
Submitted 14 May 2015
Accepted 9 July 2015
Published 29 July 2015

Corresponding author
Marco Tulio Valente,
mtov@dcc.ufmg.br

Academic editor
Philipp Leitner

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.12

Copyright
2015 Borges and Valente

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Mining usage patterns for the Android
API
Hudson S. Borges and Marco Tulio Valente

Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

ABSTRACT
API methods are not used alone, but in groups and following patterns. However,
despite being a key information for API users, most usage patterns are not described
in official API documents. In this article, we report a study that evaluates the
feasibility of automatically enriching API documents with information on usage
patterns. For this purpose, we mine and analyze 1,952 usage patterns, from a set
of 396 Android applications. As part of our findings, we report that the Android
API has many undocumented and non-trivial usage patterns, which can be inferred
using association rule mining algorithms. We also describe a field study where a
version of the original Android documentation is instrumented with the extracted
usage patterns. During 17 months, this documentation received 77,863 visits from
professional Android developers.

Subjects Software Engineering
Keywords Application programming interfaces, Usage patterns, Android

INTRODUCTION
Methods in modern APIs are not used independently of each other, but according to

some patterns (Robillard et al., 2013; Long, Wang & Cai, 2009). For example, the Android

JavaDoc page that documents the beginTransaction method explicitly reports that

it is usually used together with setTransactionSucessful and endTransaction.

However, this page is an exception and most usage patterns are not documented at all.

We reach this conclusion after inspecting the Android documentation, searching for 100

popular usage patterns, mined from a dataset of 396 applications. We found that only 12

patterns are somehow documented.

This paper reports the first (to the best of our knowledge) large-scale field study on the

instrumentation of API documents with usage patterns. The study is based on the Android

API, which is selected due to its complexity, size, and relevance to Android developers (Syer

et al., 2011; Ruiz et al., 2014). We consider an API usage pattern as set of API methods that

are used together with a certain frequency (Robillard et al., 2013). We extend a tool, called

APIMiner (Montandon et al., 2013), to mine usage patterns from a dataset of Android

open-source applications. This tool also instruments the original API documents with

information on the extracted usage patterns.

The study reported in this paper is divided in three parts:

• First, we report a characterization study on the usage of the Android API by client

applications. Our central goal is to check whether the Android API and the proposed

dataset of Android clients are indeed interesting objects of study.

How to cite this article Borges and Valente (2015), Mining usage patterns for the Android API. PeerJ Comput. Sci. 1:e12;
DOI 10.7717/peerj-cs.12

mailto:mtov@dcc.ufmg.br
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.12
http://dx.doi.org/10.7717/peerj-cs.12
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.12


Figure 1 JavaDoc instrumented by APIMiner (Montandon et al., 2013).

• Next, we describe the methodology followed to extract usage patterns for the Android

API and we characterize such patterns, in terms of their representativeness and

complexity. We also show the results of a validation of the extracted usage patterns

with two professional Android developers.

• Finally, we report a long-term field study, in which our version of the Android API

instrumented with usage patterns and associated examples was made available to public

access. During 17 months, it received 77,863 visits, coming from 160 countries. We

analyze these visits to answer two research questions: (a) Do API users search for source

code examples? (b) Do API users search for examples of usage patterns?

MATERIALS & METHODS
In this section, we present the tool we used to enhance API documents with information

on usage patterns, the dataset used to mine these patterns, and the support and confidence

thresholds used by the mining algorithm.

APIMiner
APIMiner (http://apiminer.org) is a tool that instruments JavaDocs with code examples,

extracted from API clients (Montandon et al., 2013). As illustrated in Fig. 1, an “Example

Button” is included in the original documentation, before the signature of each API

method. By clicking on these buttons, developers are presented with source code examples

for the documented API methods. A detailed presentation of the algorithms used by

APIMiner to extract, summarize, and rank examples is out of the scope of this paper and

we refer the interested reader to our previous work (Montandon et al., 2013).

For this article, we extend APIMiner with a capability to provide examples for API

methods that are often called together. An API usage pattern has the following form:

M ⇒ M1,M2,...,Mn

where M and Mi, 1 ≤ i ≤ n, are methods from the API of interest. This pattern expresses

that when the method M (antecedent term) is called by a given client method C, methods

M1,M2,...,Mn (consequent terms) are usually called by C, not necessarily in this order.

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 2/14

https://peerj.com/computer-science/
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://dx.doi.org/10.7717/peerj-cs.12


Figure 2 Interface for presenting examples for API usage patterns.

The extension adds a new module to APIMiner for inferring usage patterns. This

module relies on the FP-Growth association rules mining algorithm, as implemented

by the Weka data mining library (http://www.cs.waikato.ac.nz/ml/weka). The transactions

used as input to FP-Growth are the methods of the client systems; the items are the Android

methods called by these client methods (all calls are statically extracted, based on the

static types of the target objects). Transactions with a single call to an API method are not

relevant for our purposes. Therefore, they are discarded before executing the FP-Growth

algorithm. To evaluate the significance of the extracted patterns we rely on two measures:

support (number of transactions that include the methods in the pattern) and confidence

(the probability of finding the methods from the consequent term in the subset of the

transactions including the antecedent method).

We also extend the JavaDoc interface to show examples of usage patterns, as presented

in Fig. 2. In the usage scenario illustrated by this figure, the API user initially requested

examples for the beginTransaction() method, using the original interface provided

by APIMiner. The window presenting the examples has a bottom panel with the usage

patterns that have beginTransaction as the antecedent term. For instance, after selecting

the first pattern the user sees examples that include not only beginTransaction() but

also endTransaction().

We also instrumented the JavaDoc sections that document the API methods with

information on other methods they are frequently called with (if any), as presented in

Fig. 3.

Mining dataset
Different from work that processes Android bytecode downloaded from Google Play (Ruiz

et al., 2014), in our case it is important to have the original source code, to guarantee

the extraction of examples with a minimum level of legibility. For this reason, we relied

on GitHub to construct a dataset with the source code of Android systems, which we

use for mining the usage patterns considered in this paper. We downloaded Android

projects from GitHub that have at least 50 commits, to restrict the analysis to projects with

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 3/14

https://peerj.com/computer-science/
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://dx.doi.org/10.7717/peerj-cs.12


Figure 3 Usage patterns are presented in the detailed documentation of methods.

a minimum level of activity, and that are not forks of other projects, to avoid many similar

projects in the dataset. By considering these requirements, we create a mining dataset

with 396 projects, including well-known applications, such as WordPress, Astrid, K9, and

ConnectBot. Considering all projects, the dataset includes 57,658 classes and 450,762

methods.

For this study, we use version 4.1.2-r1 of the Android API. We initially evaluate the usage

of the API by the systems in the proposed dataset. Considering just the methods that call

methods from the Android API, 59% call a second API method, which shows the feasibility

of searching for usage patterns. Moreover, in the dataset, 40% of the public or protected

methods from the Android API are never called.

We also analyzed the distribution of the number of API calls in our dataset. Figure 4

shows two histograms with the frequency of the number of calls. For each value n in

the x-axis, the y-axis represents the number of methods with exactly n calls. To ease

visualization, the first histogram shows methods with at most 40 calls; and the second

histogram with at most 300 calls (in the full dataset, the number of calls ranges from 1 to

6,729). The histogram is right-skewed, meaning that while most methods are called few

times (median equal to 5), we also have high and very high values. This finding implies that

centrality and dispersion statistics measures (e.g., mean and standard deviation) should

not be used to describe our empirical data on number of calls. Instead, the histogram

suggests the data best fits a heavy-tailed distribution, possibly a power law. To check this

possibility, we use the statistical framework proposed by Clauset, Shalizi & Newman (2009)

for discerning power-law behavior in empirical data. By following this framework, we

reject the (null) hypothesis that power-laws are a plausible explanation for our data, for

a significance level of 5% (p-value = 0.00). However, this is not the same as concluding

that the number of calls do not match a heavy-tailed distribution. In fact, Fig. 4 suggests

a heavy-tailed behavior, possibly matching an alternative distribution (e.g., stretched

exponential or log-normal).

Summary: Client methods tend to make multiple calls to the Android API (59% of the

methods calling an API method, call at least a second one), which shows that there is space

for mining methods that are frequently called together. However, the usage of the Android

API follows a highly right-skewed distribution, which suggests that we should not expect to

derive usage patterns for most API methods.

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 4/14

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.12


Figure 4 Histogram of number of calls. (A) Up to 40 method calls; (B) up to 300 method calls.

Figure 5 Setting up the support and confidence thresholds. (A) Number of rules vs support; (B) API
methods coverage vs support.

Mining usage patterns
The first step for mining usage patterns is to set up the support and confidence thresholds.

Figure 5A shows the number of association rules by varying the support values. We restrict

the confidence thresholds to 70%, 80%, 90%, and 95% to keep a minimum quality in the

rules. We can observe that small support values generate too many rules. Fixing a support

of 10 transactions, we have 11,054 rules for a confidence of 95% and 33,685 rules for a

confidence of 70%. In fact, the number of association rules starts to grow very rapidly

for support values less or equal to 20. For this reason, we decide to use a support of 21

transactions.

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 5/14

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.12


Table 1 Usage patterns with highest support.

Usage pattern Support Confidence

Activity.setContentView(View)⇒

Activity.onCreate(Bundle)
1,362 75

Toast.show()⇒

Toast.makeText(...)
1,133 86

ViewGroup.getChildCount()⇒

ViewGroup.getChildAt(int)
1,077 75

ViewGroup.getChildAt(int)⇒

ViewGroup.getChildCount()
1,077 74

AlertDialog.Builder.setTitle(...)⇒

AlertDialog.Builder.Builder(Context)
1,019 98

ContentValues.put(String,String)⇒

ContentValues.ContentValues()
973 80

AlertDialog.Builder.create()⇒

AlertDialog.Builder.Builder(Context)
765 94

AlertDialog.Builder.setMessage(...)⇒

AlertDialog.Builder.Builder(Context)
736 96

LayoutInflater.inflate(...)⇒

View.findViewById(int)
697 72

ContentValues.put(String,Integer)⇒

ContentValues.ContentValues()
632 77

Figure 5B shows the number of methods covered by the extracted rules, considering just

rules with a single method in the antecedent term. For a support of 21 transactions, the

coverage ranges from 192 methods (confidence of 95%) to 624 methods (confidence of

70%). To increase API’s coverage, we decide to fix a confidence of 70%.

By using the proposed thresholds, 1,952 usage patterns are mined, covering 624 API

methods, which represent 5% of the public and protected methods in the Android API

and 8% of the methods called in our dataset. To compute the patterns and the source code

examples, it took around 10 h (on a Intel Xeon Six Core processor, with 64 GB RAM).

However, it is important to highlight that this process is performed only once for a given

API and corpus of client systems.

RESULTS
This section provides examples of usage patterns and also a classification of patterns in two

categories, intra and inter-class. We also report an evaluation with developers, to validate

whether the patterns really include methods that are called together. Finally, we report a

field study, where we made our tool available to public usage.

Examples and types of patterns
Table 1 presents the usage patterns with the highest support. The most common usage

pattern—found in 1,362 transactions with a confidence of 75%—models the computation

required to create a focused UI window, which is called an Activity by the Android

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 6/14

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.12


Figure 6 Support values for intra-class and inter-class usage patterns.

API. The pattern expresses that client methods that set an Activity’s view by calling

Activity.setContentView(View) usually call Activity.onCreate(Bundle) to

initialize the view.

In Table 1, for nine patterns the methods in the antecedent and in the consequent

term come from the same class. We refer to such patterns as intra-class usage patterns.

It is easier to discover these patterns without tool support, since their documentation is

restricted to a single JavaDoc page. However, considering the 1,952 usage patterns, there is

an almost equal distribution between intra-class and inter-class usage patterns. Specifically,

50.3% of the usage patterns are inter-class, i.e., they have methods coming from more

than one class. Figure 6 shows boxplots describing the distribution of the support values,

regarding intra-class and inter-class usage patterns. The first and second quartiles of both

distributions are very similar. Relevant differences start on the third quartile (63 methods

for intra-class patterns vs 47 methods for inter-class patterns). For this reason, among the

ten usage patterns in Table 1, only one is inter-class.

Evaluation by developers
Association rules can generate meaningless patterns, due to random relations that exist in

most datasets. To validate the mined relations, we randomly selected a sample of 45 usage

patterns, among the “less reliable” ones. By less reliable, we refer to patterns with the lowest

support and confidence. This sample was selected among 477 usage patterns (≈25%) with

support less than 50 and confidence less than 80%. We call this first sample the treatment

group. Moreover, we randomly selected five sequences of methods, among the existing

methods in the Android API. We call this second sample the control group. We presented

each sequence of methods to two professional Android developers, with five and four years

of experience in the Android API, respectively.

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 7/14

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.12


Table 2 Usage patterns evaluation by developers.

Answers

Developer Yes No

#1 33 (73%) 12 (27%)

#2 37 (82%) 8 (18%)

#1 && #2 28 (62%) 3 (7%)

#1 ∥ #2 42 (93%) 17 (38%)

We asked the developers the following question:

Do you recommend to refer to method Y when documenting method X, since they are

usually used together?

Both developers provided negative answers for all patterns in the control group, as

expected. Table 2 summarizes the results for the 45 patterns in the treatment group. The

first developer provided positive answers for 33 usage patterns (73%) and the second one

for 37 patterns (82%). When combining the answers, 28 patterns (62%) were evaluated

positively by both developers and 3 patterns (7%) received two negative answers. 42

patterns (93%) received at least a positive recommendation and 17 patterns (38%) received

at least a negative recommendation. Therefore, according to the developers’ judgment, we

can reach a precision of 62% or 93% depending on the classification criteria (two positive

answers vs at least one positive answer). This result reveals that the mined patterns are not

coincidences or spurious relations, especially considering that we evaluated patterns in the

first quartile of the support and confidence distributions.

However, it is important to highlight that the developer’s judgment is influenced by

their personal experience with the API. For example, we discussed in detail the patterns

with two negative answers. In common, the developers initially argued they did not find

reasons to the methods being called together. To clarify this common answer, we analyzed

the following pattern in more details:

Fragment.onActivityCreated(android.os.Bundle) ⇒ Fragment.getActivity()

One of the developers said this pattern does not make sense, “because the first method

is a callback, called after an Activity is created.” We then presented to this developer

many instances of client code calling both methods. Most examples are subclasses of

Fragment that override onActivityCreated and then call the superclass method, using

super. After that, getActivity() is invoked to access the current Activity context.

The developer acknowledged that some Android developers may use the methods in this

way, but he also highlighted that the same “behavior can be achieved by arranging the

Fragment classes in other ways,” as he usually prefers to do.

Field study
We conducted a field study with the purpose of assessing the importance that API users

give to usage patterns. Particularly, the study was not designed to evaluate the usability of

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 8/14

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.12


the provided source code examples, which it is always a challenge in the case of open field

studies. Instead, we focused on the frequency that real users search for examples, including

examples of usage patterns. We claim that answers for such questions—coming from the

real usage of a complex API such as Android—are important for developers that want to

instrument their API documents with usage patterns and to guide further research on code

summarization techniques. In this way, the study aims to answer the following research

questions: (RQ #1) Do API users search for source code examples? (RQ #2) Do API users

search for examples of usage patterns?

To answer these two questions, we first made public an instance of APIMiner, at http:/

/apiminer.org. We promoted this site in popular programming forums, like Hacker News

and Reddit. However, we never controlled the access to the platform, i.e., the users had

completely freedom to access any page of the API documentation, despite including or

not usage patterns provided by API Miner. We collected access data to our site from

May 13th, 2013 to October 14th, 2014 (17 months), using a private logging service and

Google Analytics. During this time frame, APIMiner received a total of 77,863 visits,

which gives an average of 150 visits/day. These visits came from 160 countries and the top

three countries in number of visits were India (14.3%), United States (11.8%), and Brazil

(4.9%). In total, 63,314 users visited the platform and 14,867 visits (19.1%) were from

returning visitors. Finally, 54,704 visits (70.2%) came from queries performed in search

engines, mostly in Google. The visits generated 114,124 page views. However, 60,029 page

views (52.6%) have a very short duration, less than one second, or retrieved pages that are

not instrumented by APIMiner (e.g., the site front page or several tutorials included in the

Android documentation). Therefore, such page views were discarded from our analysis.

Furthermore, when analyzing the requests for examples, we excluded requests to methods

from the SQLiteDatabase class, because this class is used in the main page of the site to

illustrate our usage patterns concept.

RQ #1: do API users search for source code examples?
The visits generated 14,402 requests for source code examples, i.e., clicks in the “Example

Button.” Therefore, on average 26.6% of the considered page views included an “Example

Button” click. During the field study, 35,596 examples were presented to the users, i.e., on

average 2.47 examples were presented after each click in the “Example Button.” Therefore,

the users navigated through the list of examples to see at least a second example. Table 3

presents the top ten methods with more requests for examples. These methods, with the

exception of Toast.setGravity(...), do not have usage patterns. However, among the

933 methods that received requests for example, 125 methods (13.4%) have at least one

usage pattern.

RQ #2: do API users search for examples of usage patterns?
In our dataset, 624 methods have usage patterns. Considering these methods, 306 methods

(49%) received at least one click in their respective “Example Button.” Computing all

clicks, these methods received 1,301 requests for examples. In other words, a window

with source code examples including an option to present just examples for usage

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 9/14

https://peerj.com/computer-science/
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://apiminer.org
http://dx.doi.org/10.7717/peerj-cs.12


Table 3 Top ten methods with the highest number of requests for examples.

Method Req.

ViewPager.OnPageChangeListener.onPageSelected(int) 101

SimpleCursorAdapter.SimpleCursorAdapter(Context,int,Cursor,...) 91

RectF.RectF(float,float,float,float) 57

Point.Point(int,int) 56

ViewPager.OnPageChangeListener.onPageScrollStateChanged(int) 55

SimpleCursorAdapter.setViewBinder(ViewBinder) 50

BitmapRegionDecoder.decodeRegion(Rect,BitmapFactory.Options) 50

RectF.RectF() 44

Toast.setGravity(int,int,int) 43

ViewPager.OnPageChangeListener.onPageScrolled(int,float,int) 42

patterns—such as the one presented in Fig. 2—was activated 1,301 times during the field

study. In such situations, the users selected an option to just show examples for a given

usage pattern 399 times (30.6% of the window activations).

DISCUSSION
Our main findings on using APIMiner for extracting usage patterns are as follows.

Most Android API methods are underused
Only 60.5% of the methods in the Android API are called by the systems in our dataset.

Therefore, even considering that this dataset might not represent an ideal sample of the

whole population of Android applications (e.g., it only includes open-source apps), this

result suggests that a considerable proportion of the Android API methods are rarely used

by real clients. Therefore, API developers should monitor the usage of their API elements

by real client systems. As a result, it is likely to conclude that many elements are underused

or not used at all, suggesting a possible move to a streamlined API.

Less than 10% of the API methods called by clients have usage
patterns
In our dataset, 8.1% of the Android methods have usage patterns. Even though this dataset

does not include thousands of apps, as datasets based on Android bytecode (Ruiz et al.,

2014), the considered support threshold was properly adapted to its size. Therefore,

APIMiner shows that it is feasible to instrument API documents in a seamless way both

with source code examples and with usage patterns. The only requirement is to have a

representative sample of client systems. However, API developers should expect to retrieve

usage patterns for less than 10% of their API methods.

In one out of three opportunities users search for usage patterns
During the field study, when examples for methods with usage patterns were available,

in 30.6% of the cases the users requested examples for the mined patterns. Therefore, by

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 10/14

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.12


including examples of usage patterns, API developers can help such users on their specific

needs when browsing API documents.

Threats to validity
There are at least four threats that could undermine the validity of our results. First,

although the Android API is a complex and popular API, we cannot claim that our

findings apply univocally to other APIs, especially to APIs for other languages or targeting

a different application domain. Second, even in the universe of Android applications and

considering a mining dataset with 396 projects, we might have missed usage patterns that

are common just among applications from a particular category (e.g., location-based

applications). Third, the selection of the support and confidence thresholds, as usual

in association rules mining, is to some extent a subjective decision. To control this

threat, we experimented various threshold combinations aiming to balance coverage and

representativeness. Despite that, we could not estimate the impact on our field study

of a different threshold selection, especially a less strict one. Fourth, our field study is

an uncontrolled study, i.e., the subjects are not divided in treated and control groups.

Therefore, there is always a risk of selection bias, especially when compared with controlled

experiments. For example, we do not know the programming background of the

developers that accessed our site (and therefore it is possible that all of them are experts on

Android or the opposite). However, controlled experiments with professional developers

are hard to conduct, especially in the area of API reuse. The main reason is that real-world

development tasks may take hours or even days to be concluded (Aparecido et al., 2011).

RELATED WORK
Kagdi et al. compared frequent itemset and sequential-pattern matching and concluded

that the latter is usually worth the additional cost (Kagdi, Collard & Maletic, 2007).

However, they do not aim at the extraction of examples, when the order of the calls

is immediately visible in the extracted code fragments. CodeWeb is a system that

mines not only usage patterns regarding method calls, but also other forms of reuse,

such as inheritance (Michail, 2000). PR-Miner (Li & Zhou, 2005) extracts general

programming rules using frequent itemset mining, with focus on detecting buggy code.

Code Recommenders (http://www.eclipse.org/recommenders) extends the Eclipse built-in

Java API documentation with information such as the methods usually overridden when

subclassing a selected type or the methods usually called on a selected object.

Systems such as Strathcona (Holmes, Walker & Murphy, 2006) and MAPO (Zhong et

al., 2009) explore the syntactic context provided by the IDE to recommend examples.

Strathcona extracts a set of structural facts about the context of a source code fragment.

Then, it relies on this structural context to search in a pre-processed repository for code ex-

amples with similar structure. Finally, the best results are returned to the users for analysis.

MAPO relies on a sequential pattern mining algorithm to provide source code examples for

multiple API methods that are frequently used together in a pre-defined order. However,

the examples do not have documentation purposes, because they are highly dependent

on a particular development context. In contrast, systems such as APIMiner (Montandon

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 11/14

https://peerj.com/computer-science/
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://www.eclipse.org/recommenders
http://dx.doi.org/10.7717/peerj-cs.12


et al., 2013) and eXoaDocs (Kim et al., 2013) generate a new JavaDoc instrumented with

source code examples. However, they do not provide support for API usage patterns. Altair

is a tool that automatically generates API function cross-references, which are useful to

populate see also sections in API documents (Long, Wang & Cai, 2009). The recommended

functions are not computed using association rules, but based on their structural similarity

with the function the cross-reference refers to.

Baker is a tool that links source code examples extracted from Q&A sites to API

documentation. The tool relies on a constraint-based technique to uniquely identify fully

qualified names in source code snippets (Subramanian, Inozemtseva & Holmes, 2014).

ExPort is a tool that detects complex API usages, which can for example crosscut function

implementations (Moritz et al., 2013). Saied et al. (2015a) propose a technique to detect

multi-level usage patterns, which are API methods uniformly used across variable client

programs, independently of usage context. The authors later proposed a technique to infer

API usage patterns using structural and semantic relationships mined in the own API

source code, i.e., without requiring client programs (Saied et al., 2015b). Since our central

goal was to evaluate usage patterns in the field, with real API users, we decided to conduct

our study using the most established usage patterns mining technique (association rules).

Further work can include a comparison with the aforementioned techniques.

Studies on APIs usually report coverage rates similar to the one we found for API usage

patterns. For example, Ma, Amor & Tempero (2006) investigated the usage of the Java

API in a corpus of open-source software. They report that only about 50% of the classes

and 21% of the methods in the Java API are used at all. A similar coverage appears on

crowd-based Q&A forums, like Stack Overflow. For example, Parnin et al. (2012) evaluated

the coverage of three APIs at the level of classes (and not of single methods) at Stack

Overflow. They report that 13% of the classes in the Android API, 23% of the classes in

the Java API, and 54% of the classes in the GWT API do not have discussion threads at

all. Mojica et al. report a large-scale study showing the importance of the Android API.

They report that 54% of the classes in Android apps inherit from a base class, compared

to at most 36% in the case of non-mobile software (Ruiz et al., 2014). We also conducted

a field study to evaluate the first implementation of APIMiner. We found a right-skewed

distribution on the usage of the Android API, considering a dataset of 103 open-source

Android systems (Montandon et al., 2013).

CONCLUSION
This paper provides a large-scale study of API usage patterns, including the extraction of

patterns for a relevant API, an evaluation by expert developers, and a field study, when

such patterns were presented to real users. For practitioners, especially API developers and

maintainers, our study shows that with the wide availability of source code repositories,

like GitHub, it is feasible to generate API documents instrumented with source code

examples and usage patterns, both mined automatically. Moreover, the heavy-tailed

behavior observed on the usage of API elements suggest to practitioners that most elements

of their APIs may be underused or not used at all, and therefore it might be possible to

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 12/14

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.12


evolve to a streamlined API. Our study also shows that it is possible to collect real data on

the usage of research prototypes. Further research is also possible, especially on techniques

for summarizing code examples and for mining usage patterns. It would also be interesting

to apply our technique to other APIs.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by grants from Brazilian National Research Council (CNPq) and

Minas Gerais Research Foundation (FAPEMIG). The funders had no role in study design,

data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Brazilian National Research Council (CNPq).

Minas Gerais Research Foundation (FAPEMIG).

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Hudson S. Borges conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, performed the computation work, reviewed drafts of

the paper.

• Marco Tulio Valente conceived and designed the experiments, analyzed the data,

contributed reagents/materials/analysis tools, wrote the paper, reviewed drafts of the

paper.

Data Availability
The following information was supplied regarding the deposition of related data:

The dataset with the transactions and usage patterns used in this paper is available at:

http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset.

REFERENCES
Aparecido G, Nassau M, Mossri H, Marques-Neto H, Valente MT. 2011. On the benefits of

planning and grouping software maintenance requests. In: 15th European conference on software
maintenance and reengineering (CSMR). Piscataway: IEEE, 55–64.

Clauset A, Shalizi CR, Newman MEJ. 2009. Power-law distributions in empirical data. Society for
Industrial and Applied Mathematics Review 51(4):661–703 DOI 10.1137/070710111.

Holmes R, Walker R, Murphy G. 2006. Approximate structural context matching: an approach
to recommend relevant examples. IEEE Transactions on Software Engineering 32(12):952–970
DOI 10.1109/TSE.2006.117.

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 13/14

https://peerj.com/computer-science/
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://aserg.labsoft.dcc.ufmg.br/apiminer-dataset
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1109/TSE.2006.117
http://dx.doi.org/10.7717/peerj-cs.12


Kagdi HH, Collard ML, Maletic JI. 2007. Comparing approaches to mining source code for
call-usage patterns. In: 4th workshop on mining software repositories (MSR). Available at http:
//www.cs.kent.edu/∼jmaletic/papers/MSR07-call-usage.pdf.

Kim J, Lee S, Hwang S, Kim S. 2013. Enriching documents with examples: a corpus mining ap-
proach. ACM Transactions on Information Systems 31(1):1–27 DOI 10.1145/2414782.2414783.

Li Z, Zhou Y. 2005. PR-Miner: automatically extracting implicit programming rules and detecting
violations in large software code. In: 13th symposium on foundations of software engineering
(FSE). 306–315.

Long F, Wang X, Cai Y. 2009. API hyperlinking via structural overlap. In: 17th symposium on
foundations of software engineering (FSE). New York: ACM, 203–212.

Ma H, Amor R, Tempero ED. 2006. Usage patterns of the Java Standard API. In: 13th Asia–Pacific
software engineering conference (APSEC). Piscataway: IEEE, 342–352.

Michail A. 2000. Data mining library reuse patterns using generalized association rules. In: 22nd
international conference on on software engineering (ICSE). 167–176.

Montandon JE, Borges H, Felix D, Valente MT. 2013. Documenting APIs with examples: lessons
learned with the APIMiner platform. In: 20th working conference on reverse engineering
(WCRE). Piscataway: IEEE, 401–408.

Moritz E, Linares-Vasquez M, Poshyvanyk D, Grechanik M, McMillan C, Gethers M. 2013.
ExPort: detecting and visualizing api usages in large source code repositories. In: 28th
international conference on automated software engineering (ASE). Piscataway: IEEE, 646–651.

Parnin C, Treude C, Grammel L, Storey M-A. 2012. Crowd documentation: exploring the
coverage and the dynamics of API discussions on stack overflow. Technical report,
Georgia Tech, College of Computing. Available at http://www.cc.gatech.edu/∼vector/papers/
CrowdDoc-GIT-CS-12-05.pdf.

Robillard MP, Bodden E, Kawrykow D, Mezini M, Ratchford T. 2013. Automated API
property inference techniques. IEEE Transactions on Software Engineering 39(5):613–637
DOI 10.1109/TSE.2012.63.

Ruiz IJM, Adams B, Nagappan M, Dienst S, Berger T, Hassan AE. 2014. A large-scale empirical
study on software reuse in mobile apps. IEEE Software 31(2):78–86 DOI 10.1109/MS.2013.142.

Saied M, Benomar O, Abdeen H, Sahraoui H. 2015a. Mining multi-level API usage patterns.
In: 22nd international conference on software analysis, evolution and reengineering (SANER).
Piscataway: IEEE, 23–32.

Saied MA, Abdeen H, Benomar O, Sahraoui H. 2015b. Could we infer API usage patterns only
using the library source code? In: 23rd international conference on program comprehension
(ICPC). Available at http://www-etud.iro.umontreal.ca/∼benomaro/publi/cwiaupulsc.pdf.

Subramanian S, Inozemtseva L, Holmes R. 2014. Live API documentation. In: 36th international
conference on software engineering (ICSE). New York: ACM, 643–652.

Syer MD, Adams B, Zou Y, Hassan AE. 2011. Exploring the development of micro-apps: a case
study on the BlackBerry and Android platforms. In: 11th IEEE working conference on source code
analysis and manipulation (SCAM). Piscataway: IEEE, 55–64.

Zhong H, Xie T, Zhang L, Pei J. 2009. MAPO: mining and recommending API usage patterns.
In: 23rd European conference on object-oriented programming (ECOOP), vol. 5653. New York:
ACM, 318–343.

Borges and Valente (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.12 14/14

https://peerj.com/computer-science/
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://www.cs.kent.edu/~jmaletic/papers/MSR07-call-usage.pdf
http://dx.doi.org/10.1145/2414782.2414783
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://www.cc.gatech.edu/~vector/papers/CrowdDoc-GIT-CS-12-05.pdf
http://dx.doi.org/10.1109/TSE.2012.63
http://dx.doi.org/10.1109/MS.2013.142
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://www-etud.iro.umontreal.ca/~benomaro/publi/cwiaupulsc.pdf
http://dx.doi.org/10.7717/peerj-cs.12

	Mining usage patterns for the Android API
	Introduction
	Materials & Methods
	APIMiner
	Mining dataset
	Mining usage patterns

	Results
	Examples and types of patterns
	Evaluation by developers
	Field study

	Discussion
	Most Android API methods are underused
	Less than 10% of the API methods called by clients have usage patterns
	In one out of three opportunities users search for usage patterns
	Threats to validity

	Related Work
	Conclusion
	References


