
Submitted 13 May 2022
Accepted 13 December 2022
Published 3 February 2023

Corresponding author
Denis Hünich, denis.huenich@tu-
dresden.de

Academic editor
Daniele D’Agostino

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.1203

Copyright
2023 Hünich and Knüpfer

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A Halo abstraction for distributed n-
dimensional structured grids within the
C++ PGAS library DASH
Denis Hünich and Andreas Knüpfer
ZIH, Technische Universität Dresden, Dresden, Deutschland

ABSTRACT
The Partitioned Global Address Space (PGAS) library DASH provides C++ con-
tainer classes for distributed N-dimensional structured grids. This article presents
enhancements on top of the DASH library to support stencil operations and halo
areas to conveniently and efficiently parallelize structured grids. The improvements
include definitions of multiple stencil operators, automatic derivation of halo sizes,
efficient halo data exchanges, as well as communication hiding optimizations. The
main contributions of this article are two-fold. First, the halo abstraction concept and
the halo wrapper software components are explained. Second, the code complexity
and the runtime of an example code implemented in DASH and pure Message Passing
Interface (MPI) are compared.

Subjects Distributed and Parallel Computing, Software Engineering
Keywords C++, DASH, PGAS, Halo, Stencil codes, Distributed memory, Abstraction

INTRODUCTION
New trends in parallel and HPC programming
High performance computing (HPC) is an essential tool for challenging scientific and
engineering simulations. It has been dominated by Message Passing Interface (MPI) (MPI
Forum, 2015) and MPI-style parallelism for a long time. Today, the notion of MPI+X
is also generally accepted practice to reach the highest scalability while efficiently using
distributed-memory clusters comprised of multi-core or many-core cluster nodes.

The partitioned global address space (PGAS) concept is an alternative to the message
passing concept. It provides random memory access between many processes in a parallel
application running across many distributed-memory nodes. Remote access is still much
slower than local access, but can reduce the complexity of distributed-memory parallel
programming with little performance penalties. MPI also adapted PGAS in the form of
one-sided communication operations with the MPI 3 standard.

Spacial domain decomposition
This work aims at the large group of parallelHPC codes doing some formof computation on
a spacial simulation domain with a domain decomposition to scale up for high parallelism
with either strong or weak scaling. In contrast, a functional decomposition cannot scale
because there is only a fixed number of different operations to perform.

How to cite this article Hünich D, Knüpfer A. 2023. A Halo abstraction for distributed n-dimensional structured grids within the C++
PGAS library DASH. PeerJ Comput. Sci. 9:e1203 http://doi.org/10.7717/peerj-cs.1203

https://peerj.com/computer-science
mailto:denis.huenich@tu-dresden.de
mailto:denis.huenich@tu-dresden.de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1203
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1203

Figure 1 Two shapes of a nine-point stencil: (A) left: center±2 stencil points in both horizontal and
vertical direction, (B) middle: center±1 stencil point in each direction, and (C) right: the first stencil
crossing the partition boundaries.

Full-size DOI: 10.7717/peerjcs.1203/fig-1

In the course of discretization the simulation domain can be mapped to a structured
or unstructured grid. A structured n-dimensional grid has a regular neighbor relationship
between grid elements that can be directly mapped to the storage order of n-dimensional
arrays. Because the neighbor relation does not need to be stored explicitly, grid elements can
be accessed more efficient and data structures are simpler in its design. An unstructured
grid allows arbitrary neighbor relations to represent more flexible simulation domain
geometries. However, it requires to store the neighbor relationship explicitly and so an
indirect access of grid elements, i.e., accessing the neighbor reference before the actual
neighbor element. In this work we focus on structured grids only, albeit a generalization of
the following is also of interest for unstructured grids and shall become the focus of future
work.

Structured grids, stencil operations, partitions, and halo areas
Simulations with regular structured grids often use stencils to describe surrounding grid
elements (neighbors) relative to the current grid element (center) for basic calculation
steps to update/modify the center element. Neighbors and often the center itself are called
stencil points and their arrangement is named stencil shape. Figure 1 shows two examples
of a two-dimensional nine-point stencil. Although both stencils have the same number
of neighbors their shape is different. Fig. 1A has up to ±2 neighbor elements in every
dimension, while Fig. 1B uses all direct neighbors.

In case a grid is to big to fit into the memory of one compute node, the grid needs to
be divided into partitions which are distributed across many compute nodes (distributed
memory). Elements on the boundary of a partition with neighbors on other partitions
(boundary elements) can access these neighbors only remotely via communication
substrates, such as MPI. Doing this element-wise is most inefficient, because the data
of each neighbor has to be requested and transferred over the network with a much higher
latency than a local memory access. Unless it is used occasionally (few remote accesses),
this will drastically slow down the entire parallel application.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 2/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1203/fig-1
http://dx.doi.org/10.7717/peerj-cs.1203

To avoid this performance decrease, ‘‘halo areas’’ (Kjolstad & Snir, 2010) that contain
local copies of all required neighbor elements located on remote partitions can be used.
The number and size of halo areas depend on the shape of the applied stencils, the number
of neighbor partitions and the size of the partitions itself (number of dimensions and
distribution pattern). The halo elements are copied from their remote original values with
few bulk transfers instead of many individual transfer requests and then be accessed locally.
Halo updates need to be done in a phase of the parallel algorithm where the necessary
remote values are up-to-date and ready to be transferred.

This procedure significantly increases the performance. Furthermore, phases of purely
local computations (inner elements), no stencil point needs remote resp. halo elements,
can be overlapped with asynchronous halo transfers. Afterwards, all remaining elements
(boundary elements) can be updated. If the halo transfers are finished while the inner
elements are still computed, no additional waiting time is required. Most likely, this is the
case when the inner area of a partition is much larger than the boundary area.

RELATED WORK
Related work regarding C++ parallelization abstractions
We identified three different approaches adopting the PGAS concept for parallel HPC
programming:

PGAS language ex-
tensions and separate
languages

UPC++ (Zheng et al., 2014) and Co-Array C++ (Eleftheriou,
Chatterjee & Moreira, 2002) are designed as C++ language
extensions, whereas Chapel (Chamberlain, Callahan & Zima, 2007)
and X10 (Charles et al., 2005) are separate PGAS programming
languages.

Libraries with parallel
programming APIs

The most dominant one, MPI (MPI Forum, 2015), also adopted
PGAS operations (calling it ‘‘one-sided communication’’).
GASPI (Grünewald & Simmendinger, 2013) and OpenSH-
MEM (Chapman et al., 2010) are alternative libraries realizing
the PGAS concept.

C++ libraries DASH (Fürlinger et al., 2014) (Section ‘The C++ template library
DASH and its NArray container’), HPX (Kaiser et al., 2014), Kokkos
(Edwards, Trott & Sunderland, 2014) and STAPL (Buss et al., 2010)
are libraries that provide communication APIs together with
abstractions for distributed data structures. The HPX project
addresses distributed memory systems, but doesn’t support n-
dimensional containers. Kokkos also provides multi-dimensional
containers, but focuses on shared memory systems only. STAPL
shares concepts like local views on data and representation of
distributed containers with DASH, but seems to be a closed source
project and doesn’t aim at classical HPC applications. None of the
mentioned PGAS approaches offer stencil and halo abstractions for
n-dimensional data containers.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1203

Related work regarding halo exchange mechanisms
The basic concepts of halo areas (also called ‘‘ghost cells’’) and boundary data exchanges are
presented in Kjolstad & Snir (2010) and are used in this work and other related approaches.
The STELLA project (Gysi et al., 2014) provides a domain-specific embedded language
using generic programming in C++ and supports stencil codes on structured grids by using
OpenMP and CUDA. Compared to the presented approach it is limited to shared memory
systems only. DUNE (Bastian et al., 2008) and PETSc (Balay et al., 1997) are both modular
C++ libraries for partial differential equations using grid-based methods and sparse matrix
computations. Using MPI, both projects can be used for distributed memory systems.
ScaFES (Flehmig, Feldhoff & Markwardt, 2014) also uses MPI to distribute structured grids
and to update halo areas. DUNE, PETSc, and ScaFES integrate the halo functionality as part
of their solver frameworks instead of a generic and separately usable concept as presented
here. ScaFES is closest to our approach andwas designed to solve simple numerical methods
like the explicit finite difference, whereas PETCs and DUNE are very complex frameworks
and designed for more general purposes. Like ScaFES, our approach is designed for simple
numerical methods that can be implemented fast and efficient. None of the mentioned
libraries uses the concept of explicit local and global data accesses such as the DASH data
containers.

THE C++ TEMPLATE LIBRARY DASH AND ITS NARRAY
CONTAINER
DASH is a data structure oriented C++ template library (Fürlinger et al., 2014) offering
PGAS-like data container classes such as n-dimensional arrays, lists, or unordered maps for
distributed-memory parallel applications. The elements in these containers can be accessed
by local and global iterators. The iterator concept and other concepts in DASH follow the
rules of the C++ Standard Library (SL) and are compatible with its algorithms.

To better understand how these containers work, we describe the structure of the
n-dimensional array container (NArray) in the following. An NArray distributes n≤N
parallel processes over an n-dimensional structured grid. Each process allocates a local
memory block with a sufficient size. For example, a three-dimensional NArray with an
extend of 10 in every dimension contains 1,000 elements. With n= 4 processes, each
process has to allocate and manage memory for 250 elements of the given element type.
The elements can be iterated in a logical global order (row major by default) with global
iterators, shown in Listing 1 (top). Each process steps through all elements of the NArray;
local and remote ones. All remote accesses require inefficient data transfers, realized by the
underlying DART transport abstraction library (Zhou et al., 2014). This is a lightweight
PGAS runtime library, managing one-sided put/get communication in a blocking or
asynchronous mode as well as local and global synchronization mechanisms. Currently,
DART can be used with MPI (MPI Forum, 2015) or GASPI (Grünewald & Simmendinger,
2013) as its communication substrate.

Internally, a distribution pattern, provided by DASH or user defined, maps between
logical indices (global and local) and the memory. Depending on the specified pattern the

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1203

memory of each process is mapped to one or more logical n-dimensional blocks of the
grid. If only one block per process is used, all local elements are stored in a contiguous
order following the given global order. Otherwise, the local elements might not be stored
contiguously in the memory, despite their logical contiguous order.

Every process can iterate its local elements in a very fast and efficient way; shown in
Listing 1 (bottom). DASH’s local and global iterators can be used with standard for-loops,
range based loops and algorithms of the SL. However, global iterators should be used
carefully or for debugging purposes only. Local iterators should be preferred wherever
possible.

1 // global iterator access

2 auto it_end = my_narray.end();

3 for(auto it = my_narray.begin(); it != it_end; ++it) {

4 std::cout << *it << " ";

5 }

6 // local iterator access

7 for(const auto& elem: my_narray.local) {

8 std::cout << elem << " ";

9 }

Listing 1: Element access via global and local DASH iterators.

Using DASH NArrays for stencil operations
The DASH NArray is well suited for distributed structured compute grids and it is possible
to use stencil-like accesses on the elements. However, the following major two issues
prevent a simple implementation. First, the advice to use local iterators wherever possible
works well for all inner elements (stencil needs no remote element access—shown in Fig.
1A). The number of inner elements can differ through different sizes of the local partitions
and stencil shapes. This requires additional and possibly error-prone memory position
calculations and is almost as complicated as corresponding MPI codes. The second and
more severe issue is the management of boundary elements (at least one stencil point needs
remote access—shown in Fig. 1C). Even for relatively few border elements, each individual
remote access results in a performance loss. Managing a halo environment and halo
updates is again not a simplification for users. In the next section, we present the concept
and implementation of a halo environment which solves both issues in a convenient and
highly efficient manner. It covers varying inner and border areas in multiple dimensions,
efficient asynchronously halo updates (in the backgroundwhile doing other computations),
and support for multiple stencils applied to the same NArray. Furthermore, grid extensions
or the number of dimensions can be changed with small effort.

HALO ENVIRONMENT FOR THE DASH NARRAY
As a solution to the aforementioned challenges we designed and implemented the
HaloWrapper abstraction for DASH on top of the NArray container class (but deliberately
not as a replacement) and evaluated it. We focused on (1) access of stencil points with a
tailored iterator (center or neighbor elements), (2) consistent local access to all stencil points
(either inner or halo areas), and (3) built-in asynchronous halo updates allowing perfect

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1203

communication overlap. In the following we describe essential parts of the HaloWrapper
design.

HaloWrapper specification
Besides the NArray, other essential components for theHaloWrapper are stencil definitions
and preferences for the global grid border.

A stencil is defined with the class StencilSpec, a collection class managing all stencil
points belonging to this stencil. Each stencil point, represented by the class StencilPoint,
has a weight (coefficient) and coordinates relative to the center. Listing 2 shows the
definition of the stencil described in Fig. 1B. The expression StencilPoint < 2> defines
stencil points for two dimensions only. StencilSpec <StencilT, 8 > expects eight stencil
points of the type StencilPoint< 2>. Each stencil point is constructed with two arguments,
which point to the direction and distance of the neighbor in each dimension. For example,
StencilT(−1,−1) creates a StencilPoint pointing to the neighbor one element before the
center in each dimension (north west) and the default coefficient of 1.0 In case a different
coefficient shall be used, a third argument needs to be passed.
1 u s i n g S t e n c i l T = dash : : h a l o : : S t e n c i l P o i n t <2>;
2 u s i n g GlobBoundSpecT = dash : : h a l o : : G loba lBoundarySpec <2>;
3 dash : : h a l o : : S t e n c i l S p e c <S t e n c i l T ,8 > s t e n c i l _ s p e c (
4 S t e n c i l T (−1 ,−1) , S t e n c i l T (−1 , 0) , S t e n c i l T (−1 , 1) , S t e n c i l T (0 ,−1) ,
5 S t e n c i l T (0 , 1) , S t e n c i l T (1 ,−1) , S t e n c i l T (1 , 0) , S t e n c i l T (1 , 1))

;
6 GlobBoundSpecT bound_spec (BoundaryProp : : CYCLIC , BoundaryProp : : CYCLIC) ;

Listing 2: Stencil specification for a two dimensional full stencil of width 1. The center
element doesn’t need to be specified explicitly.

Additionally, the HaloWrapper provides global boundary condition specifications for a
distributed compute grid in the sense of PDE boundary conditions. It is specified via the
class GlobalBoundarySpec (see Listing 2 line 6) and provides three different conditions for
each dimension separately. The default setting NONE creates no halo areas at outside edges
of the global grid. Because data requests of these neighbors cannot return valid data, stencil
operations are excluded for these border areas. The alternative setting CYCLIC logically
connects the global boundaries by pointing to the opposite side of the global grid in this
dimension. The setting CUSTOM offers a convenient way to provide arbitrary values for
those halo elements, either in a static (only set once) or dynamic way (updated between
the iterations in any way the program sees fit). Such halo regions get excluded from the
built-in halo updates.

Internal management of halo partitions
The local memory portion of each NArray process, in the following named partition (see
the ‘Structured grids, stencil operations, partitions, and halo areas’ section), is wrapped by
the HaloWrapper. To identify all neighbor partitions around the local one, we developed
the region concept. Each partition can have 3d regions for a d-dimensional NArray, which
are identified by a unique index and unique coordinates. Each region has also an extent that
defines its size. Figure 2A illustrates all regions for two dimensions; the center region has the
index 4 and the coordinates (1,1). The other regions represent partitions managed by other

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 6/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1203

Figure 2 Region concept for a two-dimensional partition: (A) A center partition and all surrounding
neighbor partitions. (B) The regions inside a single partition with HaloRegions (yellow), BoundaryRe-
gions (green) and the InnerRegion in the middle.

Full-size DOI: 10.7717/peerjcs.1203/fig-2

processes. The region index follows the row major linearization (last region coordinate
grows fastest) and can be easily mapped to the coordinates and vice versa. Depending on
different factors such as the partition’s location in the grid, the number of processes or the
BoundaryConditions, the number of actually used regions may be smaller than 3d .
Besides the mapping of regions to partitions, the HaloWrapper creates another two types
of regions; named HaloRegion and BoundaryRegion, shown in Fig. 2B. The region concept
stays the same but the mapping differs to one described before (see Fig. 2A). HaloRegions
are located on the same partitions as in Fig. 2A, but only mark a subset of elements, that are
necessary for halo updates. BoundaryRegions are located on the local partition only and
mark elements that need at least one halo element for a stencil operation. The benefit of
HaloRegions is quite obvious, but why create extra BoundaryRegions? Figure 2B shows two
stencil operations with a different number of halo accesses (one centered in B0, the other
centered in B7). A stencil operation on the edges (e.g., B7) needs finished halo updates for
one HaloRegion only, while stencil operations near a corner (e.g., B0) need at least for three
finished halo updates (three HaloRegions). Therefore, BoundaryRegions allow to process
elements on the boundary depending on the halo update status.

Figure 2B shows all HaloRegions (yellow) and BoundaryRegions (green) for a local
partition with a full ±1 stencil on a two-dimensional grid. While the center HaloRegion is
irrelevant, the center BoundaryRegions represents all inner partition elements that do not
need any halo element access for the stencil operation. For convenience we call this region
InnerRegion in the following. The sizes of the HaloRegions and BoundaryRegions result
from all stencils passed to the HaloWrapper (region extent) and the partition extension for
the remaining dimensions. e.g., H3 in Fig. 2B has an extent of five in the first dimension
and an extent of 1 in the second dimension (stencil width of 1). If multiple StencilPoints

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 7/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1203/fig-2
http://dx.doi.org/10.7717/peerj-cs.1203

have the same direction (e.g., multiple StencilSpecs), the region extent is determined by
the maximal width of all these StencilPoints.

Internal management of halo memory and halo data exchanges
The copies of all HaloRegions elements, in the following called halo elements (Section
‘Structured grids, stencil operations, partitions, and halo areas’, are stored in one separate
contiguous memory block named HaloMemory. Elements of the first HaloRegion (ID
0) are stored at the beginning, followed by the next HaloRegion (ID 1) until the last
HaloRegion (ID 3dimensions

− 1). A virtual layer maps the HaloMemory to the assigned
HaloRegions to provide region-wise halo element access. Because HaloRegion elements
are just a segment of a remote partition, they are rarely available contiguously and must be
transferred withmultiple communication requests. Figure 3 shows two corner HaloRegions
for a two- and three-dimensional partition. While the two-dimensional HaloRegion (Fig.
3A) needs two communication requests, the three-dimensional (Fig. 3B) already needs
four. The number of communication requests for corner elements is negligible, compared
to a one element thin layer of a three dimensional partition, where each halo element
needs a communication request. DART supports strided communication requests for these
kind of scenarios, but it is up to the communication substrate for how to handle these
requests. While MPI works fine with big strided communication requests, GASPI does
not. Therefore, to support both communication substrates and still efficiently update the
requested halo elements, we decided to buffer the HaloRegion elements in a contiguous
memory block first and afterwards transfer the buffered data with one communication
request. This requires more memory but results in lower waiting latencies (finalizing all
created communication requests).

The HaloWrapper supports two kinds of halo element updates; blocking and
asynchronous. The blocking halo update call returns when all halo updates are finished
and does not need additional synchronization methods (e.g., barriers). The asynchronous
counterpart initiates the halo updates and returns immediately (Listing 3 line 9). An
additional wait function ensures that all or only a subset of the halo updates are locally
finished and the halo elements are ready to be used (Listing 3 line 17).

To guarantee that the HaloRegion elements are up-to-date, all involved partitions have
to be synchronized. This can be achieved explicitly with a global barrier at the end of
each iteration, but forces each partition to wait for the slowest one. To avoid this possible
performance bottleneck we implemented a signaling environment that synchronizes a
subset of partitions only. The signal handling is part of the halo update process; initiation
and waiting. The initiation (Listing 3 line 9) is divided into five parts (1-5), while waiting
(Listing 3 line 17) consists of two parts (6-7):

(1) Check if all neighbor partitions finished the data transfer of all buffered data. If not,
wait until it is done.

(2) Buffer all local partition elements required by neighbor partitions.
(3) Send a signal to all neighbor partitions that updated data are available now.
(4) Check and maybe wait until all HaloRegions are ready to be requested
(5) Initiate the asynchronous halo update.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 8/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1203

Figure 3 Halo data exchange: Remote strided data to contiguous memory: (A) Corner HaloRegion
only has one fixed offset between data chunks (B) Corner HaloRegion already has two different offset
between data chunks for three dimensions.

Full-size DOI: 10.7717/peerjcs.1203/fig-3

(6) Wait until all or a subset of the requested HaloRegions updates are finished.
(7) Send signals to all neighbor partitions, that the halo update process is done.

The signals itself are one-sided communication calls that modify a DASHArray allocated
for this purpose only and is build with the same team as the wrappedNArray. Each partition
manages the aforementioned signals for each direct neighbor itself. The signals used in
(1) and (7) are necessary especially for smaller grids, in case a partition starts to modify
buffered halo elements, while neighbor partitions still requesting the data from the buffer.
If this is not the case, these two signal steps can be disabled.

Stencil point access
To access grid elements itself, the provided NArray iterators are sufficient. But as stated
in Section ‘Using DASH NArrays for stencil operations’ these iterators do not support a
proper stencil access. Therefore, the HaloWrapper provides three different iterator types
that support neighbor element access in form of an extra method via a specific stencil
point ID (Listing 3 line 18 and 19) or a StencilPoint instead. The iterator types differ in the
covered area of a partition and the way they access the requested neighbor data.

StencilIterator iterates over all partition elements that have valid neighbors
(depending on the GlobalBoundarySpec, see Section ‘HaloWrapper
specification’). A neighbor access automatically resolves the origin
of the accessed element (HaloMemory or partition element) and
afterwards returns the data.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 9/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1203/fig-3
http://dx.doi.org/10.7717/peerj-cs.1203

InnerIterator iterates elements within the InnerRegion. Because none of the
accessed neighbors requires HaloMemory access, location checks,
as used in the StencilIterator, are not necessary. The iteration
order is taken from the memory order specified by the wrapped
NArray (row or column major). The InnerRegion represents a sub-
partition only and can not be accessed contiguously. That means
the InnerIterator needs to reevaluate the memory position each
time it is moved. Because the pre-increment operator is often used,
we optimized its positioning. The coordinates, necessary for the
current position in the partition, are not recalculated each iteration.
Instead, only necessary parts of the coordinates are increased. The
neighbors always have a fixed offset relative to the center and so
can be easily calculated (fixed offset). The dotted arrows in Fig. 2B
show exemplary the iteration path of an InnerIterator.

BoundaryIterator covers all identified BoundaryRegions. Their number depends
on the StencilSpec and the GlobalBoundarySpec (Section
‘HaloWrapper specification’). Inside a BoundaryRegion the
iteration order is equivalent to the memory order of the wrapped
NArray. If the BoundaryIterator passes the last element of a
BoundaryRegion, the first element of the next BoundryRegion
becomes the new center. BoundaryRegions are traversed from the
smallest to the largest BoundaryRegion ID. An example of the
iteration path over four BoundaryRegions is shown in Fig. 2B with
dashed arrows.

If theHaloWrapper is build withmultiple StencilSpecs that differ in distance or direction,
the BoundaryRegions including the InnerRegion are sized for the maximal stencil widths.
To use these as basis for the Inner and BoundaryIterator for different stencils is not optimal,
because some partition elements are accessed by the BoundaryIterator instead of the faster
InnerIterator. For this reason the HaloWrapper provides so called StencilOperators (e.g.,
in Listing 3 line 7) that adapts to one specific StencilSpec. Each StencilOperator provides
StencilIterators adjusted to the given StencilSpec and additional methods to simplify stencil
operation tasks.

To also support an alternative access, besides iterators, we also implemented a coordinate
based access strategy (e.g., element_access[-1][0]) that can access inner and boundary
regions too. Here, the user needs to take care of the coordinate ranges itself to not access
invalid memory. The use of iterators is recommended, because they do not require extra
coordinate management and do work with the C++ Standard Library algorithms.

Listing 3 shows a snippet of a simple two-dimensional heat equation to demonstrate
the concepts and features described before by following the basic halo concept described
in Section ‘Structured grids, stencil operations, partitions, and halo areas’. The first two
lines specify a five-point stencil (no stencil point for the center necessary) in form of a
StencilSpec. The global borders are connected (line 4). Therefore the property CYCLIC

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1203

needs to be set for both dimensions. The next step is the creation of an HaloWrapper
object (line 5). To show that multiple StencilSpecs can be passed to the HaloWrapper, a
fake StencilSpec named s_spec_2 is passed. A StencilOperator for the StencilSpec s_spec
is requested and stored in line 7. The for-loop from line 9 to line 30 contains the update
process of the grid for each turn and includes four steps to be executed collectively for
all distributed partitions. First, the halo updates are started asynchronously (line 10).
Second, a stencil operation is performed on all InnerRegion elements with an InnerIterator
provided by the StencilOperator (line 12 to 21). Third, waiting for all halo updates to
be finished (line 23). Most likely, all halo updates are finished during the second step
(depending on the InnerRegion’s size). Finally, all BoundaryRegion elements are processed
(from line 25 to 29). The loop looks similar to the InnerRegion (second part), but uses the
BoundaryIterator instead.
1 S t e n c i l S p e c T s _ s p e c (S t e n c i l T (−1 , 0) , S t e n c i l T (1 , 0) ,
2 S t e n c i l T (0 ,−1) , S t e n c i l T (0 , 1)) ;
3 / / P e r i o d i c / c y c l i c g l o b a l bo rde r c o n d i t i o n s f o r both d imens ions
4 GlobBoundSpecT bound_spec (BoundaryProp : : CYCLIC , BoundaryProp : : CYCLIC) ;
5 HaloWrapperT ha lo_wrappe r (s r c _ma t r i x , bound_spec , s _ spec , s_ spec_2 , \

l d o t s) ;
6 / / S t e n c i l s p e c i f i c o p e r a t o r f o r a s p e c i f i c s t e n c i l _ s p e c
7 auto s t e n c i l _ o p = ha lo_wrappe r . s t e n c i l _ o p e r a t o r (s _ s p e c) ;
8
9 f o r (au to $ i =0$; i < i t e r a t i o n s ; ++ i) {
10 ha lo_wrappe r . upda t e_ a s ync () ; / / s t a r t a s ynchronous ha l o upda te
11
12 / / C a l c u l a t i o n o f a l l i nn e r e l emen t s (Inne rReg ion)
13 auto i end = s t e n c i l _ o p . i nn e r . end () ;
14 f o r (au to i t = s t e n c i l _ o p . i nn e r . b e g in () ; i t != i end ; ++ i t) {
15 / / i t . v a l u e _ a t (0) a c c e s s e s ne i ghbo r r e p r e s e n t e d by S t e n c i l T (−1 ,

0)
16 auto c e n t e r = ∗ i t ;
17 doub le d t h e t a =
18 (i t . v a l u e _ a t (0) + i t . v a l u e _ a t (1) − 2 ∗ c e n t e r) / (dx∗dx) +
19 (i t . v a l u e _ a t (2) + i t . v a l u e _ a t (3) − 2 ∗ c e n t e r) / (dy∗dy) ;
20 . . .
21 }
22
23 ha lo_wrappe r . w a i t () ; / / Wait u n t i l a l l h a l o e l emen t s a r e updated
24
25 / / C a l c u l a t i o n o f a l l boundary r e g i on e l emen t s
26 auto bend = s t e n c i l _ o p . boundary . end () ;
27 f o r (au to i t = s t e n c i l _ o p . boundary . b e g in () ; i t != bend ; ++ i t) {
28 / / same a s th e i nn e r p a r t
29 }
30 }

Listing 3: Example of a simple 2D heat equation iteration loop with halo exchange and
stencil operations

EVALUATION
To evaluate the HaloWrapper we implemented a simple heat equation with a Jacobi solver
for two- and three-dimensional (2D and 3D) structured grids. The global grid borders
are connected (CYCLIC). The Jacobi solver requires two equivalent compute grids, one as
read-only source grid and the other as write-only destination grid. Both grids alternate
between each iterations. The stencil operations use a five-point-stencil for 2D and a
seven-point-stencil for 3D with an offset of ±1 in every dimension. All grid elements are
of type double precision floating point.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1203

Table 1 Lines of code (LOC) comparison of MPI and DASH for a 2D and 3D heat equation simulation
in toal and for selected code phases. All LOC are counted without comments and blank code lines. The
value in brackets are LOC that had to modified and also include added LOC.

Implementation 2D 3D 4 LOC 2D to 3D

MPI DASH 4 LOC MPI DASH 4 LOC MPI DASH

Total 249 134 115 318 140 178 69 (132) 6 (20)
async and wait 20 2 18 28 2 26 8 (18) 0 (0)
inner 8 7 1 11 8 3 3 (6) 1 (2)
bound 18 7 11 36 8 28 14 (30) 1 (2)

An iteration is divided into the asynchronous update of the halo elements (async), the
calculation of all inner elements (inner), waiting for the halo transfers to finish (wait), and
the calculation of all boundary elements (bound). The inner part should overlap the halo
update process started in async, and so minimize wait. The number of iterations is fixed to
100 (calc).

We implemented the aforementioned scenario in plain MPI and in DASH with the
HaloWrapper. Additionally, we compared the performance of DASH with ScaFES, to
validate the results with another abstraction layer.

Source code comparison
One aspect to consider when writing in abstraction is to reduce the code complexity. It is
quite subjective to define what is complex and what is not, we concentrated on the used
lines of code (LOC). Also, we compared the LOC for different scenarios (2D and 3D) to
show the necessary adaption effort.

The comparison of LOC has also a subjective part and it could be argued that certain
parts can be hidden in extra functions, to result in less LOC. Still, the logic of these
functions needs to be implemented and adapted for other use cases. Even if it is not a strict
criterion for complexity, fewer or significant fewer LOC for an implementation lead to less
code complexity and opportunities for inconsistencies. Also, a strong indication for less
complexity and better maintainability is a minimal increase of LOC when transforming
the code to higher dimensions, i.e., 2D to 3D.

Table 1 shows the LOC for the MPI and DASH based implementations in total and for
selected code phases (used in the performance measurements). As shown in the column
4 LOC for 2D and 3D DASH requires much less LOC to solve the problem. The only
exception is the inner part, here MPI is similar to DASH. The major difference between
MPI and DASH is the effort to adapt the 2D implementation to 3D. DASH needs six new
LOC and has to modify 20 LOC in total, which is significant less than MPI.

Listing 4 shows the 3D version of the 2D example shown in Listing 3. The
complete code examples can be found on GitHub (https://github.com/dash-project/dash-
apps/tree/master/heat_equation).
1 S t e n c i l S p e c T s _ s p e c (S t e n c i l T (−1 , 0 , 0) , S t e n c i l T (1 , 0 , 0) ,
2 S t e n c i l T (0 , −1, 0) , S t e n c i l T (0 , 1 , 0)
3 S t e n c i l T (0 , 0 , −1) , S t e n c i l T (0 , 0 , 1)) ;
4 / / P e r i o d i c / c y c l i c g l o b a l bo rde r c o n d i t i o n s f o r both d imens ions
5 GlobBoundSpecT bound_spec (BoundaryProp : : CYCLIC , BoundaryProp : : CYCLIC ,

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 12/20

https://peerj.com
https://github.com/dash-project/dash-apps/tree/master/heat_equation
https://github.com/dash-project/dash-apps/tree/master/heat_equation
http://dx.doi.org/10.7717/peerj-cs.1203

6 BoundaryProp : : CYCLIC) ;
7 HaloWrapperT ha lo_wrappe r (s r c _ma t r i x , bound_spec , s _ spec , s_ spec_2 , \

l d o t s) ;
8 / / S t e n c i l s p e c i f i c o p e r a t o r f o r a s p e c i f i c s t e n c i l _ s p e c
9 auto s t e n c i l _ o p = ha lo_wrappe r . s t e n c i l _ o p e r a t o r (s _ s p e c) ;
10
11 f o r (au to $ i =0$; i < i t e r a t i o n s ; ++ i) {
12 ha lo_wrappe r . upda t e_ a s ync () ; / / s t a r t a s ynchronous ha l o upda te
13
14 / / C a l c u l a t i o n o f a l l i nn e r e l emen t s (Inne rReg ion)
15 auto i end = s t e n c i l _ o p . i nn e r . end () ;
16 f o r (au to i t = s t e n c i l _ o p . i nn e r . b e g in () ; i t != i end ; ++ i t) {
17 / / i t . v a l u e _ a t (0) a c c e s s e s ne i ghbo r r e p r e s e n t e d by S t e n c i l T (−1 ,

0)
18 doub le d t h e t a =
19 (i t . v a l u e _ a t (0) + i t . v a l u e _ a t (1) − 2 ∗ c e n t e r) / (dx∗dx) +
20 (i t . v a l u e _ a t (2) + i t . v a l u e _ a t (3) − 2 ∗ c e n t e r) / (dy∗dy) +
21 (i t . v a l u e _ a t (4) + i t . v a l u e _ a t (5) − 2 ∗ c e n t e r) / (dz∗dz) ;
22 . . .
23 }
24
25 ha lo_wrappe r . w a i t () ; / / Wait u n t i l a l l h a l o e l emen t s a r e updated
26
27 / / C a l c u l a t i o n o f a l l boundary r e g i o n e l emen t s
28 auto bend = s t e n c i l _ o p . boundary . end () ;
29 f o r (au to i t = s t e n c i l _ o p . boundary . b e g in () ; i t != bend ; ++ i t) {
30 / / same a s th e i nn e r p a r t
31 }
32 }

Listing 4: Example of a simple 2D heat equation iteration loop with halo exchange and
stencil operations

Performance comparison
In HPC an abstraction to simplify the coding is most useful if the performance remains.
Therefore, we compared both implementations (plain MPI and DASH) in a weak and a
strong scaling scenario. The runtimes were measured on the Bull HPC-Cluster ‘‘Taurus’’
at ZIH, TU Dresden on the Haswell and the Romeo partition. Haswell provides compute
nodes with two Haswell E5-2680 v3 CPUs at 2.50 GHz (12 physical cores each) and 64 GB
memory. Compute nodes on Romeo have two AMD EPYC CPU 7702 (64 physical cores
each) and 512 GB memory. Hyper-Threading (Haswell) and Simultaneous Multithreading
(Romeo) were disabled. The implementations were compiled with gcc 10.2.0 and used
OpenMPI 4.0.5.

DASH vs. MPI
The essential runtime contributions are async, inner, wait, bound and the total calculation
time (calc). Each combination was measured three times and each plot shows the mean of
these measurements. While calc is measured once per run, the other parts were recorded
per iteration and per process. The mean of it was summed up to better compare their
runtime share with calc in the plots. The weak scaling scenario increases the number of
grid elements proportional to the number of compute nodes. Nearly the total memory
of each compute node were used. The figures marked with (a) show the runtimes of the
phases calc, inner and bound, while figures marked with (b) show the runtimes of the
phases async and wait. The values plotted in the figures are not stacked.

Figures 4 and 5 show the results of the 2D heat equation on Haswell and Romeo. Both
implementations show nearly identical runtimes (Fig. 4A) on Haswell, while on Romeo

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 13/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1203

Figure 4 (A–B)Weak scaling for 2D heat equation—DASH vs.MPI on Haswell (values not stacked).
Full-size DOI: 10.7717/peerjcs.1203/fig-4

Figure 5 (A–B)Weak scaling for 2D heat equation—DASH vs.MPI on Romeo (values not stacked).
Full-size DOI: 10.7717/peerjcs.1203/fig-5

Figure 6 Weak scaling for 3D heat equation—DASH vs.MPI on Haswell (values not stacked).
Full-size DOI: 10.7717/peerjcs.1203/fig-6

DASH performs slightly better (Fig. 5A). Interestingly, the runtime of the phases differ.
While DASH calculated the inner elements faster, MPI handled the halo updates better.
DASH needed compared to MPI almost no runtime in wait, therefore async behaved vice
versa. The preparation of the halo data in DASH described in the ‘Internal management of
halo memory and halo data exchanges’ section slowed down the asyn phase. In total DASH
is slightly faster.

The results of the 3D pendant, Figs. 6 and 7, show that DASH and MPI performed
very similar. On Haswell, DASH could not compete with MPI for one and two nodes,
but outperformed MPI for four to 64 nodes. On Romeo, DASH and MPI performed quite
similar. However, the contributions of some components changed entirely. MPI took more

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 14/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1203/fig-4
https://doi.org/10.7717/peerjcs.1203/fig-5
https://doi.org/10.7717/peerjcs.1203/fig-6
http://dx.doi.org/10.7717/peerj-cs.1203

Figure 7 Weak scaling for 3D heat equation—DASH vs.MPI on Romeo (values not stacked).
Full-size DOI: 10.7717/peerjcs.1203/fig-7

Figure 8 Strong scaling for 2D heat equation—DASH vs.MPI on Haswell (values not stacked).
Full-size DOI: 10.7717/peerjcs.1203/fig-8

time in wait than DASH in async and so more time for the whole halo update process
(Fig. 6B). But, DASH lost time in inner and in bound (Fig. 6A).

In particular on Haswell, the halo update process was a large advantage for DASH; at
least by a factor of three (Fig. 6B) and could compensate the slower grid element update
process (inner and bound). A similar behavior can be seen on Romeo, but not as distinct
as on Haswell (Figs. 7B and 7A). The reason for the changed MPI behavior could be the
result of much more communication requests due to the strided access pattern. DASH had
one request per neighbor because of the buffered halo data which seems to be beneficial
for higher dimensions and large partitions.

In all weak scaling results DASH spent no significant time in wait as well as MPI in
async. Also, the amount of time spent for bound is very small compared to inner. To see
how these stages behave in a strong scaling scenario we used a squared structured grid
with 550002 elements for 2D and 15003 elements for 3D (fits into the main memory of one
compute node). The measurements were made on Haswell to involve as much compute
nodes as possible while still using all cores on these nodes.

Figures 8 and 9 show the results for the strong scaling scenario (2D and 3D). They
behaved quite similar in both scenarios. Until 16 cores on one node DASH outperformed
MPI, but on top of that, DASH and MPI had similar results (Figs. 8A and 9A). For the 3D
scenario with 16 and 32 compute nodes, DASH also outperformed MPI. Notably, both
exhibit the same performance artifact around 12 to 24 cores. The reason is an increased

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 15/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1203/fig-7
https://doi.org/10.7717/peerjcs.1203/fig-8
http://dx.doi.org/10.7717/peerj-cs.1203

Figure 9 Strong scaling for 3D heat equation—DASH vs.MPI on Haswell (values not stacked).
Full-size DOI: 10.7717/peerjcs.1203/fig-9

number of last level cache loadmisses and indicates that both implementations are memory
bound at this number of cores per node.

Interesting, besides the total results, are the individual phases. The inner phase is
processed faster by DASH in both scenarios, while bound is slower compared to MPI
(Figs. 8A and 9A). The HaloWrapper has a slight disadvantage, by using separate memory
for the halo elements. MPI instead is implemented with one contiguous memory block,
including grid and halo elements. This can be better optimized by the compiler, in case the
stencil points are accessed. In MPI, the stencil points can be accessed with a fixed offset
on the inner as well as on boundary, while in DASH the stencil points in bound need to be
requested for their location first to be correctly accessed afterwards.

Figures 8B shows a significant rise of the async runtime for 16 and 20 cores for the DASH
implementation. This results from the halo element buffering. As mentioned before, the
implementations suffered performance by many L3 cache load misses, which also applies
for the halo element buffering described in the ‘Internal management of halo memory and
halo data exchanges’ section. DASH still shows no significant runtime in wait, while MPI
shows a notable runtime in async until four cores for the 3D scenario for the first time.

Overall, DASH can compete with the plain MPI example for all presented scenarios;by
using less LOC. The HaloWrapper can also be easily adapted to a higher number of
dimensions, other stencil shapes or grid border conditions.

DASH vs. ScaFES
As mentioned in the ‘Related Work’ section, ScaFES is closest to our approach, so we also
compared DASH with ScaFES. The heat equation example was implemented with ScaFES
but with slight changes to the MPI scenario. Because ScaFES does not support connected
global grid borders the heat equation is used with global boundary conditions instead. The
DASH implementation used, therefore the CUSTOM GlobalBoundarySpecs. The detailed
measurements of the stages async, inner, wait, bound were replaced by update (inner +
bound) and sync (async + wait) because these two stages are already part of the internal
measurements of ScaFES. The runtime measurements were done on Haswell for 2D and
3D. Instead of 550002 elements for 2D and 15003 elements 3D both implementations used
450002 and 13003 elements in the strong scaling scenario as total grid size, because ScaFES
has a higher memory requirement than the MPI and DASH implementations. These grid
sizes were also the basis of the weak scaling scenario. Furthermore, the number of iterations
was reduced to 10 iterations, which were enough to show a different performance behavior.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 16/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1203/fig-9
http://dx.doi.org/10.7717/peerj-cs.1203

Figure 10 Weak and strong scaling for 2D heat equation—DASH vs. ScaFES on Haswell (values not
stacked).

Full-size DOI: 10.7717/peerjcs.1203/fig-10

Figure 11 Weak and strong scaling for 3D heat equation—DASH vs. ScaFES on Haswell (values not
stacked).

Full-size DOI: 10.7717/peerjcs.1203/fig-11

Figure 10 shows the performance of DASH and ScaFES in a weak (Fig. 10A) and
strong (Fig. 10B) scaling scenario. In both scenarios, DASH has a significant performance
advantage over ScaFES. In particular, the update of the grid elements is up to a factor of
10 faster with DASH.
In case of 3D (Fig. 11) the big performance gap between DASH and ScaFES still exists in

both scenarios. While in the weak scaling scenario (Fig. 11A the ScaFES runs aborted with
segmentation faults for 16, 32 and 64 compute nodes, in the strong scaling scenario (Fig.
11B the single process ScaFES run also aborted with a segmentation fault. Interestingly all
other process combination worked perfectly.
ScaFES mostly suffers from the coordinate based access pattern named ScaFES::Ntuple

that need to be calculated for each grid element and all its neighbors. InDASHwe optimized
this form of access especially for the InnerIterator as described in the ‘Stencil Point Access’
section. It is also worth mentioning that the LOC of both implementations, DASH and
ScaFES, are quite similar, as well as the additional LOC to switch from 2D to 3D. But in
the case of ScaFES, the abstraction results in a significant performance loss. Both ScaFES
implementations were reviewed by a former ScaFES developer to avoid performance
decreasing mistakes.

CONCLUSION AND FUTURE WORK
In this article we presented an abstraction namedHaloWrapper for stencil based codes with
halo areas for distributed n-dimensional structured grids on top of the distributed data

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 17/20

https://peerj.com
https://doi.org/10.7717/peerjcs.1203/fig-10
https://doi.org/10.7717/peerjcs.1203/fig-11
http://dx.doi.org/10.7717/peerj-cs.1203

container NArray provided by the DASH C++ template library. The DASH HaloWrapper
simplifies coding and code maintenance of parallel computations on distributed compute
grids. It builds and manages the data distribution, halo environment, communication and
data access based on user defined stencils and global boundaries conditions. For changes
of the stencil shape, the number of dimensions or the grid size require only few code
modifications. Compared to applications build up from scratch with e.g., MPI, a user does
not need deeper knowledge of parallel concepts or libraries such as MPI.

To measure the degree of abstraction (code complexity) and the performance we
compared the HaloWrapper with a plain MPI counterpart and the C++ library ScaFES
with a simple 2D and 3D heat equation example. ScaFES was interesting for us, because
it follows the same design purpose and compared itself with PetSc in Flehmig, Feldhoff
& Markwardt (2014). The code complexity were measured in lines of code (LOC). The
plain MPI solution needs significantly more LOC as the HaloWrapper and the ScaFES
implementations, which are on the same level for the 2D implementation. The LOC gap
between MPI and the HaloWrapper/ScaFES increases when higher dimensions are used.
On the performance side, we compared the 2D and 3D implementations in a weak and
a strong scaling scenario. The HaloWrapper and MPI implementations were on par with
slight advantages for the HaloWrapper on average. The ScaFES based implementations
instead were significantly slower than the HaloWrapper and plain MPI counterparts.

Thus, the advantages for simpler coding and itsmaintenance comes with no performance
losses. Further additional optimizations like tasking, multiple threads, or the tuning of
stencil operation are still possible on top of the presented approach and are primary goals
for future work.

The source codes used in the ‘Evaluation’ section are available on GitHub (https:
//github.com/dash-project/dash-apps/tree/master/heat_equation) to view the code excerpts
in their context and for reproducibility purposes.

ACKNOWLEDGEMENTS
We would like to thank the members of the DASH team.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the German Priority Programme 1648, Software for Exascale
Computing (SPPEXA/DFG). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
German Priority Programme 1648, Software for Exascale Computing (SPPEXA/DFG).

Competing Interests
The authors declare there are no competing interests.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 18/20

https://peerj.com
https://github.com/dash-project/dash-apps/tree/master/heat_equation
https://github.com/dash-project/dash-apps/tree/master/heat_equation
http://dx.doi.org/10.7717/peerj-cs.1203

Author Contributions
• Denis Hünich conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Andreas Knüpfer conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The source code for the DASH and MPI implementation is available at GitHub:
https://github.com/dash-project/dash-apps/tree/master/heat_equation.
The raw data is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1203#supplemental-information.

REFERENCES
Balay S, GroppWD,McInnes LC, Smith BF. 1997. Efficient management of parallelism

in object-oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen
HP, eds.Modern software tools for scientific computing. Boston, MA: Birkhäuser
Boston, 163–202 DOI 10.1007/978-1-4612-1986-6_8.

Bastian P, Blatt M, Dedner A, Engwer C, Klöfkorn R, Ohlberger M, Sander O. 2008. A
generic grid interface for parallel and adaptive scientific computing. Part I: abstract
framework. Computing 82(2):103–119 DOI 10.1007/s00607-008-0003-x.

Buss A, Harshvardhan , Papadopoulos I, Pearce O, Smith T, Tanase G, Thomas
N, Xu X, BiancoM, Amato NM, Rauchwerger L. 2010. STAPL: standard tem-
plate adaptive parallel library. In: Proceedings of the 3rd annual haifa experimen-
tal systems conference, SYSTOR ’10. New York, NY, USA: ACM, 14:1–14:10
DOI 10.1145/1815695.1815713.

Chamberlain B, Callahan D, Zima H. 2007. Parallel programmability and the chapel
language. The International Journal of High Performance Computing Applications
21(3):291–312 DOI 10.1177/1094342007078442.

Chapman B, Curtis T, Pophale S, Poole S, Kuehn J, Koelbel C, Smith L. 2010. Intro-
ducing OpenSHMEM: SHMEM for the PGAS community. In: Proc. of the fourth
conference on partitioned global address space programming model, PGAS ’10. New
York, NY, USA: ACM, 2:1–2:3 DOI 10.1145/2020373.2020375.

Charles P, Grothoff C, Saraswat V, Donawa C, Kielstra A, Ebcioglu K, von Praun
C, Sarkar V. 2005. X10: an object-oriented approach to non-uniform cluster
computing. ACM SIGPLAN Notices 40(10):519–538 DOI 10.1145/1103845.1094852.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 19/20

https://peerj.com
https://github.com/dash-project/dash-apps/tree/master/heat_equation
http://dx.doi.org/10.7717/peerj-cs.1203#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1203#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1203#supplemental-information
http://dx.doi.org/10.1007/978-1-4612-1986-6_8
http://dx.doi.org/10.1007/s00607-008-0003-x
http://dx.doi.org/10.1145/1815695.1815713
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1145/2020373.2020375
http://dx.doi.org/10.1145/1103845.1094852
http://dx.doi.org/10.7717/peerj-cs.1203

Edwards HC, Trott CR, Sunderland D. 2014. Kokkos: enabling manycore performance
portability through polymorphic memory access patterns. Journal of Parallel and
Distributed Computing 74(12):3202–3216 DOI 10.1016/j.jpdc.2014.07.003.

EleftheriouM, Chatterjee S, Moreira JE. 2002. A C++ implementation of the co-
array programming model for blue Gene/L. In: Parallel and distributed processing
symposium, international, volume 3. Los Alamitos, CA, USA: IEEE Computer Society,
0105 DOI 10.1109/IPDPS.2002.1016489.

FlehmigM, Feldhoff K, Markwardt U. 2014. ScaFES: an open-source framework for
explicit solvers combining high-scalability with user-friendliness. In: ARCS 2014;
2014 workshop proceedings on architecture of computing systems. 1–8.

Fürlinger K, Glass C, Gracia J, Knüpfer A, Tao J, Hünich D, Idrees K, MaiterthM,
Mhedheb Y, Zhou H. 2014. DASH: data structures and algorithms with sup-
port for hierarchical locality. In: Lopes Le, ed. Euro-Par 2014: parallel processing
workshops, volume 8806 of LNCS. Springer International Publishing, 542–552
DOI 10.1007/978-3-319-14313-2_46.

Grünewald D, Simmendinger C. 2013. The GASPI API specification and its implemen-
tation GPI 2.0. In: 7th international conference on PGAS programming models, volume
243.

Gysi T, Fuhrer O, Osuna C, Cumming B, Schulthess T. 2014. STELLA: a domain-
specific embedded language for stencil codes on structured grids. In: EGU general
assembly conference abstracts, volume 16 of EGU general assembly conference abstracts.
8464.

Kaiser H, Heller T, Adelstein-Lelbach B, Serio A, Fey D. 2014.HPX: a task based
programming model in a global address space. In: Proc. of the 8th international
conference on partitioned global address space programming models, PGAS ’14. New
York, NY, USA: ACM, 6:1–6:11 DOI 10.1145/2676870.2676883.

Kjolstad FB, Snir M. 2010. Ghost cell pattern. In: Proceedings of the 2010 workshop on
parallel programming patterns, ParaPLoP ’10. New York, NY, USA: ACM, 4:1–4:9
DOI 10.1145/1953611.1953615.

MPI Forum. 2015.MPI: a message-passing interface standard. Version 3.1. Available at
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf .

Zheng Y, Kamil A, Driscoll MB, Shan H, Yelick KA. 2014. UPC++: a PGAS extension
for C++. In: 2014 IEEE 28th international parallel and distributed processing sympo-
sium, Phoenix, AZ, USA. Piscataway: IEEE 1105–1114 DOI 10.1109/IPDPS.2014.115.

Zhou H, Mhedheb Y, Idrees K, Glass CW, Gracia J, Fürlinger K. 2014. DART-MPI:
an MPI-based implementation of a PGAS runtime system. In: Proceedings of the
8th international conference on partitioned global address space programming models,
PGAS ’14. New York, NY, USA: ACM, 3:1–3:11 DOI 10.1145/2676870.2676875.

Hünich and Knüpfer (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1203 20/20

https://peerj.com
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1109/IPDPS.2002.1016489
http://dx.doi.org/10.1007/978-3-319-14313-2_46
http://dx.doi.org/10.1145/2676870.2676883
http://dx.doi.org/10.1145/1953611.1953615
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://dx.doi.org/10.1109/IPDPS.2014.115
http://dx.doi.org/10.1145/2676870.2676875
http://dx.doi.org/10.7717/peerj-cs.1203

