Submitted 9 February 2017
Accepted 22 May 2017
Published 10 July 2017

Corresponding author
Neil Swainston,
neil.swainston@manchester.ac.uk

Academic editor
James Procter

Additional Information and
Declarations can be found on
page 8

DOI 10.7717/peerj-cs.120

© Copyright

2017 Swainston et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

CodonGenie: optimised ambiguous codon
design tools

Neil Swainston', Andrew Currin', Lucy Green', Rainer Breitling', Philip J. Day’
and Douglas B. Kell"*

! Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), University of
Manchester, Manchester, United Kingdom

% School of Chemistry, University of Manchester, Manchester, United Kingdom
? Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom

ABSTRACT

CodonGenie, freely available from http://codon.synbiochem.co.uk, is a simple web
application for designing ambiguous codons to support protein mutagenesis applica-
tions. Ambiguous codons are derived from specific heterogeneous nucleotide mixtures,
which create sequence degeneracy when synthesised in a DNA library. In directed
evolution studies, such codons are carefully selected to encode multiple amino acids. For
example, the codon NTN, where the code N denotes a mixture of all four nucleotides,
will encode a mixture of phenylalanine, leucine, isoleucine, methionine and valine.
Given a user-defined target collection of amino acids matched to an intended host
organism, CodonGenie designs and analyses all ambiguous codons that encode the
required amino acids. The codons are ranked according to their efficiency in encoding
the required amino acids while minimising the inclusion of additional amino acids and
stop codons. Organism-specific codon usage is also considered.

Subjects Bioengineering, Bioinformatics, Biotechnology, Computational Biology, Synthetic
Biology

Keywords Directed evolution, Codon, Protein engineering, Industrial biotechnology,
Mutagenesis, Enzyme engineering

INTRODUCTION

Site-directed mutagenesis of DNA is an established technique of generating libraries of
DNA variants in a controlled manner, and has applications in a range of fields, primarily
that of protein engineering (Jdickel, Kast ¢ Hilvert, 2008), but also in more fundamental
research including the study of sequence-to-fitness relationships (Hietpas, Jensen ¢» Bolon,
2011). The design of mutant protein libraries typically involves a manual process in which
required sites for mutation are selected and ambiguous codons (those containing mixtures
of nucleotides) designed to introduce controlled variation in these positions.

In this process, one may wish to design a codon to specify any subset of amino acids in
a given position. Since each amino acid may be included in the subset or otherwise, the

220

number of possible subsets is 271, i.e., there are 1,048,575 possible subsets of 20 amino

acids. (Each of the sets can be represented by a 20-digit binary number, where a one at
position # indicates that amino acid # is included in the set, and a zero indicates that it

220

is absent. There are 2*” such numbers, but one of them represents the empty set and is

thus not counted here.) Not all of these 1,048,575 subsets of 20 amino acids are uniquely

How to cite this article Swainston et al. (2017), CodonGenie: optimised ambiguous codon design tools. Peer] Comput. Sci. 3:¢120; DOI
10.7717/peerj-cs.120

https://peerj.com
mailto:neil.swainston@manchester.ac.uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.120
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://codon.synbiochem.co.uk
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

designable using ambiguous codons, of which there are only 3375. (There are 15 (=2%-1)
relevant nucleotide codes (“letters”), ranging from the completely unambiguous A, C, G
and T representing a single nucleotide, to the completely ambiguous N representing all
4 nucleotides (Cornish-Bowden, 1985). There are 15° = 3,375 triplet codons that can be
assembled from this 15-letter alphabet of ambiguous codes, compared to the 4> = 64 codons
that can be constructed from the standard 4-letter alphabet of unambiguous nucleotides.)

Given the degeneracy of the codon table, there are often multiple ways to encode a
chosen set of amino acids. The experimenter must (a) decide if it is feasible to encode
all desired amino acids (Mena & Daugherty, 2005); (b) determine whether this creates an
acceptable number of sequence combinations (depending on screening capability and
throughput) (Currin et al., 2015; Kille et al., 2013; Lutz, 2010; Pines et al., 2015); and (c)
consider the codon usage of the organism to be used (Nakamura, Gojobori ¢ Ikemura,
2000). It therefore follows that the design of ambiguous codons is non-trivial.

CodonGenie is therefore introduced to provide a quick and easy-to-use means of
designing optimal ambiguous codons, considering the above parameters according to the
user input, and ranking the ambiguous codons with respect to their suitability for expression
in a target host organism. The tool is designed to be both human- and computer-readable,
providing both a simple web browser interface and a RESTful webservice APL

MATERIALS & METHODS
Algorithm

The standard codon table is such that 17 of the 20 naturally occurring amino acids are
encoded by codons with fixed bases in the first and second positions, with the third
“wobble”-position allowing variation that accounts for the degeneracy of the DNA code.
Determining optimal ambiguous codons for combinations of amino acids involves the
following process, which is optimized for computational efficiency, compared to a brute-
force examination of all possible ambiguous codons:

Align the first two positions and select the most specific ambiguous bases to encode
the alignment. For example, with the combination asparagine and isoleucine (encoded
by AALCT] and AT[ACT] respectively), the alignment of the first two positions is A[AT],
i.e., AW.

All combinations of aligned wobble positions are calculated, i.e., [CA], [CC], [CT], [TA],
[TC], [TT]. These are then collapsed into unique sets, in this example giving [CA], C, [CT],
[TA] and T.

The first two and wobble position bases are combined to produce candidate ambiguous
codons, which are scored as described below.

Three amino acids (leucine, arginine and serine) cannot be simply encoded by codons
with fixed bases in the first and second positions. (For example, both CTN and TT[AG]
encode leucine.) For combinations including these more complex residues, the above
algorithm is performed for each encoding and the results combined.

Note that CodonGenie returns not only the most “specific” ambiguous codons, that is,
the codons that provide the fewest DNA variants whilst encoding all target amino acids.
Providing results that include less specific ambiguous codons, which may also encode

Swainston et al. (2017), Peerd Comput. Sci., DOI 10.7717/peerj-cs.120 2/10

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

additional amino acids, allows the user to perform a trade-off between library size and
codon specificity, depending on the experimental objective. A smaller library is generally
advantageous for screening purposes, but may contain codons that are unfavoured by the
target host organism.

Scoring

The goal of the scoring scheme is to preferentially rank the most efficient ambiguous
codons. That is, the ambiguous codons that encodes all of the required amino acids while
minimising the encoding on non-desired amino acids.

The score for an ambiguous codon is therefore defined as the mean of the value, v;, of
each of the codons that it encodes. For codons that encode required amino acids, v; is the
ratio of the frequency of the codon f; and the frequency of the most frequent synonymous
codon f; for the amino acid that it encodes. For codons that encode non-required amino

acids, v; is zero.

1
score=— Y _ v;, where
|C| 4—ieC
ﬁ_ i1€R
vi= max({ﬁ:]eSi})
0 igR

C= {all variants of ambiguous codon c}

A = {target amino acids}

a; : amino acid encoded by codonie C

fi : codon usage frequency of codonie C

Si={j:aj=ai} Setof synonymous codons of codon i

R={ieC:a;eA} Setofcodon variants of ¢ encoding target amino acids.

This scoring algorithm thus achieves a principled trade-off between codon specificity,
library size and codon favourability (according to the codon usage preferences of the target
organism).

Web service access
CodonGenie also offers a RESTful web service interface, supporting its integration with
software pipelines. The Design method can be accessed by specifying required amino acids
and required host organism (as an NCBI Taxonomy id Federhen, 2012) as follows:
http://codon.synbiochem.co.uk/codons?aminoAcids=DE&organism=4932
Similarly, the Analyse method can be accessed by specifying a variant codon and the
required organism:
http://codon.synbiochem.co.uk/codons?codon=NSS&organism=4932
CodonGenie also provides web service interfaces for accessing supported organisms.
The first allows all organisms to be listed, showing NCBI Taxonomy id and name, and the
second allows the collection to be searched according to a given term:
http://codon.synbiochem.co.uk/organisms/
http://codon.synbiochem.co.uk/organisms/escher
In all cases, results are returned in json format.

Swainston et al. (2017), Peerd Comput. Sci., DOI 10.7717/peerj-cs.120 3/10

https://peerj.com
http://codon.synbiochem.co.uk/codons?aminoAcids=DE&organism=4932
http://codon.synbiochem.co.uk/codons?codon=NSS&organism=4932
http://codon.synbiochem.co.uk/organisms/
http://codon.synbiochem.co.uk/organisms/escher
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

Distribution

The web application is freely available from http://codon.synbiochem.co.uk. CodonGenie is
written in Python (using the Flask framework) and HTML/Javascript (using the Bootstrap
and Angular]$ libraries) and is packaged as a Docker application for ease of deployment.
Source code is available from https://github.com/synbiochem/CodonGenie.

RESULTS AND DISCUSSION

CodonGenie provides a simple web interface affording two functions: (a) the design, and
(b) the analysis of ambiguous codons. Considering the Design module, the user specifies
the combination of amino acids to be encoded and an organism in which the library will
be expressed. The codon usage table is automatically extracted from the Codon Usage
Database (Nakamura, Gojobori & Ikemura, 2000), which as of May 2017 provided support
for 35,792 organisms. CodonGenie then calculates suitable ambiguous codons and presents
these in an interactive table (see Fig. 1).

The Analyse module provides the functionality of checking an existing ambiguous
codon. Users specify a variant codon and required host organism, and the results returned
indicate which amino acids are encoded along with their codon usage frequency.

The benefit of CodonGenie can be exemplified by the design of an ambiguous codon
to encode non-polar amino acids phenylalanine, leucine, isoleucine, methionine and
valine. A simple and widely used ambiguous codon to encode this subset is NTN, which
equates to 16 DNA variants. However, CodonGenie identifies that these same amino acids
can be encoded by the DTK codon (where D denotes [AGT] and K denotes [GT]) using six
variants. Selecting DTK therefore means fewer enzyme variants need to be screened to test
all sequence combinations. This benefit is particularly significant when encoding multiple
variant codons. For example, when using 3 DTK codons the library size is reduced from
4,096 (16°) to 213 (6”) combinations.

An example of the importance of considering codon usage of the target host organism
can be seen when considering the design of an ambiguous codon to encode the set of five
non-polar amino acids (F, I, L, Mand V) considered above. For E. coli, the preferred codon
is DTK (ATG |T |GT), with a score of 0.88. DTS (ATG | T | GC) also encodes all five amino
acids using 6 variants, but with a score of 0.68. In Streptomyces coelicolor—a commonly
used host for antibiotic production (Pickens, Tang ¢» Chooi, 2011), the ranking is reversed,
with DTS being preferred with a score of 0.79, substantially higher than that of 0.29 for
DTK. The reason for this can be found in the codon usage frequencies of each of these
organisms, as shown in Table 1: The codons DTK and DTS differ by specifying either GT
or GC in the third position, respectively. Taking the example of encoding phenylalanine,
F, the codon TTT encoded by ambiguous codon DTK is preferred over TTC (encoded by
DTS) in E. coli by a frequency of 0.64 to 0.36. By contrast, S. coelicolor strongly prefers TTC
to TTT to encode F, with frequencies of 0.97 to 0.03, respectively. A similar preference is
observable in the codon usage frequencies for encoding isoleucine, I, in S. coelicolor, where
ATC has a frequency of 0.95 compared to that of 0.03 for ATT. Thus, S. coelicolor has a
strong preference for the variant codon containing C in the “wobble” position, and this is

Swainston et al. (2017), Peerd Comput. Sci., DOI 10.7717/peerj-cs.120 4/10

https://peerj.com
http://codon.synbiochem.co.uk
https://github.com/synbiochem/CodonGenie
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

[] " CodonGenie x 5 Neil

< C ® codon.synbiochem.co.uk Y a
=2 CodonGenie
Result
Design Analyse
Codon Amino acids GTG (0.29), GTT (0.32) Variants Score
rg Polar Acidic Basic =3 18 047
A
' ' 18 0.41
@0
l l 24 0.41
o]0
@ 24 036
['oes | 27 045
[oeo] (501 27 043
Organism: | £qcerichia coli ['oev | ['stop 1} 27 039
= % 04
["nes | 3 038
[nep | 36 037
(e] [sop 1] % 03
[on] s 0se

Figure 1 CodonGenie Design interface. Users specify required amino acid combinations in the left-
hand side panel. Amino acids are grouped together in the interface in subsets of polar, non-polar, acidic
and basic residues. In this example, the non-polar residues A, F, G, I, L, M and V have been selected. Vari-
ant codons are listed in the Result panel, ordered by increasing number of Variants and decreasing codon
Score (see Methods). The most specific codons are prioritised (e.g., the preferred codon in the above ex-
ample, DBK, is [AGT][CGT][GT] and therefore encodes 18 DNA variants). Variant codons are shown in
grey, with their encodings shown in green, orange and red for required amino acids, additional amino
acids and stop codons, respectively. A given variant codon may encode an amino acid multiple times, and
this is displayed in the output. For example, the preferred codon DBK encodes valine twice (with GTG
and GTT) and these encodings and their codon usage frequencies may be visualised through a tooltip.

reflected in the scores of 0.79 for DTS and 0.29 for DTK. Organism-specific codon usage is
therefore a key consideration in the design of ambiguous codons for a given host.

CodonGenie adds to a toolkit of existing software tools for ambiguous codon selection,
which includes AA-Calculator (Firth ¢ Patrick, 2008) and DYNAMCC (Halweg-Edwards
et al., 2016). In contrast to AA-Calculator, CodonGenie ranks designed ambiguous codon
based on their suitability for use in a given host organism. DYNAMCC also scores designed
codons but offers complementary functionality to CodonGenie, as it designs sets of
ambiguous codons to encode a set of amino acids with no off-target amino acid encoding
and minimal redundancy. CodonGenie designs single ambiguous codons to encode a
desired set of amino acids, which may also include off-target amino acids, allowing users
to make a conscious trade-off between a larger library and the ease of generating such a
library with a single ambiguous codon.

The above example of Table 1 illustrates a key difference between CodonGenie and
DYNAMCC. Where CodonGenie will provide a list of individual ambiguous codons that
will encode all desired amino acids (and potentially additional, off-target amino acids),
DYNAMCGC returns a single, best-scoring set of ambiguous codons that encode all desired
amino acids with minimal redundancy. In the case of F, I, L, M and V, DYNAMCC returns
the set of codons WTT (encoding F and I and L) and VTG (encodingMand V). The advantage
of the DYNAMCC approach is in increased efficiency of the library: five DNA variants

Swainston et al. (2017), Peerd Comput. Sci., DOI 10.7717/peerj-cs.120 5110

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

Table 1 Comparison of codon usage frequencies for ambiguous codons encoding F, I,L,Mand V in
Escherichia coli and Streptomyces coelicolor. Specific codons from two variant codons DTK and DTS are
given, along with their codon usage frequency in the two organisms. For the amino acids F, I and V, there
is a preference for codons with T in the third (“wobble”) position in E. coli, and a preference for C in the
wobble position for S. coelicolor. This preference is reflected in the differences in scores for the ambiguous
codons for the two organisms.

Amino acid Codon Ambiguous codon Codon usage frequency
E. coli S. coelicolor

- TTC DTS 0.36 0.97

TTT DTK 0.64 0.03
I ATC DTS 0.31 0.95

ATT DTK 0.47 0.03

TTG DTK and DTS 0.13 0.03

ATG DTK and DTS 1.00 1.00

GTC DTS 0.19 0.58

GTG DTK and DTS 0.29 0.36

GTT DTK 0.32 0.02

encode the five desired amino acids, while CodonGenie’s solution of DTK or DTS encode six
DNA variants, thus producing a larger library. The advantage of CodonGenie’s solution
lies in the ease in which the library can be produced with a single ambiguous codon.

CodonGenie provides a clean, intuitive web-based user interface which requires
minimal user input, and which takes advantage of modern web-application development
libraries such as AngularJS and Bootstrap. Angular]S (https://angularjs.org), developed and
maintained by Google, provides a framework for the rapid development of modular, testable
single-page web applications. Bootstrap (http://getbootstrap.com), initially developed at
Twitter, provides a library of reusable user interface “widgets”, such as forms, auto-fill
boxes, tables, etc. Using freely available yet commercially developed libraries such as these
confers a number of advantages: From a development perspective, the libraries are easy
to use, are well documented and are thoroughly tested on a range of browsers (including
those on mobile phones and tablets) being used perhaps billions of times a day worldwide.
More importantly, the user experience is improved through use of well-developed modules
that in many cases users have experienced numerous times previously in various other
web applications. As a result, CodonGenie can provide a simple, easy-to-use interface
that requires no documentation and can run on many platforms with the minimum of
development effort.

CodonGenie is designed to follow the concept of “microservices” (Williams et al., 2016).
Microservice architecture advocates the breaking down of large, monolithic applications
into simple, atomic services of limited scope of functionality. By deconstructing large
applications or pipelines (such as a DNA design tool) into a collection of independent
units (such as a codon design module), the individual microservices can be developed,
tested and deployed in isolation, increasing their reliability and reusability. CodonGenie
follows this paradigm (the entire application consists of ~700 lines of code) and allows
for integration into larger applications by providing a simple computer-readable RESTful

Swainston et al. (2017), Peerd Comput. Sci., DOI 10.7717/peerj-cs.120 6/10

https://peerj.com
https://angularjs.org
http://getbootstrap.com
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

web service API, as well as making itself available as a Docker container (Belmann et al.,
2015; Leprevost et al., 2017), allowing users to easily redeploy their own instantiation on
individual computers and services, or cloud-based platforms.

One example of the use of the CodonGenie as a microservice within a larger application
is in automating the design of a synthetic DNA sequence to encode a protein sequence
generated from a multiple sequence alignment. Consider a multiple sequence alignment of
a hypothetic active site of an enzyme:

PFDMR
PIAMR
PLHLR
PMNMR
PVHMR

The CodonGenie webservice facilitates the writing of a simple script to automate the
process of designing a synthetic DNA sequence that captures the variation encoded in this
alignment. By iterating through the alignment, the set of amino acids required at each
position can be collected ({P} for position 1, {FILMV} for position 2, etc.). These sets can
be submitted to the CodonGenie webservice (along with a desired host organism) and a
synthetic DNA sequence built up from the highest-scoring ambiguous codon returned. In
practice, CodonGenie would produce the following DNA sequence for E. coli:

CCG|DTK|VMT|MTG|CGT

In this example, the first codon (CCG) is not strictly an ambiguous codon, as it contains
no ambiguous nucleotides, given that a single amino acid, P, is required in the first position.
The codon returned is the therefore the most frequent codon for encoding proline in E.
coli. The second codon is the optimum codon for encoding F, I, L, M and V, as shown
previously.

This example shows the benefit of offering webservice access to the CodonGenie
method. While manually designing an optimised DNA sequence for a short alignment
such as this is tractable, performing a similar operation on a longer alignment or a number
of alignments in a manual fashion would not be feasible. Example code performing this
simple operation is available (https://github.com/synbiochem/CodonGenie/blob/master/
codon_genie/example/align.py), giving an indication of the ease with which CodonGenie
could be incorporated into more comprehensive DNA design pipelines.

CONCLUSION

CodonGenie provides two simple-to-use yet valuable tools that aid the design of variant
protein libraries in mutagenesis and directed evolution studies. Through both its web and
web service interfaces, CodonGenie is amenable to future integration with new and existing
variant library design software tools (Swainston et al., 2014). Its modular and open-source
format allows for straightforward adaptation to emerging needs in the synthetic biology
community, in particular the consideration of augmented genetic codes and expanded
genetic alphabets (Lajoie et al., 2013; Zhang et al., 2017).

Swainston et al. (2017), Peerd Comput. Sci., DOI 10.7717/peerj-cs.120 7110

https://peerj.com
https://github.com/synbiochem/CodonGenie/blob/master/codon_genie/example/align.py
https://github.com/synbiochem/CodonGenie/blob/master/codon_genie/example/align.py
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Funding was provided by the Biotechnology and Biological Sciences Research Council
(BBSRG; http://www.bbsrc.ac.uk) under grant BB/M017702/1, “Centre for Synthetic
Biology of Fine and Speciality Chemicals (SYNBIOCHEM)”. This is a contribution
from the Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals
(SYNBIOCHEM). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Biotechnology and Biological Sciences Research Council: BB/M017702/1.
Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYN-
BIOCHEM).

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Neil Swainston conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, performed the computation work, reviewed drafts
of the paper.

e Andrew Currin conceived and designed the experiments, performed the experiments,
analyzed the data, wrote the paper, reviewed drafts of the paper.

e Lucy Green performed the experiments, analyzed the data, wrote the paper, reviewed
drafts of the paper.

e Rainer Breitling, Philip J. Day and Douglas B. Kell analyzed the data, wrote the paper,
reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:
Github: https://github.com/synbiochem/CodonGenie.

REFERENCES

Belmann P, Droge], Bremges A, McHardy AC, Sczyrba A, Barton MD. 2015. Bioboxes:
standardised containers for interchangeable bioinformatics software. Gigascience
4(1):1-4 DOI 10.1186/s13742-015-0087-0.

Cornish-Bowden A. 1985. Nomenclature for incompletely specified bases in nucleic
acid sequences: recommendations 1984. Nucleic Acids Research 13:3021-3030
DOI 10.1093/nar/13.9.3021.

Swainston et al. (2017), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.120 8/10

https://peerj.com
http://www.bbsrc.ac.uk
https://github.com/synbiochem/CodonGenie
http://dx.doi.org/10.1186/s13742-015-0087-0
http://dx.doi.org/10.1093/nar/13.9.3021
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

Currin A, Swainston N, Day PJ, Kell DB. 2015. Synthetic biology for the directed
evolution of protein biocatalysts: navigating sequence space intelligently. Chemical
Society Reviews 44:1172—1239 DOI 10.1039/C4CS00351A.

Federhen S. 2012. The NCBI Taxonomy database. Nucleic Acids Research 40:D136-D143
DOI 10.1093/nar/gkr1178.

Firth AE, Patrick WM. 2008. GLUE-IT and PEDEL-AA: new programmes for analyzing
protein diversity in randomized libraries. Nucleic Acids Research 36:W281-W285
DOI 10.1093/nar/gkn226.

Halweg-Edwards AL, Pines G, Winkler JD, Pines A, Gill RT. 2016. A Web Interface for
Codon Compression. ACS Synthetic Biology 5:1021-1023
DOI 10.1021/acssynbio.6b00026.

Hietpas RT, Jensen JD, Bolon DN. 2011. Experimental illumination of a fitness land-
scape. Proceedings of the National Academy of Sciences of the United States of America
108:7896-7901 DOI 10.1073/pnas.1016024108.

Jackel C, Kast P, Hilvert D. 2008. Protein design by directed evolution. Annual Review of
Biophysics 37:153—173 DOI 10.1146/annurev.biophys.37.032807.125832.

Kille S, Acevedo-Rocha CG, Parra LP, Zhang ZG, Opperman D], Reetz MT, Acevedo
JP. 2013. Reducing codon redundancy and screening effort of combinatorial
protein libraries created by saturation mutagenesis. ACS Synthetic Biology 2:83-92
DOI10.1021/sb300037w.

Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer
JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM,
Rinehart J, Church GM, Isaacs FJ. 2013. Genomically recoded organisms expand
biological functions. Science 342:357-360 DOI 10.1126/science.1241459.

Leprevost FD, Griining BA, Alves Aflitos S, Rost HL, Uszkoreit J, Barsnes H, Vaudel
M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J,
Vera Alvarez R, Griss J, Nesvizhskii Al Perez-Riverol Y. 2017. BioContainers:

An open-source and community-driven framework for software standardization.
Bioinformatics Epub ahead of print DOI 10.1093/bioinformatics/btx192.

Lutz S. 2010. Beyond directed evolution—semi-rational protein engineering and design.
Current Opinion in Biotechnology 21:734-743 DOI 10.1016/j.copbio.2010.08.011.

Mena MA, Daugherty PS. 2005. Automated design of degenerate codon libraries. Protein
Engineering, Design and Selection 18:559-561 DOI 10.1093/protein/gzi061.

Nakamura Y, Gojobori T, Ikemura T. 2000. Codon usage tabulated from the inter-
national DNA sequence databases: status for the year 2000. Nucleic Acids Research
28(1):Article 292 DOI 10.1093/nar/28.1.292.

Pickens LB, Tang Y, Chooi YH. 2011. Metabolic engineering for the production of natu-
ral products. Annual Review of Chemical and Biomolecular Engineering 2:211-236
DOI 10.1146/annurev-chembioeng-061010-114209.

Pines G, Pines A, Garst AD, Zeitoun RI, Lynch SA, Gill RT. 2015. Codon compres-
sion algorithms for saturation mutagenesis. ACS Synthetic Biology 4:604-614
DOI 10.1021/sb500282v.

Swainston et al. (2017), Peerd Comput. Sci., DOI 10.7717/peerj-cs.120 9/10

https://peerj.com
http://dx.doi.org/10.1039/C4CS00351A
http://dx.doi.org/10.1093/nar/gkr1178
http://dx.doi.org/10.1093/nar/gkn226
http://dx.doi.org/10.1021/acssynbio.6b00026
http://dx.doi.org/10.1073/pnas.1016024108
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125832
http://dx.doi.org/10.1021/sb300037w
http://dx.doi.org/10.1126/science.1241459
http://dx.doi.org/10.1093/bioinformatics/btx192
http://dx.doi.org/10.1016/j.copbio.2010.08.011
http://dx.doi.org/10.1093/protein/gzi061
http://dx.doi.org/10.1093/nar/28.1.292
http://dx.doi.org/10.1146/annurev-chembioeng-061010-114209
http://dx.doi.org/10.1021/sb500282v
http://dx.doi.org/10.7717/peerj-cs.120

PeerJ Computer Science

Swainston N, Currin A, Day PJ, Kell DB. 2014. GeneGenie: optimized oligomer design
for directed evolution. Nucleic Acids Research 42:W395-W400
DOI 10.1093/nar/gku336.

Williams CL, Sica JC, Killen RT, Balis UG. 2016. The growing need for microservices in
bioinformatics. Journal of Pathology Informatics 7:Article 45
DOI10.4103/2153-3539.194835.

Zhang Y, Lamb BM, Feldman AW, Zhou AX, Lavergne T, Li L, Romesberg FE. 2017. A
semisynthetic organism engineered for the stable expansion of the genetic alphabet.
Proceedings of the National Academy of Sciences of the United States of America
114:1317-1322 DOI 10.1073/pnas.1616443114.

Swainston et al. (2017), Peerd Comput. Sci., DOI 10.7717/peerj-cs.120 10/10

https://peerj.com
http://dx.doi.org/10.1093/nar/gku336
http://dx.doi.org/10.4103/2153-3539.194835
http://dx.doi.org/10.1073/pnas.1616443114
http://dx.doi.org/10.7717/peerj-cs.120

