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ABSTRACT
Universities face a constant challenge when distributing students and allocating them
to their required classes, especially for a large mass of students. Generating feasible
timetables is a strenuous task that requires plenty of resources, which makes it imprac-
tical to take student preferences into consideration during the process. Timetabling and
scheduling problems are proven to be NP-hard due to their complex nature and large
search spaces. A genetic algorithm (GA) that assigns students to their classes based on
their preferences is proposed as a solution to this problem and is implemented in this
article. The GA’s performance is enhanced by applying differentmetaheuristic concepts
and by tailoring the genetic operators to the given problem. The quality of the solutions
generated is boosted further with the unique repair and improvement functions that
were implemented in conjunctionwith the genetic algorithm. The success of theGAwas
evaluated by using different datasets of varying complexity and by assessing the quality
of the solutions generated. The results obtained were promising and the algorithm
guarantees the feasibility of solutions as well as satisfying more than 90% of student
preferences even for the most complex problems.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Education,
Data Science, Optimization Theory and Computation
Keywords Genetic algorithms, Evolutionary algorithms, Student timetabling, Heuristics,
Artificial intelligence

INTRODUCTION
The University Course Timetabling Problem (UCTP) is a problem that arises frequently
within universities. It is not only the issue of allocating lecturers, classes, and rooms to
specific time-slots, but also involves the allocation and distribution of students across
these classes. The problem is proven to be NP-hard, which means that using conventional
and manual methods to tackle it consumes plenty of time and resources. Thus, designing
algorithms andmethods to automate this process within a reasonable time frame is requisite
for the success of any university with large cohorts of students.

Due to the difficulty of the problem, it is impractical when scheduling these timetables
to take student preferences into account, and so they are often neglected. This is a concern
not only for students and educational institutions, but also for other sectors. Many students
prefer to engage in sports or other activities during their studies, either as hobbies or as
means to maintain their health and fitness. These students would be inclined to have free
time-slots on certain days and at certain times of the week in order for them to attend
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training sessions, matches, or other sporting events. However, if their preferences are not
considered, they might be forced to make undesired decisions andmiss their opportunities.
This would affect the health, creativity, and engagement of students in the long term. A
large number of students also work part-time during their studies, and would need their
timetables to be free from classes at certain times. If that is not achieved, it could either lead
to a negative impact on the financial situation of these students and their dependants if any,
or have a detrimental effect on their education. Moreover, if we look at the bigger picture,
this might also have a negative impact on the economy and on overall student satisfaction
in universities. Lower satisfaction would mean lower enrolment rate, and could thus cause
the country to lose one of its most important sources of revenue. Another problem to
consider is the inability of some students to attend classes in-person. These students would
prefer to attend remote-classes instead. This has proven to be a challenge to universities
recently, as education is shifting towards online learning now more than ever, especially
after the COVID-19 pandemic.

By designing an algorithm that is capable of solving the university course timetabling
problem within a reasonable time frame while also accounting for student preferences,
most of the issues mentioned above will cease to exist, resulting in a huge positive impact
on all previously affected stakeholders. Such algorithm, if available, can also be the basis for
future research in this field and might provide solutions to a multitude of other NP-hard
problems that we are faced with in our everyday lives.

BACKGROUND
Literature on the subject hosts an abundance of methods and applications that have
achieved various degrees of success in solving timetabling problems. Carter & Laporte
(1997) as well as Burke & Petrovic (2002) have grouped the adopted approaches and split
them into four major categories:
1. Sequential methods which deal with timetabling problems by encoding them as graph

problems, where conflicts are represented by edges connecting the vertices, and vertices
represent events.

2. Constraint based methods where a set of variables is used to represent the timetabling
problem. These variables are then assigned values that satisfy as many constraints as
possible, White (2000) and Brailsford, Potts & Smith (1999). Integer programming is
one of these methods.

3. Cluster methods that divide the problem into clusters where each cluster satisfies all of
the hard constraints. These clusters are then given values that maximise the objective
function by satisfying the remaining soft constraints.

4. Metaheuristic methods including genetic algorithms (GA (SA), and Tabu Search (TS),
ant colony systems, and other heuristic approaches that apply a set of processes and
search strategies on solutions to evolve them towards optimality.
Evolutionary algorithms (EAs) are the most popular population-based algorithms

used to solve timetabling and scheduling problems, as they possess several advantages
over the other methods (Pongcharoen et al., 2008). GAs, for instance, are able to use a
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collection of candidate solutions or individuals to carry out a multidirectional search (Gen
& Cheng, 1996). Particle swarm optimisation (Unprasertporn & Lohpetch, 2020), ant-
colony optimisation (Socha, Knowles & Sampels, 2002), genetic algorithms, and artificial
immune systems (Malim, Khader & Mustafa, 2006) are all examples of EAs.

The 1960s witnessed the invention of genetic algorithms at the hands of John
Holland (Mitchell, 1998). Their main objective was to study the natural adaptation
phenomenon and to apply the mechanisms of natural adaptation to computer
systems (Holland et al., 1992). Holland’s efforts on computational evolution built a
theoretical foundation (Holland, 1984) which paved the path for the successive work
done on genetic algorithms. GAs have several advantages that arise from the coding
representation of problems instead of the usual decision variable representation (Syarif,
Yun & Gen, 2002). This means that the only components that require domain-specific
knowledge are problem encoding and objective functions (Goldenberg, 1989). Erben &
Keppler (1995) developed knowledge-augmented genetic operators that intelligently fend
off the reproduction of infeasible offsprings and the results obtained were promising.
However, more attention needs to be paid to the parameter settings.

Rossi-Doria et al. (2002) compared various approaches based on metaheuristics used to
tackle the university course timetabling problem. Their study showed that conventional,
generic, genetic algorithms perform poorly, and suggested that they should be enhanced
with domain-specific knowledge to produce better results for these specific problems.
When simple GAs are employed, illegal timetables may be generated that can violate
various constraints. This led researchers to use modified genetic operators, heuristic
operators, and local search techniques. In Bathla, Jain & Singh (2014), the authors use a
‘‘happiness’’ parameter applied alongside a GA to generate feasible timetables. The results
show that this parameter reduced the solution space significantly and there where no
difficulties in obtaining a feasible timetable. A sector-based GA is proposed in Yu & Sung
(2002) for solving the UCTP. The ‘‘sector’’ concept was implemented in the initialisation,
crossover, and mutation operators with the introduction of a ‘‘check-and-repair’’ routine
to keep the solutions within the feasible region. The results obtained were promising but the
performance of the algorithm as well as its efficiency were questionable. Terashima-Marín,
Ross & Valenzuela-Rendón (1999) investigates the application of the Hardness Theory on
genetic algorithms to solve the timetabling problem. Hardness Theory is mainly developed
for constraint type problems. The idea was to compare the performance of GAs when
evaluating individuals within a population using either a hardness-based function or by a
normal penalty function. The results show that the application of hardness theory could
be very limited for the timetabling problem since the various constraints and number of
resources available make it particularly difficult to adjust the conditions for the theory
to work as intended. In Soria-Alcaraz, Carpio & Puga (2010), the article presents a GA
based method that uses the API-Carpio Methodology to solve the Alternative Transients
Program (ATP). The genetic algorithm described uses a variable-length representation
of the solutions and produces encouraging results. Lewis & Paechter (2005) present a
Grouping genetic algorithm (GGA) combined with powerful constructive heuristics. GGAs
are genetic algorithms that are specialised in solving grouping problems. The experimental
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results show that the recombination drives the search towards fitter individuals and higher
quality solutions, but is limited by the available time. Similarly, Lukas, Aribowo & Muchri
(2009) also used a GA combined with heuristic search to solve the UTP. However, the
proposed method had many limitations such as being able to schedule a course only one
segment at a time.

In light of previous studies and of what is mentioned above, this article aims to use
a variant of a genetic algorithm to solve a subset of the University Course Timetabling
Problem. Given a ready and fixed timetable of classes allocated to time-slots, the algorithm
should be able to allocate students to their respective classes and produce not only a
feasible timetable but also an optimal or sub-optimal one where most student preferences
are satisfied.

TERMINOLOGY
It is necessary to be familiar with basic terminology that will be used throughout this article
before the various constituents of a genetic algorithm are discussed.

• Population: A subset of all possible solutions for the given problem. A population is a
collection of chromosomes.
• Chromosome: A chromosome represents a candidate solution for the given problem,
usually encoded as a string of bits. Chromosomes are divided into several parts called
genes.
• Gene: A gene is either a single bit or a block of adjacent bits encoding an element
position of a chromosome.
• Allele: The value of a particular gene in a chromosome. If a gene is a single bit, an allele
is either a 1 or 0.
• Genotype: The computational representation of a particular solution in a way that
makes it easy for a computer to understand and manipulate.
• Phenotype: The real-world representation of a genotype. In this context it is a solution
for the given problem.

DESIGN & SPECIFICATION
A genetic algorithm is an umbrella term that is used to describe a set of algorithms that use
certain adaptation and evolution mechanisms. This means that there are numerous ways of
designing a genetic algorithm depending on the problem and depending on choices made
by the designer. In this section, a detailed description of the design and the choices made
for the genetic algorithm used in this article are presented.

Chromosome representation
Deciding on the chromosome representation to be used to represent the solutions is one
of the most important decisions to make when designing a genetic algorithm. The design
of the chromosome is usually tailored to the problem domain. It is essential for the success
of the GA to choose a proper mapping between the phenotype and genotype as choosing
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Figure 1 Binary representation.
Full-size DOI: 10.7717/peerjcs.1200/fig-1

Figure 2 Real-valued representation.
Full-size DOI: 10.7717/peerjcs.1200/fig-2

Figure 3 Integer representation.
Full-size DOI: 10.7717/peerjcs.1200/fig-3

an improper representation can result in poor performance from the GA. There are many
different commonly used representations such as:

• Binary representation: A chromosome is represented as a string or vector of bits as
shown in Fig. 1, usually used when problems involve Boolean decisions.
• Real-valued representation: A chromosome is represented as real valued or floating
point numbers as shown in Fig. 2. Real valued representation is useful when the solution
space is defined better with continuous variables.
• Integer representation: A chromosome is represented as a series of integers as shown in
Fig. 3, usually used when binary values are not sufficient to represent the solution space.

For the purpose of this article, a binary representation is used to encode the solutions.
Since a timetable is already provided with fixed classes allocated to time-slots, the generated
solution should only comprise of the allocation of students to these classes. This can be
seen as a boolean decision of whether a student is assigned to a particular class or no.
Figure 4 shows an example.

The chromosome shown in Fig. 4 represents a timetable where that student is assigned
to classes B, C, and D but they are not assigned to classes A, E, F, and G since the alleles
at those loci are 0s. As it wouldn’t be wise to use one vector for each student, this simple
representation needs to be extended to show the allocations of all students in all classes
at the same time. A 2D-matrix representation is proposed where each column denotes a
student and each row is a class, as shown in Fig. 5.

This representation, however, does not fit nicely with genetic algorithms as it would be
extremely difficult and inefficient to apply different genetic operations to this chromosome.
For that reason, the 2D-matrix has to be translated into a single vector, as shown in Fig. 6.
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Figure 4 Bit representation of a student’s timetable.
Full-size DOI: 10.7717/peerjcs.1200/fig-4

Figure 5 Timetable represented as a 2Dmatrix.
Full-size DOI: 10.7717/peerjcs.1200/fig-5

Figure 6 Translation of 2D-matrix timetable into single vector representation.
Full-size DOI: 10.7717/peerjcs.1200/fig-6

Hard constraints
A timetable is feasible if and only if it satisfies all of the hard constraints provided. Therefore,
it is important to identify what conditions should be met when generating a timetable. The
hard constraints decided on are:
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• Clashes: A timetable should not have any clashes. For the article’s context, that means
that a student cannot be allocated to two classes that occur at the same time.
• Missing allocations: If a student takes a certain module, they have to be allocated to the
classes required by that module. Therefore, a timetable should not contain any students
with missing allocations. For example, if a module X has five practical classes and five
tutorial classes, a student taking Module X should be allocated to at least one practical
and one tutorial as these are compulsory.
• Extra allocations: The solution generated should not have any extra allocations. For
example, if a student takes module X and module X has five practical classes, the student
should not be allocated more than 1 practical.
• Incorrect allocations: If a student does not take a module, they should not be allocated
to any classes of that module.

Soft constraints
Since the article’s main focus is to incorporate student preferences into the generation of
a timetable, deciding on these preferences is of utmost importance. Student preferences
are considered to be soft constraints, as their violation is permissible but undesirable. The
aim is to satisfy as many soft constraints as possible to maximise the satisfaction rates of
the students. There are many different student preferences that can be incorporated into
the algorithm so a decision has been made on which are the most important ones. The list
below describes these preferences.

• Day preferences: Some students might prefer to have all of their classes on certain days,
and they would prefer to have the other days free. Some students could be working
part-time or involved in sports, which necessitates having free days. For this article,
day preference is the highest priority student preference. The daily preferences will be
designed in a way were the students would be able to rank each day in the week according
to some weights. This ranking methodology would make the preferences more flexible
and students will be able to express their preferences more clearly. For example, a student
might want to have all of their classes on Monday, but if it is not possible to allocate
a class on Monday, they would like to have that class on Friday instead. The way they
would express this preference would be by assigning a weight of 3 on Monday and a
weight of 1 or 2 on Friday. Similarly, if a student inputs a weight of −3 on Wednesday
and a weight of −1 on Thursday, it would mean that the student would prefer to not
have any classes on Wednesday, but at the same time they would prefer if they had no
classes on Thursday either but to a lesser degree (Wednesday is prioritised to be off).
With that clarified, the design of this preference makes it unsuitable for students who
would simply just want a day off and they do not care about what day it is. This could
be implemented as a different preference (day-off preference), but it was deemed less
important.
• Time period preferences: Many students might find it convenient to have all of their
classes either in themorning or in the afternoon. Some students might also have different
time period preferences on different days. With that said, the GA would allow students
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to put a preference of either having classes in the morning or afternoon on every day of
the week.
• Student preferences: Allocation to a certain class might also mean that students will
have to pick project partners or groups from that same class. For that reason, many
students would prefer to choose to be allocated to the same class as their friends.
Students will be allowed to input their student preferences and this will be considered as
a soft constraint when generating the timetables.

These constraints were deemed to be the most important for students, and the most
useful ones. The day preferences, which are on top of the list, can prove useful for university
students in a multitude of ways. Many students are working part-time during their studies
and working part-time mainly means that students work on certain days of the week. Thus,
students would prefer to have these specific days of the week empty with no scheduled
classes so that it reduces their workload, transportation fees, and saves their precious time.
A ‘‘day-off preference’’ for instance wouldn’t work in this case as the students won’t be able
to specify any particular days off and they might have a day off on a day were they are not
working, so, it wouldn’t be as beneficial. Students that are involved in sports on particular
days of the week, such as Wednesday in King’s College London, would rather not have any
classes on those particular days, so they need to express accurately what days they want to
have off.

Consequently, time preferences are seen to be nearly as important as day preferences.
This is due to the fact that most students would have a preference to when they want to take
their classes and these preferences are not the same for each day. For example, a student
works part-time on Mondays from 9-11 am would prefer to have all of their classes that
are on Monday in the afternoon. However, the student also does sports on Wednesday
afternoons so they’d prefer to have their classes on Wednesday, if any, in the morning.
Time preferences are also useful for the different types of students who wake up early and
prefer to do work in the morning and the others who would prefer afternoons because
they can sleep more, feel more relaxed, and helps them avoid the morning rush hours.
Other students might have other duties and responsibilities such as driving their siblings to
school, caring for someone, having to perform their religious prayers at certain times, and
many more different circumstances that would take place at certain times and on certain
days were they would prefer not to clash with any scheduled classes.

Student preferences, as mentioned earlier, are among the most important preferences
for students. Many university courseworks and projects are done in pairs during practical
or lab sessions and many students might feel uncomfortable working in a session where
they don’t have any of their friends or they do not know anyone around. Some students
might also suffer from social anxiety so it is not easy for them to get into new groups and
make new friends. For that reason, picking groups or teams for a project is one of the
most stressful aspects about university, and this can be made easier by allowing students
to choose to be with other students so that they might find the sessions more bearable and
enjoyable. This might also reflect positively on the marks gained by students throughout
the year as well as their attendance.
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Other preferences might exist, but they were either deemed less important, are a
combination of the other preferences, or just not applicable. For instance, ‘‘Day-off’’
preferences are considered to be way less important than the day preferences implemented
as they are less specific, less flexible and less expressive.

A preference that allows student to specify how much their classes should be spread
during the day or during the week is a very useful preference that students would appreciate.
However, it was considered to be a combination of the Day and time preferences that where
implemented. The scores given to each day and the preference for each time period greatly
shape the spread of classes.

Another important preference is a one where students can specify whether they want
to study in-person or remotely. The timetabling data that was provided did not have any
online classes and that is the main reason this preference was not implemented as it does
not match with the data available.

Most of the times it is very challenging to satisfy all of the soft constraints in a feasible
timetable as as some student preferences may cause clashes or at some times impossible.
For example, a student might prefer to be with a certain student but that student does not
have any modules in common with them, therefore, it would be impossible to allocate
them both to a similar class as that would violate some of the hard constraints.

Population initialisation
Initialisation of the population is the first part of any GA and it determines the starting
point of the evolution. It can be carried out in amultitude of ways and the decisionmade on
the initialisation methodology is highly responsible for driving the algorithm during a run.
Some designers prefer to start with a random initialisation of the population. Completely
random initialisation of the individuals will produce a very diverse population whichmeans
the algorithm is able to explore various areas of the search space and is more guaranteed
to arrive at a global optima. This obviously means that the initial population will highly
likely consist of non-feasible individuals and it is left upon the repair functions as well as
the genetic operators to evolve the population into the feasible regions of the search space.

A better approach however is to start from a valid set of solutions that are feasible or
already sub optimal so that the genetic algorithm’s main focus would be to satisfy the
remaining soft constraints instead of worrying about the hard constraints as well. As a
consequence, the population rarely contains infeasible individuals and if they arise due to
mutation or crossover they are usually either repaired or kicked out of the population. The
main direct benefit of this approach is that the algorithm consumes little or no time trying
to arrive at feasible solutions.

For this to be possible, a function to generate the feasible solutions needs to be
implemented. One way this can be done is by starting with an empty timetable and
then going through every student and assigning them to their required classes one by one.
Each student can be allocated to the first empty class found until all students are allocated.
This however will cause the whole population to be identical which affects and reduces the
diversity of the population. This can be fixed by instead of assigning the first available class,
a class is chosen at random from all the available classes, which means the population will
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be slightly more diverse. Another issue that arises is that this way of assigning students on
a first come first serve basis might lead to the emergence of clashes. Therefore, before any
allocation is made, the function should check whether it clashes with any of the already
present allocations or not. If all of the available allocations lead to a clash or exceeding limit
classes, the student is not assigned to any. This means that the initial population might
contain individuals with missing allocations depending on the complexity and size of the
problem.

Fitness function
Fitness functions are simply functions that take as input a candidate solution (timetable
in this case) and returns a fitness value or score that indicate to what extent this solution
solves the problem at hand. Fitness of every individual of the population is calculated
every generation and therefore it has to be computationally fast. It also has to accurately
and quantitatively measure how fit the solution is in order for the population to evolve
accordingly. A poorly designed fitness function will misguide the GA and will produce
undesirable solutions.

Most of times, the fitness function is the same as the objective function as the aim is
to either maximise or minimise them. The fitness function chosen penalises the violation
of hard constraints severely and rewards any soft constraint satisfaction to a lesser extent.
Assuming there are m modules M1, M2, . . . ,Mm, n classes C1,C2, . . . , Cn, and q students
S1, S2, . . . , Sq. The set of hard constraints is represented by HC = {HC1,HC2, . . . ,HCj}
and the soft constraints are represented by SC = {SC1,SC2, . . . ,SCk} . Each hard and soft
constraint holds a different weight depending on how important it is for the generated
timetable. For each constraint, there is a weight wi that is the weight for the constraint Ci

and all of these weights are stored in a weight vector determined at the initialisation stage of
the genetic algorithm. Weights of hard constraints are far greater than the weights for the
soft constraints and they affect the fitness of an individual differently. The fitness function
is the following:

F(x)=
k∑

i=1

(wi×SCi)− (
j∑

i=1

(wi×HCi))2 (1)

where:

• j = number of hard constraints
• k = number of soft constraints
• wi = weight associated with each constraint
• HCi = number of violated hard constraints for hard constraint i
• SCi = number of violated soft constraints for soft constraint i

The fitness function and the constraint weights are designed in a way that ensures that no
amount of satisfied soft constraints can make up for the violation of even 1 hard constraint.
Therefore, whenever the fitness value of an individual is negative, it denotes that there are
some hard constraint violations. If an individual encodes a feasible solution that satisfies
all of the hard constraints, its fitness value will be positive.
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GENETIC OPERATORS
genetic algorithms cannot function without genetic operators. These operators help evolve
the population in order to obtain better solutions. It is necessary to design the mechanism
of these operators in a way that is tailored to the problem at hand.

Parent selection
Parent selection is the process of selecting one or more individuals from the population to
mate and produce offsprings for the next generation. Usually, the more fit individuals are
more likely to be selected for the mating stage as the genetic algorithm aims to improve the
solutions and this is achieved only if the good genes are passed on from high-fit individuals
to the next generations. Premature convergence, however, could arise if one extremely
fit solution dominates over the rest of the individuals in the population, hence, leading
to loss of diversity. Therefore, the selection method used should provide a good balance
between selecting the best individuals to improve the next generations and selecting weaker
individuals to maintain exploration of other areas in the search space.

There aremanyways to apply parent selection, themost commonofwhich arementioned
below:

Roulette wheel selection
This is a type of fitness proportionate selection where every individual can be chosen as a
parent with a probability proportional to the fitness of that individual. This can be thought
of as a circular wheel divided into pies where there are as many pies as individuals in the
population. The size of each pie is proportionate to the individual’s fitness. A fixed point
is chosen on the wheel and then the wheel is spun. The individual corresponding to the
pie where the fixed point lands in front of selected as a parent. The process is repeated for
as many parents as needed by the crossover operator. This selection strategy is not suitable
where individuals have negative fitnesses. Figure 7 summarises the process.

Rank selection
Rank selections sorts the individuals in the population based on their fitness and ranks
them. Every individual is then assigned a selection probability that corresponds to their
ranks. This approach works with negative fitness values and is extremely powerful as
compared to roulette selection when the individuals in the population have very close
fitness values (usually this happens towards the end of the run).

Tournament selection
A number of individuals are selected at random in tournament selection and the fittest
individual out of them is chosen as a parent. Selecting the next parent is also done in
a similar manner. This approach is really effective and works even with negative fitness
values. Figure 8 shows the process.

Since a penalty function is being used to calculate the fitness of individuals, the GA
is bound to have negative fitness values for certain chromosomes in the population.
Therefore, fitness proportionate selection strategies such as roulette wheel selection are not
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Figure 7 Roulette wheel selection.
Full-size DOI: 10.7717/peerjcs.1200/fig-7

Figure 8 Tournament selection.
Full-size DOI: 10.7717/peerjcs.1200/fig-8

suitable. Tournament selection was chosen instead as it has proven to be the most effective
for solving the given timetabling problem.

Crossover
Crossover is the main genetic operator in a GA. It controls what genes are transmitted from
the parents to their offsprings and decides how the genes are ordered. Different crossover
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Figure 9 Multi-point crossover.
Full-size DOI: 10.7717/peerjcs.1200/fig-9

Figure 10 Randommulti-point class crossover.
Full-size DOI: 10.7717/peerjcs.1200/fig-10

operators exist and most of them are generic, so they might need to be tailored for the
specific problem we are trying to solve. Examples of these operators are:

One point crossover
From the name, one point is chosen randomly from the chromosome. Everything before
the crossover point will be inherited from one parent and everything after would come
from the other parent.

Multi point crossover
This is is similar to one point crossover with the difference being that several points
are chosen instead of one as shown in Fig. 9. Choosing more than one point allows the
chromosome to be divided into segments. The segments from both parents are swapped
to form the new offspring.

These crossover operators are very generic and can be used in almost any algorithm.
However, implementing a problem specific genetic operator will enhance the performance
of the GA and make it more specialised.

Multi-point class crossover
Multi-point crossover can be adapted in a way that the crossover point selected is always
between classes. This will allow the GA to transmit chunks of class allocations to the next
generation which retains the class information and avoid exceeding class capacity limits
from crossover. Figure 10 shows a visual representation of the process.

Multi-point student crossover
Another problem specific crossover operator that is similar to the class crossover point
is the student crossover point operator. Instead of splitting the chromosome into chunks
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Figure 11 Randommulti-point student crossover.
Full-size DOI: 10.7717/peerjcs.1200/fig-11

representing classes, the chromosome is split into chunks representing a student and their
class allocations. A random crossover point is chosen by choosing a random student out
of all the students. All allocations from student 0 till the chosen student will come from
one parent and the rest of the allocations from the other parent. This allows the GA to
retain the data for class allocations for each student and helps avoid clashes. Figure 11
shows a detailed representation of the process. This operator has several advantages over
the class crossover operator as it transmits each students’ allocations as they are without
altering them. This means that if a student’s best set of allocations is present in one parent
they are guaranteed to be passed over. As a consequence, it focuses more on avoiding
clashes, missing allocations, extra allocations, and preserving student preferences. The class
crossover operator on the other hand only focuses on avoiding overflow in the classes.
Exceeding limit classes are easily remedied by removing the extra allocations and swapping
them with allocations to empty classes instead, but clashes and student preferences are
much harder to satisfy so it is more important to prevent their violation during crossover
to help the algorithm perform better.

The multi-point student crossover operator is chosen as it outperforms the rest of the
suggested operators both theoretically and practically.

Mutation
After several generations, the population’s solution space gets smaller and smaller as all
the chromosomes will start to look somewhat similar due to the transmission of genes
from parents to offsprings during crossover. The mutation operator randomly flips bits in
a chromosome. This random flipping of bits introduces diversity into the population as
the resulting individual after mutation has new and unique differences compared to the
rest of the population. The increase in diversity lead to a better performance of the GA
as the solution space expands. However, if mutation is applied at a high rate, the genetic
algorithm will never converge and every time a solution gets better, the random mutation
might overwrite this change and thus leading to a decrease in fitness overtime rather than
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Figure 12 Bit-flip mutation.
Full-size DOI: 10.7717/peerjcs.1200/fig-12

Figure 13 Scramble mutation.
Full-size DOI: 10.7717/peerjcs.1200/fig-13

Figure 14 Swapmutation.
Full-size DOI: 10.7717/peerjcs.1200/fig-14

increase. The higher the mutation rate, the closer the GA is to random search, which is not
efficient. For that reason, mutation is usually applied with a low rate.

Similar to the rest of the operators, there are several popular strategies to implement
mutation, some of which are discussed below.

Bit flip mutation
This technique is applicable only for bit string chromosome representations. A random bit
(gene) is selected from the chromosome and its value is flipped. If the allele at that locus
was 1, it is changed to 0, and vice versa. Figure 12 depicts the process.

Scramble mutation
Scramble mutation is mainly used along with permutation representations. It starts with
selecting a portion of the chromosome randomly. After that, genes in the selected portion
are shuffled or scrambled as shown in Fig. 13.

Swap mutation
In this strategy, two genes are chosen at random from the chromosome and their values
are swapped as shown in Fig. 14. Swap mutation is also common in permutation encoding
where the order of genes matters.

The mutation operators mentioned above are very generic ones and are not problem
specific. More specific operators can be implemented based on the chromosome
representation of the timetable. For example, a mutation can be swapping an allocation of a
student to a class to another class of the same module and same type. This might produce a
positive result as swaps are usually the best way to optimise a timetable. Another mutation
operator can swap all students from one class with all students from a different class of the
same type and the same module. This class swap might end up increasing the fitness of the
solution as more soft constraints would be satisfied.
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Figure 15 Class mutation.
Full-size DOI: 10.7717/peerjcs.1200/fig-15

Class mutation
Class mutation is a specialised operator designed specifically for the timetabling problem at
hand. It entails the swapping of two classes allocated to a student in a randommanner. The
function responsible for applying this mutation operator skims over the whole timetable
and if a student is allocated to a class it randomly swaps that class with another of the same
type based on a certain probability. This operator was chosen as the results it produced
were much better than all of the suggested approaches. Figure 15 shows the process.

EXPERIMENTATION
All genetic algorithms are heavily reliant on a set of parameters, attributes, operator
techniques, and the implementation methodology. There is no generalisation of these rules
and there are no strict values that work with every algorithm. Hence, it is compulsory to
experiment with different values and different functions in order to achieve the optimal
configuration of any GA no matter how simple or complicated it is.

The GA implemented in this article and the design choices made at early stages have to
be challenged and put to the test to decide whether there exists a better configuration. This
section discusses some of the experiments that were carried out and the observations that
were made.

Population size & mutation rate
Population size and mutation rate are very closely related as both of them have a big
effect on the diversity of the population. Initially, we set the population size to 200 and
the mutation rate to 0.01. The algorithm was run and the average and maximum fitness
of the population were observed over time. Since the initial population is generated at
random and the mutation rate is relatively high, the quality of the solutions produced was
increasing at a very low rate. This is because the high mutation rate leads the solutions to
get randomised more often, which prevents the convergence of the algorithm. At some
points of the run, the maximum fitness in the population kept decreasing which indicates
that the GA is not working properly, as you’d expect the solutions to get better.

The population size was first reduced and the run was observed. A population size of
100 was better than the 200 as it produced a better final solution over the same number
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Figure 16 Static mutation function.
Full-size DOI: 10.7717/peerjcs.1200/fig-16

Figure 17 Adaptive mutation function.
Full-size DOI: 10.7717/peerjcs.1200/fig-17

of generations. The mutation rate was also reduced from 0.01 to 0.001 in a couple of runs
and to 0.0001 in others. The reduced mutation rate allowed the solutions to improve more
quickly over time. However, the algorithm converged very early on a non-feasible solution
and since the mutation rate was low, it was unable to explore different areas of the solution
space and was getting stuck at local optima. Values between 0.001 and 0.0001 were found
to work best for the mutation rate, and a population size of 50-100 resulted in better GA
runs.

Mutation function
The mutation function implemented in the GA can rely on the mutation rate supplied in
different ways. A mutation function can either statically use the mutation rate or it can
dynamically adapt it based on the current environment, the individual, and the whole
population.

Figure 16 is a static mutation function where the mutation rate set initially by the
algorithm designer stays the same through out the run. Figures 17 and 18 both depict
adaptive mutation functions.
Figure 17 adapts the mutation rate based on whether the individual’s fitness is above or

below the average fitness of the whole population. If it was higher than the average fitness,

Mahlous and Mahlous (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1200 17/32

https://peerj.com
https://doi.org/10.7717/peerjcs.1200/fig-16
https://doi.org/10.7717/peerjcs.1200/fig-17
http://dx.doi.org/10.7717/peerj-cs.1200


Figure 18 Annealing mutation function.
Full-size DOI: 10.7717/peerjcs.1200/fig-18

we calculate the difference between the individual’s fitness (fi) and the maximum fitness of
the population (fmax). We then divide this value by the difference between fmax and the
average population fitness (favg). The value calculated is used to scale down the mutation
rate as we would like to keep most of the genetic data of that individual unmutated, since
it is a fitter individual. When the individual’s fitness is lower or the same as the average
fitness, we keep the mutation rate as it was during initialisation.

Figure 18 shows a use of multi-heuristics within a GA. The mutation function shown
uses Simulated Annealing to control the mutation rate.

Simulated Annealing varies the mutation rate over time by use of a temperature variable
that is initially set to hot (high value) and cools down or decreases over time. This helps us
gradually reduce the mutation rate as the GA reaches toward the end of a run. This aims
to solve 2 main problems:

• Using a high mutation rate to keep the population diverse but never converging
• Using a low mutation rate that converges on good solutions without exploring many
areas of the search space

This mutation function starts with a high mutation rate which allows us to explore
different areas of the search space and then decreases it over time to reduce the rate in
which worse solutions are accepted.

Experiments were carried out using these different mutation functions and it was
observed that the worst implementation was the adaptive mutation function, and the best
was the simulated annealing approach. Figure 19 shows the results with using a static
function while Figs. 20 and 21 show results obtained with using an adaptive and annealing
mutation functions respectively.

Tournament size & crossover rate
With high tournament size, it is more likely to select the fitter individuals as parents, and
with a high crossover rate they are nearly guaranteed to pass on their genetic material to
the offsprings. As a result, it was observed that the algorithm tends to converge quickly as
the fitter individuals dominate over the other individuals, since they are most likely to be
chosen as parents than the weaker ones. To prevent the domination of the fitter individuals,
the tournament size was reduced to 5 and the crossover rate to 0.90. The GA performed
better and produced better solutions at the end of the run as the GA was allowed to explore
other areas of the search space before converging as shown in Fig. 22. Different values were
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Figure 19 Maximum fitness of the population using the static mutation function.
Full-size DOI: 10.7717/peerjcs.1200/fig-19

experimented with and a general rule of high crossover rate and low tournament size was
deemed to work best for the GA.

Constraint weights
The fitness function relies heavily on weights for each of the hard and soft constraints. Each
constraint has its own weight, and the value for this weight needs to be experimented with
and changed until the optimal values are found. Since the GA allows infeasible solutions,
the fitness of an individual should be greatly affected by violation of any hard constraints.
For this to be possible, the weights of the hard constraints should be significantly higher
than the soft constraints, as it is more important for the solution to be feasible than to
satisfy the student preferences. On the other hand, the difference in weights between the
hard constraints will affect how the population evolves. For example, if a very heavy penalty
is applied on missing allocations compared to the rest of the hard constraints, the solution
returned by the algorithm assigns all the classes to all the students. Similarly, if a heavy
penalty is applied on extra allocations, the solution returned will not allocate any classes
to any students. It was also observed from the experiments that if the penalty given for
clashes is the same as the other hard constraints, the solutions produced will always have a
fair number of clashes. Therefore, the weight for the clashes should be significantly higher
than the rest of the hard constraint weights. As a consequence, it was also observed that in
order to avoid clashes or violation of other hard constraints, the solutions generated tend
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Figure 20 Maximum fitness of the population using the adaptive mutation function.
Full-size DOI: 10.7717/peerjcs.1200/fig-20

to have a lot of missing allocations. Hence, the weight for missing allocations should be
lower than that of the clashes but higher than the rest of the weights.

For the soft constraints, it was decided that the algorithm should give higher preference
to the constraints in the following order:
1. Day preferences
2. TA preferences
3. Student preferences
The weights supplied for the soft preferences should also be in accordance with this

order. The final list of weights is shown in Fig. 23.

OPTIMISATION
Many observations were made in the previous section from the experiments carried
out. Changes were made to reach the optimal configuration of values and the best
implementation of the genetic algorithm operators. However, even after the changes made,
the algorithm had some defects and there was still room for performance improvements.
The general problems identified were the following:

• The fittest individual gets mutated and the maximum fitness of the population decreases
at some points during the GA run.
• The time taken to evolve generations and generate a feasible timetable is very long.
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Figure 21 Maximum fitness of the population using the annealing mutation function.
Full-size DOI: 10.7717/peerjcs.1200/fig-21

• Hard constraints were being violated throughout the generations.
• The GA struggles to avoid clashes in the timetable.
• The gap between the fittest and the worst individual in the population is very large.
• Average fitness in the population is way lower than the fittest individual.

New methodologies and functions were introduced to address these issues. The next
sections describe them in detail.

Improve allocations function with simulated annealing
Repair functions usually ensure that an individual does not contain any hard constraint
violations. For the GA implemented, this would mean that after every change in allocations
of a student is made, all of the hard constraints need to be checked again. Some of the hard
constraints can be checked in a timetable only if we go over the whole solution, checking
clashes and exceeding capacity classes. This is very computationally expensive and would
slow down the GA. On the other hand, it would allow the GA to arrive to feasible solutions
in less generations. As described earlier, the repair function implemented only aimed to fix
any violations of the following hard constraints:

• Extra allocations
• Missing allocations
• Incorrect allocations
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Figure 22 Average fitness of the population using a small tournament size.
Full-size DOI: 10.7717/peerjcs.1200/fig-22

Figure 23 Final set of weights for hard and soft constraints.
Full-size DOI: 10.7717/peerjcs.1200/fig-23

This repair function was applied for every individual in every generation. The disregard
for the clashes constraint and forcefully fixing only the three constraints mentioned above
made it very difficult for the GA to avoid producing clashes as allocations were forcefully
made as long as they satisfied these three constraints.

To avoid falling into this pit, an adjustment rate was introduced. The adjustment rate
is similar to the mutation and crossover rates in the sense that an individual is repaired
with a given probability. This allows the GA an opportunity to ‘‘breathe’’ and evolve the
population with taking into consideration all of the constraints. The use of adjustment rate
on its own was able to produce higher quality solutions. However, clashes were still present
in the final solutions and that is where simulated annealing comes into play.

As mentioned previously, we use a temperature variable to vary the adjustment rate
throughout the generations. When the temperature is hot, the adjustment rate is high and
that allows the GA to get a head-start as the individuals of the population will start with
most of the hard constraints already satisfied. As the temperature gets lower throughout
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Figure 24 Improve method in DNA class.
Full-size DOI: 10.7717/peerjcs.1200/fig-24

the generations, the adjustment rate decreases as a consequence. Hence, towards the end
of the run the adjustment rate is close to 0 so the GA is able to evolve the individuals freely
without having the changes overwritten by the repair function.

As mentioned earlier, whenever there is a missing allocation for a student, the repair
function assigns one of the required classes randomly to the student. This could be
improved by assigning the the favourite required class instead of randomly selecting the
class to be assigned. This change made significant improvements to the quality of the
solutions generated.

Since the repair function is doing more than just repairing the individuals, the function
is renamed to improveAllocations as it is a more descriptive name for its functionality.

The last and final improvement made to this function was to improve the runtime of
the GA. Instead of running the whole repair function, it was split into different parts and
an individual is repaired if and only if it violates the corresponding constraint. So, during
the fitness function calculation, the number of violations is stored in an array. This is then
checked by the improve function to apply the necessary changes. The method is outlined
in Fig. 24.

Elitism
Elitism is a type of fitness based selection implementation that many GAs use. It ensures
that a number of ‘‘elite’’ individuals, which are the fittest, are not lost between generations.
This means that elite individuals are not subject to mutation and they can only be used as
parents for crossover so that they are able to transmit their genes to new offsprings—but
they are not replaced. The addition of elitism guarantees that the maximum fitness of the
population does not decrease and that useful genetic data is not lost during evolution. The
results after implementing elitism are shown Fig. 25.

Parallelism
Genetic algorithms are usually preferred over other algorithms mainly because of their
efficiency. What highly influences the efficiency of a GA is the fact that every individual is
completely independent from others in the population, which allows us to benefit from
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Figure 25 Maximum fitness of the population throughout the generations with elitism applied.
Full-size DOI: 10.7717/peerjcs.1200/fig-25

Figure 26 Parallelism implementation for fitness calculation.
Full-size DOI: 10.7717/peerjcs.1200/fig-26

multi-threading and parallel processing when calculating fitnesses. Fitness calculation is
usually the bottleneck in every GA and this was observed from the experiments carried
out. For that reason, parallelism was introduced in the calculateFitness function in the
Population class. Figure 26 shows the implementation of it using the built in Java function
IntStream parallel.
The other bottleneck of the GA was the repair function, and this too was improved by

the same method. Figure 27 shows the time taken to reach a feasible solution with and
without parallelism. It can be observed from the graphs that parallelism definitely enhances
the performance of the GA and this means that it arrives at better solutions in less time. It
is to be noted that the process would take way less time if a more powerful computer with
multi core processors was used.
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Figure 27 Time taken for a 50 generation run before and after parallelism is implemented.
Full-size DOI: 10.7717/peerjcs.1200/fig-27

Fitness hashing
As we discussed earlier, the most computationally expensive component in a genetic
algorithm is the the fitness calculation, so even small improvements for this function
would result in significant performance improvements over the long run. Fitness hashing
is another method used to reduce the amount of time spent in calculating fitness values by
using a hash table that stores previously computed fitness values. It is very common for
a GA to revisit solutions during a run due to random mutations and recombinations of
individuals especially towards the end of a run when the algorithm starts to converge and
the solutions get closer to each other. With fitness hashing, every time a solution is revisited
its fitness value is taken directly from the hash table and there is no need to recalculate its
fitness.

Soft constraints improvement
From the experimentation phase, it was apparent that after the algorithm reaches the
feasible search space, it struggles to satisfy the remainder of the soft constraints. This is
because the GA did not use the information available on which classes are preferred by the
students and which were not. To fix this, a new improvement function is added that aids the
swap of classes allocated to students based on their preferences. The function iterates over
the timetable and checks which allocations could be improved. If the new class chosen to
be swapped with is not clashing with any of the previous allocations and has empty spaces,
the function allocates this class and clears the previous allocation. The implementation of
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Figure 28 Maximum, average and worst fitnesses of the population with survivor selection applied.
Full-size DOI: 10.7717/peerjcs.1200/fig-28

this function significantly improved the quality of the solutions produced at the end of
each run.

Weakest replacement
New individuals are produced during crossover and since the GA has a maximum
population number, these offsprings would have to replace an individual in the already
present population. The way this was implemented before was the classic way of
replacing the parent of that individual. However, one of the identified problems during
experimentation was the very poor fitness of some individuals in the population and the
worst fitness is very far off from the fittest individual’s fitness. For this reason, we apply
a ‘‘replacement of the weakest’’ strategy to further boost the population’s fitness. During
crossover, the offsprings generated replace the weakest individuals in the population,
and ties are broken arbitrarily. This generally proved to be a huge improvement as there
were more fit individuals in the population, which allowed the GA to reach the feasible
and optimum solution space very quickly. Figure 28 hows the lowest, average, and best
individuals of the population over the generations after implementing the replacement
strategy.

EVALUATION
The complexity of a timetabling problem is highly dependent on the number of available
classes, their capacities, and the number of students in each class. If the class capacities were
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double the number of students allocated to that class, it would be easier for an algorithm
to find a feasible timetable, and maybe an optimal one if possible. So, if the size of the
problem is to be increased, the easiest and most effective way to do it is by reducing the
class capacities and increasing the number of students enrolled in that particular class.
Then, the true power of the algorithm will be displayed. It is also very realistic to have all
of the classes full or nearly full because otherwise the universities would be losing a lot of
resources and money (to pay the Teaching Assistants, maintenance etc..), and that is not
desired.

With that said, the GA implemented is tested with different class capacities and numbers
of required students per class. For that, a saturation percentage is introduced that represents
the percentage of how full the classes are. The larger the number of students allocated to
a class, the higher the percentage, and the lower the capacity the higher the percentage
as well. For example, if a module has two practical classes with a total capacity of 50 and
there are 25 students enrolled in that module, the saturation percentage for that module
is 50%. As it can be seen, the higher the percentage the more complex the problem is and
the harder it is to find better solutions. For this experiment, the number of students is
controlled and the capacity of classes is decreased until a saturation percentage of 100%
for all modules is achieved; this is the most complex solvable problem that can be solved
with the given data. The algorithm is successful if and only if it is able to generate a sub
optimal timetable that satisfies all of the hard constraints and most of the soft constraints.
Table 1 shows the results with a saturation percentage of nearly 100% for all of the modules,
which is the most realistic proportion of capacities and students. The top half of the table
shows the modules, their available capacities, and the number of students assigned to
each module. The bottom half of the table shows the results obtained after running the
algorithm on the dataset provided, and the quality of the solution is presented. It can
be seen that the algorithm has no difficulty in generating a feasible timetable, and none
of the hard constraints are violated. The timetable generated is nearly optimal with an
inaccuracy rate of 1.2%. The inaccuracy rate indicates how many of all the allocations were
not the best available allocations; the lower the inaccuracy rate the better the solution is.
This means that out of all the allocations in the generated timetable (270 students × 63
classes = 16,740), only 207 were not the best allocations possible (referred to in the table
as inaccurate allocations); this result is very impressive.

The experiment is repeatedwith different fullness percentages by just varying the capacity
of the classes while the number of students is controlled; Table 2 shows the results. The
algorithm is run for a total of 2000 generations and the max fitness reached is noted as
well as the time and number of generations taken to arrive at that maximum fitness. It is
apparent that the class saturation affects the complexity of the problem significantly. The
lower the saturation of the classes the better the quality of the solution is. However, there is
little or no difference in the solution generated between a saturation percentage of 90% and
50%. This suggests that the bottleneck at these saturation values is not the class capacities,
but rather the complex nature of the preferences and the classes which the students prefer
to be allocated to in fact clash with each other. This can be seen by looking at the number
of inaccurate allocations and the maximum fitnesses reached. Some solutions produced
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Table 1 Results of the timetable generated from the given data.

1st Year Students, Semester 2

Module DBS PPA DST ISE LOD

Total available capacity 260 270 240 200 200
Students enrolled 245 255 215 184 180
Saturation percentage 94.2% 94% 89.5% 92.0% 90%

Results
No. of generations 899
Time taken (ms) 100126
Maximum fitness 26.785694
No. of clashes 0
No. of missing allocations 0
No. of extra allocations 0
No. of incorrect allocations 0
No. of classes exceeding capacity 0
No. of inaccurate allocations 207
Accuracy 98.76%

Table 2 Different solutions and their qualities using different class saturations.

1st Year Students, Semester 2

Class
saturation

No. of
generations

Max fitness Time taken
(ms)

No. of violated
hard constraints

No. of inaccurate
allocations

100% 1,970 19.14286 185,712 0 221
90% 1,808 41.57148 166,243 0 153
85% 1,960 42.8572 183,744 0 151
80% 1,903 43.142918 14,922 0 151
70% 1,942 43.142906 175,164 0 150
50% 1,826 44.71434 165,497 0 150

have different fitness values but their quality is more or less the same as the number of
inaccurate allocations differs slightly. The difference in fitnesses is due to the production of
different solutions that violate differently weighted soft constraints. Inaccurate allocations
as described previously are just allocations that are less optimal than some other available
allocation. Despite this, the algorithm finds feasible solutions in less than 5 s even for the
problem with the top complexity.

Table 3 shows the results of the same experiments repeated on the semester 1 dataset.
The results obtained are generally better than the ones obtained with the semester 2 data
but similar patters are observed. Despite the increasing capacity of the classes, the solutions
generated with 90% or 50% saturation are very similar. The most complex problem with
100% saturation exhibited a much lower fitness compared to the rest of the solutions; this
shows that the limiting factor is the capacity of the classes to some extent. However, within
2,000 generations, the algorithm seemed to get stuck at fitnesses around 60 and struggled
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Table 3 Different solutions and their qualities using different class saturations.

1st Year Students, Semester 1

Class
saturation

No. of
generations

Max fitness Time taken
(ms)

No. of violated
hard constraints

No. of inaccurate
allocations

100% 1354 44.857132 104646 0 131
90% 1934 59.357155 167903 0 82
85% 1147 59.500023 105076 0 81
80% 1824 59.50001 147568 0 82
70% 1997 60.85716 140618 0 78
50% 1939 59.642876 137809 0 79

to find better solutions. This might suggest that with the given student preferences it is
impossible to satisfy all of them.

CONCLUSION AND FUTURE WORK
The use of genetic algorithms to solve scheduling and timetabling problems has proven
to be very reliable and efficient in producing optimal or near optimal solutions even
for complex problems. The genetic algorithm designed and implemented for this article
followed the latest developments in the literature and applied different metaheuristic
concepts such as simulated annealing, and incorporated them within the GA to enhance
its performance. Different techniques and methodologies were also used within the GA
that are unique to other implementations in the literature, such as pre-fitness calculation
score, improvement functions, multi-student crossover operator, and fitness hashing. The
algorithm was tested on different datasets provided by King’s College London’s timetabling
team. Its results were evaluated on grounds of complexity, efficiency, and quality, and were
further compared to those produced using other algorithms. The results were promising
and the algorithm showed no difficulty in generating feasible and near-optimal solutions
regardless of the dataset being used, and in a very short span of time. By choosing the best
allocations, the solutions produced by the GAwere able to satisfy more than 90% of student
preferences. All of the objectives defined earlier were met, and the algorithm was able to
successfully allocate students to labs and tutorials while accounting for their preferences.

The article, despite meeting all of its objectives, can be extended in many ways. The
algorithm could benefit from a user interface that would accompany it and allow the users
to input their preferences in an eloquent manner where the preferences and their scores
can be expressed in a more human-readable form. The UI can also display the solution
generated instead of storing it in Excel files as it is now, and it might also show graphs
based on the amount of student preferences satisfied and which/how many were violated
so that they may be altered manually if possible. Additionally, the list of student preferences
available can be extended further. For example, the students should be able to choose either
remote or in-person studying so that they can be allocated to online classes only if necessary.
Another addition would be the ability to label rooms within a timetable as ‘‘accessible’’ for
people with disabilities or health issues and students should be able to specify whether they
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are in need of accessible classes. The algorithm can then consider assigning a student with
a disability to an accessible class as one of the hard constraints. This would help prioritise
these preferences over others leading to a more inclusive environment in the university
and increase student satisfaction even further.
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