�'(6,*1

2ULJLQDO�SULPDU\�UHVHDUFK�ZLWKLQ�6FRSH�RI
WKH�MRXUQDO�
5HVHDUFK�TXHVWLRQ�ZHOO�GHcQHG��UHOHYDQW
	�PHDQLQJIXO��,W�LV�VWDWHG�KRZ�WKH
UHVHDUFK�cOOV�DQ�LGHQWLcHG�NQRZOHGJH�JDS�
5LJRURXV�LQYHVWLJDWLRQ�SHUIRUPHG�WR�D
KLJK�WHFKQLFDO�	�HWKLFDO�VWDQGDUG�
0HWKRGV�GHVFULEHG�ZLWK�VXdFLHQW�GHWDLO�	
LQIRUPDWLRQ�WR�UHSOLFDWH�

9$/,',7<�2)�7+(�),1',1*6

,PSDFW�DQG�QRYHOW\�QRW�DVVHVVHG�
0HDQLQJIXO�UHSOLFDWLRQ�HQFRXUDJHG�ZKHUH
UDWLRQDOH�	�EHQHcW�WR�OLWHUDWXUH�LV�FOHDUO\
VWDWHG�
$OO�XQGHUO\LQJ�GDWD�KDYH�EHHQ�SURYLGHG�
WKH\�DUH�UREXVW��VWDWLVWLFDOO\�VRXQG��	
FRQWUROOHG�

&RQFOXVLRQV�DUH�ZHOO�VWDWHG��OLQNHG�WR
RULJLQDO�UHVHDUFK�TXHVWLRQ�	�OLPLWHG�WR
VXSSRUWLQJ�UHVXOWV�

X V

Y
X

X

mailto://(null)peer.review@peerj.com
https://peerj.com/submissions/73385/reviews/1142162/
https://peerj.com/submissions/73385/reviews/1142162/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/

6WDQGRXW
UHYLHZLQJ�WLSV

�

7KH�EHVW�UHYLHZHUV�XVH�WKHVH�WHFKQLTXHV

7LS ([DPSOH

6XSSRUW�FULWLFLVPV�ZLWK
HYLGHQFH�IURP�WKH�WH[W�RU�IURP
RWKHU�VRXUFHV

6PLWK�HW�DO��-�RI�0HWKRGRORJ\��������9���SS������KDYH
VKRZQ�WKDW�WKH�DQDO\VLV�\RX�XVH�LQ�/LQHV���������LV�QRW�WKH
PRVW�DSSURSULDWH�IRU�WKLV�VLWXDWLRQ��3OHDVH�H[SODLQ�ZK\�\RX
XVHG�WKLV�PHWKRG�

*LYH�VSHFLbF�VXJJHVWLRQV�RQ
KRZ�WR�LPSURYH�WKH�PDQXVFULSW

<RXU�LQWURGXFWLRQ�QHHGV�PRUH�GHWDLO��,�VXJJHVW�WKDW�\RX
LPSURYH�WKH�GHVFULSWLRQ�DW�OLQHV��������WR�SURYLGH�PRUH
MXVWLdFDWLRQ�IRU�\RXU�VWXG\��VSHFLdFDOO\��\RX�VKRXOG�H[SDQG
XSRQ�WKH�NQRZOHGJH�JDS�EHLQJ�dOOHG��

&RPPHQW�RQ�ODQJXDJH�DQG
JUDPPDU�LVVXHV

7KH�(QJOLVK�ODQJXDJH�VKRXOG�EH�LPSURYHG�WR�HQVXUH�WKDW�DQ
LQWHUQDWLRQDO�DXGLHQFH�FDQ�FOHDUO\�XQGHUVWDQG�\RXU�WH[W�
6RPH�H[DPSOHV�ZKHUH�WKH�ODQJXDJH�FRXOG�EH�LPSURYHG
LQFOXGH�OLQHV������������������b�WKH�FXUUHQW�SKUDVLQJ�PDNHV
FRPSUHKHQVLRQ�GLeFXOW��,�VXJJHVW�\RX�KDYH�D�FROOHDJXH
ZKR�LV�SURdFLHQW�LQ�(QJOLVK�DQG�IDPLOLDU�ZLWK�WKH�VXEMHFW
PDWWHU�UHYLHZ�\RXU�PDQXVFULSW��RU�FRQWDFW�D�SURIHVVLRQDO
HGLWLQJ�VHUYLFH�

2UJDQL]H�E\�LPSRUWDQFH�RI�WKH
LVVXHV��DQG�QXPEHU�\RXU�SRLQWV

���<RXU�PRVW�LPSRUWDQW�LVVXH
���7KH�QH[W�PRVW�LPSRUWDQW�LWHP
���c
���7KH�OHDVW�LPSRUWDQW�SRLQWV

3OHDVH�SURYLGH�FRQVWUXFWLYH
FULWLFLVP��DQG�DYRLG�SHUVRQDO
RSLQLRQV

,�WKDQN�\RX�IRU�SURYLGLQJ�WKH�UDZ�GDWD��KRZHYHU�\RXU
VXSSOHPHQWDO�dOHV�QHHG�PRUH�GHVFULSWLYH�PHWDGDWD
LGHQWLdHUV�WR�EH�XVHIXO�WR�IXWXUH�UHDGHUV��$OWKRXJK�\RXU
UHVXOWV�DUH�FRPSHOOLQJ��WKH�GDWD�DQDO\VLV�VKRXOG�EH
LPSURYHG�LQ�WKH�IROORZLQJ�ZD\V��$$��%%��&&

&RPPHQW�RQ�VWUHQJWKV��DV�ZHOO
DV�ZHDNQHVVHV��RI�WKH
PDQXVFULSW

,�FRPPHQG�WKH�DXWKRUV�IRU�WKHLU�H[WHQVLYH�GDWD�VHW�
FRPSLOHG�RYHU�PDQ\�\HDUV�RI�GHWDLOHG�dHOGZRUN��,Q�DGGLWLRQ�
WKH�PDQXVFULSW�LV�FOHDUO\�ZULWWHQ�LQ�SURIHVVLRQDO�
XQDPELJXRXV�ODQJXDJH��,I�WKHUH�LV�D�ZHDNQHVV��LW�LV�LQ�WKH
VWDWLVWLFDO�DQDO\VLV��DV�,�KDYH�QRWHG�DERYH��ZKLFK�VKRXOG�EH
LPSURYHG�XSRQ�EHIRUH�$FFHSWDQFH�

$�+DOR�DEVWUDFWLRQ�IRU�GLVWULEXWHG�Q�GLPHQVLRQDO�VWUXFWXUHG
JULGV�ZLWKLQ�WKH�&���3*$6�OLEUDU\�'$6+
'HQLV�+bQLFK�&RUUHVS�������$QGUHDV�.QbSIHU�&RUUHVS���

��=,+��7HFKQLVFKH�8QLYHUVLWbW�'UHVGHQ��'UHVGHQ��'HXWVFKODQG

&RUUHVSRQGLQJ�$XWKRUV��'HQLV�+cQLFK��$QGUHDV�.QcSIHU
(PDLO�DGGUHVV��GHQLV�KXHQLFK#WX�GUHVGHQ�GH��DQGUHDV�NQXHSIHU#WX�GUHVGHQ�GH

7KH�3DUWLWLRQHG�*OREDO�$GGUHVV�6SDFH��3*$6��DEVWUDFWLRQ�OLEUDU\�'$6+�SURYLGHV�D�&��
EDVHG�DEVWUDFWLRQ�IRU�GLVWULEXWHG�1�GLPHQVLRQDO�VWUXFWXUHG�JULGV��7KLV�SDSHU�SUHVHQWV
HQKDQFHPHQWV�RQ�WRS�RI�WKH�'$6+�OLEUDU\�WR�VXSSRUW�VWHQFLO�RSHUDWLRQV�DQG�KDOR�DUHDV�WR
HeFLHQWO\�SDUDOOHOL]H�WKHVH�VWUXFWXUHG�JULGV��7KH�LPSURYHPHQWV�LQFOXGH�GHdQLWLRQV�RI
PXOWLSOH�VWHQFLO�RSHUDWRUV��DXWRPDWLF�GHULYDWLRQ�RI�KDOR�VL]HV��HeFLHQW�KDOR�GDWD
H[FKDQJHV��DV�ZHOO�DV�FRPPXQLFDWLRQ�KLGLQJ�RSWLPL]DWLRQV��7KH�PDLQ�FRQWULEXWLRQV�RI�WKLV
SDSHU�LV�WZR�IROG��)LUVW��WKH�KDOR�DEVWUDFWLRQ�FRQFHSW�DQG�WKH�KDOR�ZUDSSHU�VRIWZDUH
FRPSRQHQWV��6HFRQG��FRPSDULVRQV�RI�WKH�FRGH�FRPSOH[LW\�DQG�WKH�UXQWLPH�DJDLQVW�WKH
SUHYDOHQW�DOWHUQDWLYH�03,�

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

are

Notcomplete sentences

A Halo Abstraction for Distributed1

N-Dimensional Structured Grids within the2

C++ PGAS Library DASH3

Denis Hünich1 and Andreas Knüpfer1
4

1Center for Information Services and High Performance Computing (ZIH), Technische5

Universität Dresden, Dresden, Saxony, Germany6

Corresponding author:7

Denis Hünich1
8

Email address: denis.huenich@tu-dresden.de9

ABSTRACT10

The Partitioned Global Address Space (PGAS) abstraction library DASH provides a C++ based abstraction

for distributed N-dimensional structured grids. This paper presents enhancements on top of the DASH

library to support stencil operations and halo areas to efficiently parallelize these structured grids. The

improvements include definitions of multiple stencil operators, automatic derivation of halo sizes, efficient

halo data exchanges, as well as communication hiding optimizations. The main contributions of this

paper is two-fold. First, the halo abstraction concept and the halo wrapper software components. Second,

comparisons of the code complexity and the runtime against the prevalent alternative MPI.

11

12

13

14

15

16

17

1 INTRODUCTION18

New trends in parallel and HPC programming19

High Performance Computing (HPC) has always been a tool for challenging scientific and engineering20

simulations. It has been dominated by MPI and MPI-style parallelism for a long time. Today, the notion21

of MPI+X is the generally accepted best practice to reach the highest scalability while efficiently using22

distributed-memory clusters comprised of multi-core or many-core cluster nodes.23

The Partitioned Global Address Space (PGAS) concept is an alternative to the message passing24

concept. It basically allows random memory access between many processes in a parallel program25

running across many distributed-memory nodes. Remote access is still much slower than local access,26

but used carefully can reduce the complexity of distributed-memory parallel programming with little27

performance penalties. Note that MPI, too, adopted PGAS in the form of one-sided communication28

operations with the MPI 3 standard.29

Structured grids, stencil operations and halo areas30

Typically, in regular structured grid simulations every grid element is updated by the same operation; a so31

called “stencil operation”. A stencil defines all grid elements participating in the operation with stencil32

points pointing to the surrounding grid elements (neighbors). The current grid element (center) can also be33

a stencil point. Each stencil point has a weight to set the impact on the stencil operation. The arrangement34

of the neighbors defines the shape of a stencil. Figure 1 shows two examples of two dimensional 9-point35

stencils. Although both stencils are using the same number of neighbors their shape is different. Figure 1a36

uses neighbor elements up to ±2 in every dimension, while Figure 1b uses all direct neighbors.37

In case the grid is to big to fit into the memory of one compute node, it needs to be divided into38

partitions across many compute nodes (distributed-memory). This also means that partition elements39

located on the partition boundaries (boundary elements) can’t directly access neighbor elements stored on40

other partitions anymore and need to request them remotely.41

Requesting neighbors element-wise is most inefficient, so “halo areas” (Kjolstad and Snir, 2010) are42

used instead. Halo areas contain copies of all required neighbor elements located on other partitions.43

3HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

Historically, HPC was

not been a good tool

(Moore’s Law)

I suggest defining

stencil before

stencil operation

Stencils are often

not memory bound,

and when they are,

matrix-free is often

a solution. Parallelism

is typically used to

speed up the stencil

operation.

is anexisting DefineMPI

needscitation
if this istrue

whatar
partition
element

Figure 1. Two shapes of a 9-point stencil: (a) center ±2 stencil in both horizontal and vertical directions,

(b) center ±1 stencil point in each direction, and (c) the first stencil crossing the partition boundaries.

The number and size of halo areas depend on the shape of the applied stencils, the number of neighbor44

partitions and the size of the partition itself (number of dimensions and distribution pattern). The halo45

elements are copied from their remote originals from time to time as large memory blocks instead of46

single elements. Then the halo elements can be accessed locally just like local elements.47

This procedure significantly increases the performance and eliminates remote requests within stencil48

operations. Most of the halo update latency can be covered by splitting the partition update (iteration) into49

two phases. The first phase updates all partition elements with no remote neighbors (inner elements) and50

in the second phase all remaining partition elements (boundary elements) are updated. The halo updates51

are started asynchronously before the first phase and all communication transfers are hopefully finished52

within the inner part is updated. Commonly, the number of inner elements is big enough to perfectly cover53

the halo communication.54

2 RELATED WORK55

Related work regarding C++ parallelization abstractions56

We identified three different approaches to combine the PGAS concept with parallel programming,57

especially for HPC.58

First, PGAS languages or language extensions. UPC++ Zheng et al. (2014) and Co-Array C++59

Eleftheriou et al. (2002) are designed as C++ language extensions, whereas Chapel Chamberlain et al.60

(2007) and X10 Charles et al. (2005) are separate PGAS programming languages.61

Second, libraries with parallel programming APIs. The most dominant one, MPI MPI Forum62

(2015), also adopted PGAS operations (callign it “one-sided communication”). GASPI Grünewald and63

Simmendinger (2013) and OpenSHMEM Chapman et al. (2010) are alternative libraries which really64

follow the PGAS spirit.65

Third, C++ libraries. DASHFürlinger et al. (2014) (section 3), HPX Kaiser et al. (2014), Kokkos66

Edwards et al. (2014) and STAPL Buss et al. (2010) are libraries that provide communication APIs together67

with abstractions for distributed data structures. The HPX project addresses distributed memory systems,68

but doesn’t support n-dimensional containers. Kokkos also provides multi-dimensional containers,69

but focuses on shared memory systems only. STAPL shares concepts like local views on data and70

representation of distributed containers with DASH, but seems to be a closed source project and doesn’t aim71

classical HPC applications. None of the mentioned PGAS approaches offer stencil and halo abstractions72

for n-dimensional data containers.73

Related work regarding halo exchange mechanisms74

The basic concepts of halo areas (also called “ghost cells”) and boundary data exchanges are presented in75

Kjolstad and Snir (2010) and are used in this work and other related approaches. The STELLA project76

Gysi et al. (2014) provides a domain-specific embedded language using generic programming in C++77

and supports stencil codes on structured grids by using OpenMP and CUDA. Compared to the presented78

approach it is limited to shared memory systems only. DUNE Bastian et al. (2008) and PETSc Balay79

et al. (1997) are both modular C++ libraries for partial differential equations using grid-based methods80

and sparse matrix computations. Using MPI, both projects can be used for distributed memory systems.81

ScaFES Flehmig et al. (2014) also uses MPI to distribute structured grids and to update halo areas.82

2/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

Missing () around

citations

Could make bulleted

list or just bold, e.g.

C++ libraries:

Currently, confusing

as incomplete

sentences

Missing information

in related work.

The authors list libraries

but never discuss them.

What is UPC++?

Why is it related?

everytime they are updated eachiteration

Not acompletesentence

with similarities to PEAS

Compared to DUNE and PETSc, ScaFES is closest to our approach,but it is limited to MPI two sided83

communication and isn’t maintained anymore.84

None of them uses a concept of explicit local and global data accesses such as the DASH data85

containers.86

3 THE C++ TEMPLATE LIBRARY DASH87

The DASH C++ Template Library (Fürlinger et al., 2014) provides parallel data structures (container)88

for distributed memory, such as n-dimensional arrays(NArray), lists, or unordered maps. Elements in89

these containers can be accessed by local and global iterators. The iterator concept and other concepts90

in DASH follow the C++ Standard Library (SL) concepts and can be used with algorithms of the SL91

and C++ constructs like range based for-loops. Listing 1 illustrates a local iterator used in the range92

based for-loop (line 2) and accesses local elements (shared memory) only. The second for-loop (standard93

for-loop) iterates over all elements with a global iterator (line 7). The global iterator needs to verify the94

location of every accessed element and triggers a communication request in case of a remote element via95

the DART library Zhou et al. (2014); a lightweight PGAS runtime. DART provides one-sided put/get96

communication in a blocking (waits for data) or asynchronous (starts a communication request but doesn’t97

wait for the data) mode and local and global synchronization mechanisms. DASH uses the uniform API98

of DART and is independent of the chosen communication substrate. Currently, DART supports MPI99

(MPI Forum, 2015) and GASPI (Grünewald and Simmendinger, 2013) based communication substrates.100

1 // local iterator access

2 for(const auto& elem : my_narray.local) {

3 std::cout << elem << " ";

4 }

5 // global iterator access

6 auto it_end = my_narray.end();

7 for(auto it = my_narray.begin(); it != it_end; ++it) {

8 std::cout << *it << " ";

9 }

Listing 1. Element access via global and local DASH iterator.

To partition the data stored in a container DASH uses pattern (Fuchs and Fürlinger, 2016). A pattern101

defines how elements are partitioned and arranged based on the number of available processes (named102

“units” in DASH) and the patterns type.103

3.1 DASH NArray and stencil operations104

For structured grids with stencil operations the DASH container NArray should be used. This container105

arranges the elements in N dimensions (row or column major) and offers element access via iterators106

or the subscript operator. A blocked based distribution pattern ensures that each unit allocates one107

block of contiguous local memory for each process. This memory stores the elements represented by a108

n-dimensional partition of the NArray.109

To access the elements within a partition the local iterator works fine. But stencil based code need to110

access, besides the current element (center), neighbors too. This becomes problematic when the neighbor111

isn’t located on the partition. The global iterator can access elements on other partitions, but needs to112

verify the elements location on every access (locally or remotely) and has to request remotely located113

elements. This results in a very poor performance. In the end, the programmer still has to organize the114

update and access of halo elements (1, manage the adjacent partitions and combine the iterator access115

with the halo access. This is inconvenient, error-prone and requires a lot of code adaption in case the116

stencil shape changes.117

4 HALO ENVIRONMENT FOR THE DASH NARRAY118

We developed the HaloWrapper abstraction for DASH which hides the complexity of the mentioned119

halo environment without performance penalties. Goals are (1) easy access of stencil points (center or120

neighbor elements), (2) hiding the origin of the accessed stencil point (from local partition or from halo),121

3/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

Difficult to read with

so many parentheses

slue highlights

grammar no existing library

x
o

1 u s i n g S t e n c i l T = dash : : h a l o : : S t e n c i l P o i n t <2>;

2 u s i n g GlobBoundSpecT = dash : : h a l o : : GlobalBoundarySpec <2>;

3 dash : : h a l o : : S t e n c i l S p e c <S t e n c i l T ,8> s t e n c i l s p e c (

4 S t e n c i l T (−1 , −1) , S t e n c i l T (−1 , 0) , S t e n c i l T (−1 , 1) , S t e n c i l T (0 , −1) ,

5 S t e n c i l T (0 , 1) , S t e n c i l T (1 , −1) , S t e n c i l T (1 , 0) , S t e n c i l T (1 , 1)) ;

6 GlobBoundSpecT bound spec (BoundaryProp : : CYCLIC , BoundaryProp : : CYCLIC) ;

Listing 2. Stencil specification for a two dimensional full stencil of width 1. The center element doesn’t

need to be specified explicitly.

(3) overlap communication for halo exchanges with the stencil computations for the inner region of a122

partition where no halo elements are required. The existing DASH NArray container and its functionality123

becomes wrapped by the HaloWrapper which provides the extra halo functionality.124

In the following we describe essential parts of the HaloWrapper, explain its concept, and present125

performance results.126

4.1 HaloWrapper specification127

The essential parameters of a HaloWrapper instance are derived from the shape of the stencils to be128

applied and from the global grid border preferences.129

Stencils can be defined with the StencilSpec cĺass, a collection of stencil points (StencilPoint) necessary130

to represent the stencils. Each StencilPoint has a weight (coefficient) and coordinates relative to the131

center. The StencilSpec in Listing 2 represents the stencil described in Figure 1(b). The expression132

StencilPoint<2> defines a two dimensional StencilPoint. If no coefficient is passed the constructor133

expects two coordinates. For example, StencilT(-1,-1) creates a StencilPoint pointing to one element134

before the center for each dimension (north west) and a default weight of 1.135

As a convenience, the HaloWrapper allows to specify global boundary conditions for the distributed136

compute grid in the sense of boundary conditions for PDEs, see Listing 2 line 6. They can be passed with137

the global boundary specification (GlobalBoundarySpec) in three ways, separately for each dimension.138

The default setting NONE creates no outside halo areas i.e., no halo area when there is no neighbor139

partition in that direction. Stencil operations requiring halo access are not executed near such a border.140

The alternative setting CYCLIC logically connects the global boundaries by pointing to the opposite side.141

The setting CUSTOM offers a convenient way to provide arbitrary values for those halo elements, either in142

a static way (only set initially) or dynamically (updated between the iterations in any way the program143

sees fit). Such halo regions are not participating in the built-in halo updates.144

This simple specification is all it needs to instantiate the HaloWrapper and to parameterize the145

following internal components.146

4.2 Internal managment of halo partitions147

Each distributed partition of an n-dimensional NArray is wrapped by a HaloWrapper separately. For each148

partition 3n halo and boundary regions are created, see Figure 2.149

Such a region represents an neighbor or the current partition. It has a unique index, unique coordinates,150

and an extent. Figure 2a shows all possible regions for a 2-dimensional partition with their indices and151

their coordinates (e.g. (0,1)). The region index follows the row major linearization (last region coordinate152

grows fastest) and can be easily mapped to the coordinates and vice versa. The width of the region is153

automatically defined by the maximal distance of all StencilPoints from multiple StencilSpecs pointing in154

the same direction.155

DASH provides so called Views to represent parts of the grid, independent of the elements location.156

For example, each partition of the grid is represented by a View. Special iterators provide access to all157

elements inside a given View. The HaloWrapper combines the View concept with the aforementioned158

regions to define all halo areas (HaloRegions), boundary areas (BoundaryRegion) and the inner elements159

(InnerRegion). Figure 2b shows all HaloRegions (yellow) and all BoundaryRegions (green) of a partition160

for a full ±1 stencil on a 2-dimensional grid. The InnerRegion includes all elements in the center where161

no stencil would require elements from any halo. HaloRegions are necessary for the halo update process162

and mark all elements necessary from other partitions. BoundaryRegions instead mark local memory163

parts that need at least one halo element to solve the stencil operation. Using the region concept for the164

4/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

O

specificationof

(a) a (b) b

Figure 2. Regions concept for a 2-dimensional partition: (a) A center partition and all surrounding

neighbor partitions. (b) The regions inside a single partition with halo regions (yellow) and boundary

regions (green) and the inner region in the middle.

halo elements is quite obvious, whereas it isn’t that obvious for the boundary elements. Figure 2b shows165

the halo accesses of two stencil operations. While the BoundaryRegions on the corner (e.g. B 0) need166

halo elements of 3 different HaloRegions, the BoundaryRegions on the edges (e.g. B 7) only need halo167

elements of one HaloRegion. So, the use of BoundaryRegions offers the user a method to calculate the168

boundary elements depending on the already finished update transfers of the necessary HaloRegions.169

4.3 Internal management of halo memory and halo data exchanges170

Halo elements marked by the HaloRegions are stored in one separate contiguous memory block (HaloMem-171

ory). A virtual layer separates this HaloMemory into HaloRegions to support region-wise halo element172

access. Most of the requested halo elements inside a selected HaloRegion can’t be transferred with173

on communication request, because they are not stored contiguous. In Figure 3 we show two corner174

HaloRegions for 2- and 3-dimensional partitions. To transfer the marked elements for the 2-dimensional175

case (Figure 3a) two communications requests are necessary. In case of three dimensions (Figure 3b)176

already four communication requests are necessary. The number of requests for corner elements is177

negligible, compared to for example a one element thin layer of a three dimensional partition, where178

each halo element needs a communication request. The DART interface support strided communication179

requests for such cases. In this case the used communication substrate decides how the requested halo180

elements are transferred. While MPI can handle a big number of communication requests, GASPI doesn’t181

work well for many communication requests. So, to support both communication substrates and to182

efficiently update the requested halo elements we decided to buffer them in a contiguous memory block,183

to be transferred with one communication request later on. It requires more memory but results in lower184

waiting latencies(finalizing all created communication requests).185

The HaloWrapper supports two types of halo data exchanges; blocking and asynchronous. Both need186

to be called as collectively i.e., jointly by all participating processes. The blocking halo update doesn’t187

return until all started halo updates are finished and doesn’t need additional synchronization methods such188

as barriers. The asynchronous counterpart initiates the halo updates and returns immediately (Listing 3189

line 9). A wait function ensures that all or a subset of the started updates are locally finished and all halo190

elements can be used now (Listing 3 line 17).191

To guarantee the correct values of the halo elements all partitions have to be synchronized. Normally,192

this is achieved by a barrier at the end of an iteration and forces the user to explicitly synchronize its193

application and wait for the slowest partition. We implemented a signaling environment to synchronize194

the partitions and their neighbors. To avoid additional function calls, we implemented the signal handling195

inside the halo update and waiting calls (Listing 3 line 9 and 17). The asynchronous halo update consists196

of 5 parts: (1) check if the neighbor partitions finished the previous update, (2) buffer all halo elements197

5/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

ormallyyou
would pack
and then
communicate

once or use

MPI datatypes

this
isthe

stand p
Gooch

(a) a (b) b

Figure 3. Halo data exchange: Remote strided data to contiguous memory: (a) Corner halo Region only

have one fixed offset between data chunks (b) Corner halo Region already have two different offset

between data chunks for three dimensions

requested by neighbor partitions, (3) send signals that all halo elements are ready for transfer, (4) wait198

until own requested halo elements are ready for transfer, (5) start asynchronous halo transfer. The wait199

call: (6) blocks until all own requested halo elements are transferred and (7) sends signals to neighbor200

partitions that the requested halo elements are received. The signals are onesided communication calls to201

write a defined value into the memory of the selected partitions ((3) and (7)). These partitions poll for the202

defined value and reset it ((1) and (4)) after the transfer is finished. The signals used in (1) and (7) can be203

turned on or off with a template parameter. They are necessary for small grids, when a partition already204

modifies the buffered halo elements, while another partition still uses the buffer.205

4.4 Stencil Point Access206

The primary concern is to apply the previously defined stencils to every element in the distributed compute207

grid. All other types of access can still be done through the underlying DASH::NArray and its iterators.208

For convenience we provide an iterator class to apply a given stencil to all grid points of the partition. Yet,209

this needs to check the location for every stencil point, whether it is inside the local partition or the halo210

memory, which slows down the stencil operation. For optimal performance we implemented separate211

iterators for the inner region and the boundary regions of the partition, see 2b. We recommend to apply212

the stencil in two separate loops, where both loop bodies can be identical, as shown in Listing 3. This213

conforms to the basic halo concept, see Section 1.214

There are four steps to by executed collectively for all distributed partitions. First, the asynchronous215

halo updates need to be initiated (Listing 3 line 10). Second, the inner iteration is to be executed (Listing 3216

from line 12). Third, the halo updates must be finished (Listing 3 line 23). Most likely, this has happened217

already during the second step, if the inner region is large enough. Then there is perfect overlap between218

data transfers and the inner calculation. Finally, the boundary iteration is executed using the updated halo219

elements. The boundary areas tend to be small compared to the inner area.220

A StencilIterator accesses the center elements equivalent to C++ Standard Library iterators with the221

address-of operator. Neighbor elements are accessed by member function, which automatically resolves222

the origin of the accessed element (halo or partition element) and then returns the requested element. The223

InnerIterator is designed to accesses elements without halo neighbors only and doesn’t need to validate224

the locations of the neighbors. The iteration order follows the memory order defined for the using NArray225

(row or column major). Figure 2b shows the iteration order for row major grids (dotted arrows). Because226

the iterator needs to evaluate its position inside the partition each time its moved, we especially optimized227

the mostly used pre-increment operator. Because the neighbors depend on the center, their memory228

position be easily calculated (fixed offset). The BoundaryIterator instead needs to iterate over more than229

one region and cover all identified BoundaryRegions. Inside a BoundaryRegion the iteration order is230

equivalent to the InnerRegion. In case the BoundaryIterator reaches the end of a BoundaryRegion it points231

to the beginning of the next one, containing at least one element. The order in which the BoundaryRegions232

are traversed is from the smallest to the largest region id. An example of over four BoundaryRegions is233

shown Figure 2b with the dashed arrows, from BoundaryRegion 0 until the end of 3.234

The HaloWrapper is designed to match all StencilSpecs passed by the user. But, if the StencilSpecs235

differ in distance or direction, the created BoundaryRegions and InnerRegions might not fit anymore. For236

this reason the HaloWrapper provides an infrastructure specific for one StencilSpec called (StencilOper-237

6/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

MPI typically doesn’t

have strong progress

as'Endard

cite if true

1 S t e n c i l S p e c T s s p e c (S t e n c i l T (−1 , 0) , S t e n c i l T (1 , 0) ,

2 S t e n c i l T (0 , −1) , S t e n c i l T (0 , 1)) ;

3 / / P e r i o d i c / c y c l i c g l o b a l b o r d e r c o n d i t i o n s f o r bo th d i m e n s i o n s

4 GlobBoundSpecT bound spec (BoundaryProp : : CYCLIC , BoundaryProp : : CYCLIC) ;

5 HaloWrapperT h a l o w r a p p e r (s r c m a t r i x , bound spec , s s p e c , s s p e c 2 , . . .) ;

6 / / S t e n c i l s p e c i f i c o p e r a t o r f o r a s p e c i f i c s t e n c i l s p e c

7 a u t o s t e n c i l o p = h a l o w r a p p e r . s t e n c i l o p e r a t o r (s s p e c) ;

8

9 f o r (a u t o i = 0 ; i < i t e r a t i o n s ; ++ i) {
10 h a l o w r a p p e r . u p d a t e a s y n c () ; / / s t a r t a s y n c h r o n o u s h a l o u p d a t e

11

12 / / C a l c u l a t i o n o f a l l i n n e r e l e m e n t s (I n n e r R e g i o n)

13 a u t o i e n d = s t e n c i l o p . i n n e r . end () ;

14 f o r (a u t o i t = s t e n c i l o p . i n n e r . b e g i n () ; i t != i e n d ; ++ i t) {
15 / / i t . v a l u e a t (0) a c c e s s e s n e i g h b o r r e p r e s e n t e d by S t e n c i l T (−1 , 0)

16 a u t o c e n t e r = * i t ;

17 dou b l e d t h e t a =

18 (i t . v a l u e a t (0) + i t . v a l u e a t (1) − 2 * c e n t e r) / (dx*dx) +

19 (i t . v a l u e a t (2) + i t . v a l u e a t (3) − 2 * c e n t e r) / (dy*dy) ;

20 . . .

21 }
22

23 h a l o w r a p p e r . w a i t () ; / / Wait u n t i l a l l h a l o e l e m e n t s a r e u p d a t e d

24

25 / / C a l c u l a t i o n o f a l l boundary r e g i o n e l e m e n t s

26 a u t o bend = s t e n c i l o p . boundary . end () ;

27 f o r (a u t o i t = s t e n c i l o p . boundary . b e g i n () ; i t != bend ; ++ i t) {
28 / / same as t h e i n n e r p a r t

29 }
30 }

Listing 3. 2D iteration loop with halo exchange and stencil operations

ator). Each StencilOperator provides the aforementioned StencilIterators, methods to simplify stencil238

operation tasks and management parts of halo environment (see Listing 3 line 7).239

To support an alternative access besides iterators we also implemented a coordinate based access (e.g.240

element access[-1][0]). This kind of access can also be used for the inner and boundary regions, but the241

user needs to care about valid coordinates. The iterator based access strategy is recommended, because it242

can be used with the C++ Standard Library algorithms.243

5 EVALUATION244

To evaluate the DASH HaloWrapper we implemented the heat equation for structured square grids with245

a Jacobi solver and CYCLIC boundary conditions for 2 and 3 dimensions (2D and 3D) in MPI and246

DASH. The Jacobi solver requires two equivalent compute grids, that act as a read-only source grid and a247

write-only destination grid, alternating between the iterations. A 5-point-stencil (2D) and a 7-point-stencil248

(3D) with an offset of ±1 in every dimension were used on a double precision grid elements.249

Each iteration is divided into the asynchronous update of the halo elements (async), the calculation250

of all inner elements (inner), waiting for the halo transfers to finish (wait), and the calculation of all251

boundary elements (bound). The inner part should overlap the halo update process started in async, and252

thus minimize wait. The number of iterations is fixed to 100 (calc total) to compare the implementations253

with MPI (mpi) and the DASH HaloWrapper (dash).254

5.1 Source Code Comparison255

One aspect of comparison is the code complexity. This is connected with the length and maintainability256

of the code.257

While LOC comparisons are always subjective, because it can be argued, that the certain parts can be258

7/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

Table 1. Lines of Code (LOC) comparison of MPI and DASH for a 2D and 3D heat eqation simulation

with breakdown into the code phases, without code comments and blank code lines. The 2D to 3D rows

show the number of LOC that had to be adapted and in brackets the number of LOC that had to be added.

The latter is a subset of the changed LOC.

Implementation Total Async. Halo Exchange Inner Calc. Boundary Calc.

(async and wait) (inner) (bound)

MPI 2D 249 20 8 18

MPI 3D 318 28 11 36

MPI 2D to 3D 132 (69) 18 (8) 6 (3) 30 (14)

DASH 2D 134 2 7 7

DASH 3D 140 2 8 8

DASH 2D to 3D 20 (6) 0 (0) 2 (1) 2 (1)

hidden in extra functions, to be called with one LOC later. The logic of these functions also need to be259

adapted, in case the environment (e.g. number of dimensions) changes. In our case, we use the LOC to260

demonstrate the effort a user needs to adapt the application, if the number of dimensions changes.261

Table 1 shows the lines of code (LOC) for the four implementations and their code phases. Even262

though not a strict criterion for complexity, the fewer or much fewer LOC for the DASH variants indicate263

lower code complexity and opportunities for inconsistencies. Another strong indication for less complexity264

and better maintainability is the increase in LOC when transforming the code from 2D to 3D. DASH265

requires only 6 additional LOC and additionally modify 14 LOC, when switching from 2D to 3D. Whereas,266

MPI needs to add 69 LOC and modify 132 LOC in total. Note, that the two lines for the asynchronous267

DASH halo exchange needs no adaptation at all.268

Listing 4 shows the 3D iteration loop which is the counterpart to the 2D case in Listing 3. All code269

examples are provided in the github repository1.270

5.2 Performance Comparison271

In HPC the reduction of code complexity is appropriate only, if it doesn’t decrease the performance.272

Therefore, we compared both implementations (plain MPI and DASH) in a weak and a strong scaling273

scenario. The runtimes were measured on the Bull HPC-Cluster “Taurus” at ZIH, TU Dresden on the274

Haswell and the Romeo partition. Haswell provides compute nodes with two Haswell E5-2680 v3 CPUs at275

2.50GHz (12 physical cores each) and 64 GB memory. Compute nodes on Romeo have two AMD EPYC276

CPU 7702 (64 physical cores each) and 512 GB memory. Hyper-Threading (Haswell) and Simultaneous277

Multithreading (Romeo) were disabled. The implementations were compiled with gcc 10.2.0 and used278

OpenMPI 4.0.5.279

The essential runtime contributions are async, inner, wait, bound and the total caluclation time (calc).280

Each combination was measured three times and the plots show the mean of these measurements. While281

calc total is measured once per run, the other parts were recorded for each iteration and were summed up282

in the plots. The weak scaling scenario increases the number of grid elements proportional to the number283

of compute nodes. Nearly the total memory of each compute node were used. The figures marked with (a)284

show the runtimes of the phases calc, inner and bound, while figures marked with (b) show the runtimes285

of the phases async and wait. The values plotted in the figures are not stacked.286

Figure 4 and 5 show the results of the 2D heat equation on Haswell and Romeo. Both implementations287

show nearly identical runtimes (Figure 4a) on Haswell, while on Romeo dash performs slightly better288

(Figure 5a). Interestingly, the runtime of the components is quite differently. dash is faster calculating the289

inner elements, but slower in async and vice versa for mpi. mpi performs better with many communication290

requests per neighbor, because the wait stage can process the requests faster, as dash can prepare the halo291

data for the one communication request per neighbor strategy (see 4.3). In total dash is slightly faster in292

total.293

The results of the 3D pendant are shown in Figure 6 and 7. In total the runtimes of dash and mpi are294

very similar, again. On Haswell dash is slower for one and two nodes, but faster for 4 to 64 nodes. On295

Romeo dash and mpi are closer together with slight advantages here and there. However, the contributions296

1https://github.com/dash-project/dash-apps/heat_eqation

8/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

ounds likeDASH
vovidesopportunities

r inconsistencies

Usecomparable
umbers 281132

illuseful if
mplerto program
Mostuseful if
erformance remains

similar

of the components change entirely. Now, the wait phases in the mpi case is much longer than the dash297

async component. But dash needs more time for the inner and bound components (Figure 6b and 6a).298

Especially on Haswell the time used to update the halo elements is a big advantage of dash; at least by299

a factor of three (Figure 6b). A similar behavior can be seen on Romeo, but not as distinct (Figure 7b and300

7a). The reason for the changed mpi behavior is the much higher number of individual requests due to301

strided accesses. dash still uses one request with buffered halo data per neighbor. The buffering approach302

is superior for higher dimensions and large locals grids.303

In both scenarios, 2D and 3D, dash spent no significant time in wait, just as mpi in async. Also, the304

amount of time spent for bound is very small compared to inner. To see these stages behave in a strong305

scaling scenario we used 550002 grid elements for 2D and 15003 grid elements for 3D (fits into the main306

memory of one compute node). The measurements were made on Haswell to involve more compute307

nodes by still using all cores on these nodes.308

Figures 8 and 9 show the results for the strong scaling scenario (2D and 3D). The behavior is quite309

similar in both scenarios. Until 16 cores on one node dash outperforms mpi, but on top of that, dash310

and mpi are close together (Figure 8a and 9a). The results for 16 and 32 compute nodes for 3D are an311

exception where dash is faster than mpi. Notably, both exhibit the same performance artifact around 12312

to 24 cores. The reason is an increased number of last level cache load misses and an indicator that the313

implementations are memory bound at this number of cores per node.314

Interesting, besides the total results, are the individual stages. The inner stage is processed faster by315

dash in both scenarios, while bound is slower compared to mpi (Figure 8a and 9a). The HaloWrapper316

has a slight disadvantage, by using separate memory for the halo elements. While mpi uses one memory317

chunk for grid and halo elements, which can be good optimized. In Figure 8b dash needs significantly318

1 S t e n c i l S p e c T s s p e c (S t e n c i l T (−1 , 0 , 0) , S t e n c i l T (1 , 0 , 0) ,

2 S t e n c i l T (0 , −1 , 0) , S t e n c i l T (0 , 1 , 0)

3 S t e n c i l T (0 , 0 , −1) , S t e n c i l T (0 , 0 , 1)) ;

4 / / P e r i o d i c / c y c l i c g l o b a l b o r d e r c o n d i t i o n s f o r bo th d i m e n s i o n s

5 GlobBoundSpecT bound spec (BoundaryProp : : CYCLIC , BoundaryProp : : CYCLIC ,

6 BoundaryProp : : CYCLIC) ;

7 HaloWrapperT h a l o w r a p p e r (s r c m a t r i x , bound spec , s s p e c , s s p e c 2 , . . .) ;

8 / / S t e n c i l s p e c i f i c o p e r a t o r f o r a s p e c i f i c s t e n c i l s p e c

9 a u t o s t e n c i l o p = h a l o w r a p p e r . s t e n c i l o p e r a t o r (s s p e c) ;

10

11 f o r (a u t o i = 0 ; i < i t e r a t i o n s ; ++ i) {
12 h a l o w r a p p e r . u p d a t e a s y n c () ; / / s t a r t a s y n c h r o n o u s h a l o u p d a t e

13

14 / / C a l c u l a t i o n o f a l l i n n e r e l e m e n t s (I n n e r R e g i o n)

15 a u t o i e n d = s t e n c i l o p . i n n e r . end () ;

16 f o r (a u t o i t = s t e n c i l o p . i n n e r . b e g i n () ; i t != i e n d ; ++ i t) {
17 / / i t . v a l u e a t (0) a c c e s s e s n e i g h b o r r e p r e s e n t e d by S t e n c i l T (−1 , 0)

18 dou b l e d t h e t a =

19 (i t . v a l u e a t (0) + i t . v a l u e a t (1) − 2 * c e n t e r) / (dx*dx) +

20 (i t . v a l u e a t (2) + i t . v a l u e a t (3) − 2 * c e n t e r) / (dy*dy) +

21 (i t . v a l u e a t (4) + i t . v a l u e a t (5) − 2 * c e n t e r) / (dz * dz) ;

22 . . .

23 }
24

25 h a l o w r a p p e r . w a i t () ; / / Wait u n t i l a l l h a l o e l e m e n t s a r e u p d a t e d

26

27 / / C a l c u l a t i o n o f a l l boundary r e g i o n e l e m e n t s

28 a u t o bend = s t e n c i l o p . boundary . end () ;

29 f o r (a u t o i t = s t e n c i l o p . boundary . b e g i n () ; i t != bend ; ++ i t) {
30 / / same as t h e i n n e r p a r t

31 }
32 }

Listing 4. 3D iteration loop with halo exchange and stencil operations

9/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

unclear what you are trying to say

(a) (b)

Figure 4. Weak Scaling for 2D Heat Equation - DASH vs. MPI on Haswell (values not stacked)

(a) (b)

Figure 5. Weak Scaling for 2D Heat Equation - DASH vs. MPI on Romeo (values not stacked)

(a) (b)

Figure 6. Weak Scaling for 3D Heat Equation - DASH vs. MPI on Haswell (values not stacked)

(a) (b)

Figure 7. Weak Scaling for 3D Heat Equation - DASH vs. MPI on Romeo (values not stacked)

longer in async (16 and 20 cores) and is based on the preparation of the halo elements. As mentioned319

before, the implementations suffer performance by a lot of L3 cache misses, which in this case also320

influence the async stage in dash. While dash still has no significant runtime in wait, mpi now spends321

time in async until 4 cores in the 3D scenario.322

Overall, dash can compete with the plain mpi example for all presented scenarios;by less LOC. The323

HaloWrapper can also be easily adapted to higher number of dimensions, other stencil shapes or boundary324

conditions.325

10/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

(a) (b)

Figure 8. Strong Scaling for 2D Heat Equation - DASH vs. MPI on Haswell (values not stacked)

(a) (b)

Figure 9. Strong Scaling for 3D Heat Equation - DASH vs. MPI on Haswell (values not stacked)

6 CONCLUSION AND FUTURE WORK326

In this paper we presented an abstraction for stencil codes and halo areas for distributed n-dimensional327

structured grids and the data container classes for this purpose provided by the DASH C++ template328

library. This greatly simplifies programming and code maintenance of parallel computations on distributed329

compute grids because stencils, halo areas, and boundaries only need to be specified and parameterized330

instead of implemented from scratch. Changes of stencils or even dimensionality require only few code331

changes.332

The DASH halo concept is compared to the typical MPI counterpart. First, in terms of code complexity333

which is estimated based on lines of code and code changes needed. This shows a clear advantage for the334

presented solution And second in terms of runtime of the data transfer and synchronization steps. Here,335

the DASH and MPI solutions are on a par with slight advantages for the DASH case on average.336

Thus, the advantages for programming and code maintenance comes at no performance costs. Furter337

optimizations like tasking, multiple threads, or tuning of the stencil operation are perfectly possible on338

top of the presented approach and are our primary goals for future work.339

The source codes used here are available on github2 to allow studying the shown code excerpts in340

their context and for reproducibility of our results.341

REFERENCES342

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. (1997). Efficient Management of Parallelism in343

Object-Oriented Numerical Software Libraries, pages 163–202. Birkhäuser Boston, Boston, MA.344

Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., and Sander, O. (2008).345

A generic grid interface for parallel and adaptive scientific computing. part i: abstract framework.346

Computing, 82(2):103–119.347

Buss, A., Harshvardhan, Papadopoulos, I., Pearce, O., Smith, T., Tanase, G., Thomas, N., Xu, X., Bianco,348

M., Amato, N. M., and Rauchwerger, L. (2010). Stapl: Standard template adaptive parallel library.349

In Proceedings of the 3rd Annual Haifa Experimental Systems Conference, SYSTOR ’10, pages350

14:1–14:10, New York, NY, USA. ACM.351

Chamberlain, B., Callahan, D., and Zima, H. (2007). Parallel programmability and the chapel language.352

The International Journal of High Performance Computing Applications, 21(3):291–312.353

2https://github.com/dash-project/dash-apps/tree/master/heat_equation

11/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., and Smith, L. (2010). Introducing354

OpenSHMEM: SHMEM for the PGAS Community. In Proc. of the Fourth Conference on Partitioned355

Global Address Space Programming Model, PGAS ’10, pages 2:1–2:3, New York, NY, USA. ACM.356

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., and Sarkar,357

V. (2005). X10: An object-oriented approach to non-uniform cluster computing. SIGPLAN Not.,358

40(10):519–538.359

Edwards, H. C., Trott, C. R., and Sunderland, D. (2014). Kokkos: Enabling manycore performance porta-360

bility through polymorphic memory access patterns. Journal of Parallel and Distributed Computing,361

74(12):3202 – 3216. Domain-Specific Languages and High-Level Frameworks for High-Performance362

Computing.363

Eleftheriou, M., Chatterjee, S., and Moreira, J. E. (2002). A c++ implementation of the co-array364

programming model for blue gene/l. In Parallel and Distributed Processing Symposium, International,365

volume 3, page 0105, Los Alamitos, CA, USA. IEEE Computer Society.366

Flehmig, M., Feldhoff, K., and Markwardt, U. (2014). Scafes: An open-source framework for explicit367

solvers combining high-scalability with user-friendliness. In ARCS 2014; 2014 Workshop Proc. on368

Architecture of Computing Systems, pages 1–8.369

Fuchs, T. and Fürlinger, K. (2016). Expressing and exploiting multidimensional locality in DASH. In370

Bungartz, H.-J., Neumann, P., and Nagel, E. W., editors, Software for Exascale Computing - SPPEXA371

2013-2015, pages 341–359, Garching, Germany. Springer.372

Fürlinger, K., Glass, C., Gracia, J., Knüpfer, A., Tao, J., Hünich, D., Idrees, K., Maiterth, M., Mhedheb, Y.,373

and Zhou, H. (2014). DASH: Data Structures and Algorithms with Support for Hierarchical Locality.374

In Lopes, L. e., editor, Euro-Par 2014: Parallel Processing Workshops, volume 8806 of LNCS, pages375

542–552. Springer International Publishing.376

Grünewald, D. and Simmendinger, C. (2013). The GASPI API specification and its implementation GPI377

2.0. In 7th International Conference on PGAS Programming Models, volume 243.378

Gysi, T., Fuhrer, O., Osuna, C., Cumming, B., and Schulthess, T. (2014). STELLA: A domain-specific379

embedded language for stencil codes on structured grids. In EGU General Assembly Conference380

Abstracts, volume 16 of EGU General Assembly Conference Abstracts, page 8464.381

Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., and Fey, D. (2014). HPX: A Task Based382

Programming Model in a Global Address Space. In Proc. of the 8th International Conference on383

Partitioned Global Address Space Programming Models, PGAS ’14, pages 6:1–6:11, New York, NY,384

USA. ACM.385

Kjolstad, F. B. and Snir, M. (2010). Ghost cell pattern. In Proceedings of the 2010 Workshop on Parallel386

Programming Patterns, ParaPLoP ’10, pages 4:1–4:9, New York, NY, USA. ACM.387

Matthes, A., Widera, R., Zenker, E., Worpitz, B., Huebl, A., and Bussmann, M. (2017). Tuning and388

optimization for a variety of many-core architectures without changing a single line of implementation389

code using the alpaka library.390

MPI Forum (2015). MPI: A Message-Passing Interface Standard. Version 3.1. available at: mpi-forum.391

org/docs/mpi-3.1/mpi31-report.pdf.392

Zheng, Y., Kamil, A., Driscoll, M. B., Shan, H., and Yelick, K. A. (2014). Upc++: A pgas extension for393

c++. 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pages 1105–1114.394

Zhou, H., Mhedheb, Y., Idrees, K., Glass, C. W., Gracia, J., and Fürlinger, K. (2014). DART-MPI: An395

MPI-based Implementation of a PGAS Runtime System. In Proceedings of the 8th International396

Conference on Partitioned Global Address Space Programming Models, PGAS ’14, pages 3:1–3:11,397

New York, NY, USA. ACM.398

12/123HHU-�&RPSXW��6FL��UHYLHZLQJ�3')�_��&6�������������������1(:����0D\������

Manuscript to be reviewedComputer Science

