
Submitted 28 September 2022
Accepted 5 December 2022
Published 13 January 2023

Corresponding author
YouKang Chang,
2507576651@qq.com

Academic editor
Shadi Aljawarneh

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.1197

Copyright
2023 Chang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Enhancing the robustness of vision
transformer defense against adversarial
attacks based on squeeze-and-excitation
module
YouKang Chang, Hong Zhao and Weijie Wang
School of Computer and Communication, Lanzhou University of Technology, LanZhou, GanSu, China

ABSTRACT
Vision Transformer (ViT) models have achieved good results in computer vision tasks,
their performance has been shown to exceed that of convolutional neural networks
(CNNs). However, the robustness of the ViT model has been less studied recently.
To address this problem, we investigate the robustness of the ViT model in the face of
adversarial attacks, and enhance the robustness of themodel by introducing the ResNet-
SE module, which acts on the Attention module of the ViT model. The Attention
module not only learns edge and line information, but also can extract increasingly
complex feature information; ResNet-SEmodule highlights the important information
of each feature map and suppresses the minor information, which helps the model
to perform the extraction of key features. The experimental results show that the
accuracy of the proposed defense method is 19.812%, 17.083%, 18.802%, 21.490%,
and 18.010% against Basic Iterative Method (BIM), C&W, DeepFool, DI2FGSM, and
MDI2FGSM attacks, respectively. The defense method in this paper shows strong
robustness compared with several other models.

Subjects Artificial Intelligence, Cryptography, Security and Privacy
Keywords Adversarial attack, Defence against adversarial examples, Vision transformer, SE
module

INTRODUCTION
Convolutional neural networks (CNNs) play an important role in artificial intelligence, such
as in computer vision (CV) (Wu et al., 2022), natural language processing (NLP) (Messina
et al., 2021) and speaker recognition (SR) (Xiao et al., 2022). However, researchers have
recently pointed out that Transformer networks havemade great progress in the field ofNLP
(Lauriola, Lavelli & Aiolli, 2022) by solving the long-range text association problem using
the Attention mechanism compared to CNN networks. After that, researchers proposed
network structures such as bidirectional encoder representations from transformers (BERT)
(Kenton & Toutanova, 2019) and generative pre-training (GPT) (Radford et al., 2018) based
on Transformer networks and achieved better results. Thanks to the successful application
of Transformer in NLP,Dosovitskiy et al. (2020) proposed ViTmodel to apply Transformer
structure in CV, compared with CNN model, ViT model and its variants showed better
results in semantic segmentation (Strudel et al., 2021) medical image detection (Chen et
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al., 2022) and target detection (Alamri, Kalkan & Pugeault, 2021). With the continuous
development of artificial intelligence, Transformer structure will be applied in more fields.

However, Goodfellow, Shlens & Szegedy (2014) pointed out that CNN structures are
vulnerable to adversarial example attacks, and if small perturbations that are difficult for
the human visual system to observe are added to the input data, the network model will
output incorrect results with a high confidence rate, leading to a significant decrease in
its robustness. Then, the researchers further showed that the phenomenon of adversarial
attack not only exists in CNN models, but also ViT models are vulnerable to adversarial
example attack, since ViT models have a tendency to surpass CNN models in terms of
performance, how to safely deploy ViT models in practical applications has also become a
focus of researchers.

In order to defend against the threats posed by adversarial attacks to artificial intelligence
security applications, researchers have investigatedmultiple networkmodels for adversarial
attack defense methods, which at this stage are mainly divided into three categories: (1)
data preprocessing for adversarial examples; (2) enhancing the robustness of deep neural
networks; and (3) detecting adversarial examples. Data preprocessing methods such as
denoising (Aneja et al., 2022; Xu et al., 2022) and data compression (Chang et al., 2022;
Zhang, Yi & Sang, 2022). The advantages of these methods are faster computation and
no need to modify the network structure, the disadvantages are that denoising and data
compression can cause loss of information in the image, the neural network cannot
extract features adequately, which makes the neural network make wrong judgments.
Enhancing the robustness of deep neural networks improves the complexity of the network
by increasing the stochasticity and cognitive performance of the network model, such
as the deep compression network proposed by Gu & Rigazio (2014), defense distillation
methods (Shao et al., 2022) and bio-inspired defense methods (Nayebi & Ganguli, 2017).
Such methods require retraining the network, have high computational overhead, and
remain less effective in defending against specific attacks that are carefully designed. The
detection of adversarial examples defense method is to distinguish between adversarial
examples and clean examples, if the detection is a clean example, it is fed into the neural
network, and if the detection is an adversarial example, it is rejected to be fed into the
neural network, commonmethods are generative adversarial network (GAN) (Esmaeilpour,
Cardinal & Koerich, 2022) network based defense methods, MagNet (Meng & Chen, 2017)
and other methods. However, the training process of using GAN network as a defense
mechanism has a large overhead and its defense capability is not significantly improved if
it is not trained properly; when MagNet is used as a defense method, it has good defense
capability against black-box and gray-box attacks, but its performance is still low in the
case of white-box attacks.

In summary, the above methods effectively improve the robustness of CNN models,
but research on the robustness of ViT network structures is lacking. In order to deploy
ViT model-based applications safely in real production life, the robustness of ViT models
needs to be investigated. Based on this, this paper will explore the robustness of ViT models
in the face of adversarial attacks. Firstly, ViT model learns fewer high-frequency features,
which makes ViT more robust compared to other models; secondly, it was pointed out
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(Shao et al., 2021) that the robustness of the neural network models can be improved
when the model is composed of Transformer structures and CNN modules. Therefore,
the Squeeze-and-Excitation (SE) module is combined with the ResNet structure, the ViT
structure is introduced together to propose the ResNet-SE-ViT model.

The main work of this article is as follows:

• The introduction of the ResNet-SEmodule into theViTmodel to enhance the robustness
of the network model in the face of adversarial attacks.
• The proposed method can effectively defend against white-box and black-box attacks.
• By comparing with the ViT model and its variants, the proposed model exhibits strong
robustness.

RELATED WORK
The Transformer structure was originally proposed by Vaswani et al. (2017) and was
mainly used in NLP tasks. Compared to recurrent neural network (RNN), the Transformer
structure has achieved promising results. After that, Dosovitskiy et al. (2020) used the
Transformer structure in the CV field and proposed the ViT model. In this section, several
common ViT models and a study on the robustness of ViT models are introduced.

ViTs and variants
Compared to the CNN models ResNet and EfficientNet, the ViT model achieves excellent
performance on the large datasets ImageNet-21K and JFT-300M. The ViT model is
comprised of three main components: an Embedding layer, a Transformer Encoder block
and a Multilayer Perceptron (MLP) layer. The ViT model first splits an image into P × P
sized patches sequence, then flattened the patches sequence into 1D vector through linear
projection, inserts the [CLS] token and Position Embedding into the Transformer Encoder
block; in the Encoder block, the information of different regions learned is combined
using the multi-head self-attention (MHSA) mechanism; finally, the MLP is used for image
classification.

Yuan et al. (2021) found that ViT models cannot extract local details of images well
and generate a large number of useless features during the training process, To address
this problem, they proposed the tokens-to-token ViT (T2T-ViT) model. The patch
embedding in the ViT model is replaced using the T2T structure, which progressively
merges neighbouring tokens into a single token, extracting the local information by the
surrounding tokens. Finally, the extracted information is fed into the ViT network for image
classification. Han et al. (2021) proposed the Transformer-iN-Transformer (TNT) model.
It mainly consists of stacked TNT blocks; each TNT block includes an outer Transformer
block and an inner Transformer block. The outer Transformer block performs patch
embedding on the image, the inner Transformer block extracts local features from the
pixel embedding, then projects them into the patch embedding space through a linear
transformation, which is added to the patch embedding. Wang et al. (2021) found that if
high-resolution images are fed into ViT, it would take up high computational resources or
even lead to overflow. To this end, they proposed the Pyramid Vision Transformer (PVT)
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model, which introduces a pyramid structure into the Transformer, continuously learning
the generated multi-scale, high-resolution feature maps as the network structure deepens,
and reducing computational effort by introducing spatial-reduction attention (SRA).

Study of ViT model robustness
Due to the successful application of the ViT model and its variants in the CV field,
researchers have started to focus on its robustness. Aldahdooh, Hamidouche & Deforges
(2021) indicated that compared to the CNN model, the ViT variant can effectively defend
against Lp parametrization and color channel perturbations (CCP) adversarial attacks, if
the adversarial examples are again subjected to CCP adversarial attack, it can be remapped
back to the clean example space; meanwhile, it is pointed out that adding attention blocks
to the ViT model can effectively reduce the transferability of the CNN with the ViT
model. Mahmood, Mahmood & VanDijk (2021) investigated the robustness of the ViT
model against adversarial examples. They found that the ViT model was not secure against
white-box attacks, such as C&W and APGD, only 6% accurate even against PGD and
MIM attacks; subsequently, further research found that the adversarial examples were
non-transferable between the Transformer and CNN, and proposed an integrated defence
model that fusing the Transformer and CNN, which could not defend against white-box
attacks, but was more robust against black-box attacks and did not reduce the accuracy of
clean images. Mao et al. (2021) proposed the Robust Vision Transformer (RVT) method
to effectively defend against the effects caused by adversarial attacks. The robustness of
each module in the ViT model was also studied and analysed, they found that the model
was less robust when the Transformer block in the model had a large spatial resolution;
on the contrary, it helped to enhance the robustness of the model when the Transformer
block gradually reduced the spatial resolution; the accuracy of clean images and adversarial
examples both improvedwhen the number of heads of themulti-head attentionmechanism
was increased to 8. This is because increasing the number of heads extracts attentional
information from all aspects of the image, this complete, non-redundant attentional
information introduces more visual relationships, thus improving the robustness of the
model.

In summary, the current research on the robustness of the ViT model has shortcomings:
firstly, most of the existing research analyzes the robustness of themodules in the ViTmodel
and does not propose an effective defense method against adversarial attacks; secondly,
the proposed defense method has poor generalization capability, that is, it can only defend
a portion of the adversarial examples and cannot effectively cover both white-box and
black-box attacks.

Based on the above reasons, this paper introduces the SE module into the ViT model
and proposes the ResNet-SE-ViT model to defend against the impact of adversarial attacks.
First, the ViT model can extract global features of images and learn less high-frequency
information, which is slightly more robust than the CNN model; second, the SE module
focuses on learning local features and effectively learns detailed information of textures and
lines; finally, the proposed defense method can effectively defend against both white-box
and black-box attacks.
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RESNET-SE-VIT
The proposed network model is illustrated in Fig. 1. Convolutional operation is introduced
in the ViT model with the SE module, the model uses a multi-level hierarchy with three
stages in total. Firstly, the input image is passed through the convolutional token embedding
layer, then into the normalization layer. The advantage of this structure is that the feature
resolution of the tokens can be gradually reduced while increasing the feature dimension of
the tokens, achieving spatial downsampling and adding a rich feature representation. Figure
2 illustrates the SE Transformer module. It effectively highlights important features and
reduces the impact of unimportant features for computing Query, Key and Value values.
[CLS] classification tokens are added in the third stage. Finally, the final classifications are
predicted using the MLP head.

Convolutional token embedding
This module uses a convolution operation to extract local features from the input feature
map. For the 2D image generated in the previous stage xi−1 ∈RHi−1×Wi−1×Ci−1 , it is mapped
into a new tokens f (xi−1) using the function f (·), which is sent as input to the next stage i.
Where f (·) is a 2D convolution operation with convolution kernel size s × s, step size s-o
and p is the size of the padding. Hence, the height and width of token f (xi−1)∈RHi×Wi×Ci

are calculated as shown in Eq. (1):

Hi=

⌊
Hi−1+2p− s

s−o
+1
⌋
,Wi=

⌊
Wi−1+2p− s

s−o
+1
⌋

(1)

Then, f (xi−1) is flattened to a shape of size Hi Wi × Ci and fed into the subsequent
transformer blocks at stage i.

Convolutional token embedding adjusts the feature dimension of the tokens and the
number of tokens at each stage by means of convolutional operation. In this way, the length
of the tokens sequence is gradually reduced at each stage while the feature dimension is
increased. This gives tokens the ability to learn increasingly complex feature information
on an increasingly large spatial scale.

ResNet-SE-ViT
The CNN model achieves feature extraction by fusing the spatial and channel information
of the image, with different convolutional kernels finding spatial features in each input
channel. However, the CNN model cannot effectively highlight the important features
when extracting features, as the network models have equal weights for each channel. To
address this problem, the SE model is introduced in the attention mechanism.

The SE module adaptively weights each channel by adding a content-aware mechanism
that compresses the feature maps to a single value so that the network model can adaptively
adjust the weight of each feature map to obtain a global understanding of each channel.
It has the simplicity and effectiveness to improve channel interdependencies at a small
additional computational cost.The operational flow of the SE module is shown in Fig. 3.

The SEmodule consists of three components: Squeeze, Excitation and Scale. For an input
feature map X with size W ′×H ′×C ′, the feature map U is obtained by the convolution
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Figure 1 Overall architecture of the proposed SE-ViTmodel.
Full-size DOI: 10.7717/peerjcs.1197/fig-1
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Figure 2 SE-Transformer block.
Full-size DOI: 10.7717/peerjcs.1197/fig-2

operation Ftr(·,θ) with size W ×H×CThe formula for Ftr is shown in Eq. (2).

uc = vc ∗X =
C ′∑
s=1

v sc ∗X
s (2)
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Figure 3 SEmodule structure.
Full-size DOI: 10.7717/peerjcs.1197/fig-3

where vc denotes the c-th convolution kernel and Xs denotes the s-th input. Then after the
SE module, weights are added to each channel of the feature map U to highlight important
features to suppress redundant features.

Squeeze: For a feature map U of size W ×H ×C , a global average pooling is used to
perform the squeeze operation on it, resulting in the output of a vector of size 1×1×C ,
calculated as shown in Eq. (3).

zc = Fsq(Uc)=
1

H×W

H∑
i=1

W∑
j=1

uc(i,j). (3)

After the Squeeze operation, each feature map can be effectively associated with other
feature maps, increasing the global receptive field and extracting richer features, thus
improving the accuracy of classification and recognition.

Excitation: To take advantage of the global information in the Squeeze operation, the
Excitation operation captures the dependencies between each channel. Excitation consists
of two fully connected layers with two activation functions, z is first multiplied by the first
fully connected layer W 1, where the dimension of z becomes 1×1× C

r . Then it passes
through the ReLU activation function, which learns the nonlinear relationships of each
channel. Then it passes through the second fully connected layerW 2, where the dimension
of z becomes 1×1×C , is then passed through the sigmoid activation function to output
the results. The formula is shown in Eq. (4):

s= Fex(z,W )= σ (g (z,W ))= σ (W2δ(W1z)) (4)

where W1 ∈R
C
r ×C , δ is the ReLU activation function, W2 ∈RC× C

r and σ is the sigmoid
activation function.

Scale: Using the weights learned by Excitation to scale U, the weights of each channel
are multiplied with the matrix of the corresponding channel of U respectively, and finally
the feature map with the weight information is obtained. The calculation formula is shown
in Eq. (5):

X̃C = Fscale(uc ,sc)= sc ·uc . (5)

The SE module highlights feature maps with large weight values and ignores those with
invalid or small weight values. At the same time, the inclusion of the SE module inevitably
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increases the number of parameters and computations, but these effects are acceptable in
terms of improving performance.

SE-ViT: Fig. 2 illustrates the process of capturing global features by the SE module.
Tokens are first reshaped as a 2D token map and next the Q, K and V values are calculated
separately using the SE module, as shown in Eq. (6). Finally, the projected tokens are
flattened as 1D vectors and fed as tokens into the next stage.

xq/k/vi = Flatten(SE(Reshape2D(xi))). (6)

where xq/k/vi is the Q/K/V matrix of the input token at layer i and xi is the token that has
not been extracted with features by the SE module.

Position embedding
Position embedding is the key to learning semantic feature information of an image, which
is robust to detailed texture variations of the image. However, Mao et al. (2021) pointed
out that existing position embedding methods did not have much impact on the robustness
of deep neural networks. By comparing four methods, namely learned absolute, sin-cos
absolute, learned relative (Shaw, Uszkoreit & Vaswani, 2018) and input-conditioned (Chu
et al., 2021), they found that the position embedding mechanism did not have a significant
impact on improving the robustness of deep neural networks, in a few cases even decrease
the robustness.

In this paper, the SE module is introduced for each Transformer block, which, in
combination with convolutional token embedding, allows the network model to efficiently
establish spatial relationships. Therefore, not adding position embedding to the neural
network model does not reduce the robustness of the model, simplifying the design of the
network model for vision tasks with different input resolutions.

EXPERIMENTAL DESIGN AND ANALYSIS OF RESULTS
Experimental platform
The experimental platform for this study is based on ubuntu 18.04, with 128G of
experimental running memory. Hardware equipment using a graphics card NVIDIA
Tesla V100 GPU with 32G of video memory. The experimental environment uses the
PyTorch deep learning framework that supports GPU accelerated computing, the cuda
environment is configured with NVIDIA CUDA 11.3 and cuDNN V8.2.1 deep learning
acceleration library.

Dataset setup
This experiment uses the mini-ImageNet (Vinyals et al., 2016) dataset to verify the
effectiveness of the model. mini-ImageNet contains a total of 100 categories, with 64
categories in the training set, 16 categories in the validation set, 20 categories in the test set,
each containing 600 images, for a total of 60,000 data samples of size 84× 84. During the
experiments, the data are first preprocessed, the samples are upsampling to 299× 299 pixel
size, then the adversarial examples are generated using the white-box adversarial attack
methods BIM, C&W, DeepFool, DI2FGSM, MDI2FGSM, the black-box adversarial attack
methods P-RGF, RGF (Cheng et al., 2019) and Parsimonious (Moon, An & Song, 2019).
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Table 1 Training parameter settings.

Parameters Values

Learning rate 0.02
Epoch 150
Weight decay 0.05
Batch size 64
Momentum 0.9
Learning rate decay 0.1

Parameter setting
The parameters of the model were optimised during training using the AdamW (Loshchilov
& Hutter, 2017) optimiser, with a learning rate set to α= 0.02, momentum set to 0.9 and
a weight decay value of 0.05; the parameters were updated using the softmax loss function
with a learning decay rate of 0.1. The parameter settings are shown in Table 1.

Analysis of experimental results
Comparison with different network structures
The robustness of the proposed defense method against adversarial attacks is investigated
and compared with different Transformer network structures such as TNTmodel, Pyramid
TNT model, T2T model and DeiT model to test their accuracy against different adversarial
attacks. The experimental results are shown in Table 2.

Table 2 shows the comparison between different Transformer network models and the
ResNet-SE-ViT model. It can be seen that the accuracy of the proposed defense method
can reach 18.985% in the face of MDI2FGSM attack with strong attack performance,
while TNT-B is only 13.596%. The proposed defense method has high accuracy in the
face of the adversarial attack and shows strong robustness, which is due to the fact that
the proposed network model focuses on the content of the adversarial example, learning
detailed features such as textures and lines in images, while extracting global features of
the adversarial example.

As can be seen from Fig. 4, the addition of the ResNet-SE module reinforces the feature
information among channels and suppresses the secondary information, which helps the
model to extract key features and further enhances the robustness of the network model.

Compared with ResNet-SE-ViT-13, the other four methods cannot effectively capture
the key features in the face of adversarial examples, such that the model misclassifies
them; whereas the proposed defense method focuses on the core regions of the adversarial
examples and extracts the key features. Therefore the robustness is stronger than the other
models.

By comparing the four different structures in the ResNet-SE-ViT model, it is found that
ResNet-SE-ViT-13 exhibits lower robustness compared to the other three structures. As
the network model structure deepens, the robustness also increases, it is experimentally
concluded that the resolution of the adversarial examples also affects the robustness of the
network model, the adversarial examples with a resolution of 384×384 exhibits an overall
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Table 2 Comparison of different Transformer network structures.

Method type BIM C&W DeepFool DI2FGSM MDI2FGSM

TNT-S 10.055 11.066 12.112 11.245 12.464
TNT-B 11.060 13.562 11.083 11.914 13.596
PyramidTNT-Ti 13.119 11.562 11.256 8.152 9.826
PyramidTNT-S 14.551 12.179 11.943 10.654 10.288
PyramidTNT-M 14.710 11.129 12.839 13.868 12.568
PyramidTNT-B 15.146 12.156 13.303 12.685 12.260
T2T-ViT-14 10.737 8.973 8.084 8.536 8.701
T2T-ViT-19 12.685 10.195 9.187 9.344 9.312
T2T-ViT-24 13.192 10.219 10.167 10.893 10.161
DeiT-tiny 11.896 9.383 10.108 8.067 9.908
DeiT-small 12.596 10.242 11.975 9.983 10.967

Transformer

DeiT-base 13.781 11.325 10.458 10.867 9.042
13.684 16.260 18.490 21.146 16.100
15.188 19.156 23.825 19.784 18.985
19.812 17.083 18.802 21.490 18.010

ResNet-SE-ViT

ResNet-SE-ViT-13
ResNet-SE-ViT-13384
ResNet-SE-ViT-21
ResNet-SE-ViT-21384 18.586 17.892 19.156 18.760 19.177

Original TNT-S PyramidTNT-S

T2T-ViT-14 Deit-tiny ResNet-SE-ViT-13

Figure 4 Comparison of different Transformer structures with ResNet-SE-ViT.
Full-size DOI: 10.7717/peerjcs.1197/fig-4
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Table 3 Performance of ResNet-SE-ViT and CvT in defending against white-box attacks.

ResNet-SE-ViT21 CvT21

BIM 19.812 17.958
C&W 17.083 15.785
DeepFool 18.802 17.208
DI2FGSM 21.490 16.833
MDI2FGSM 18.010 16.532

better robustness than 224×224. Therefore, in the subsequent experiments, SE-ViT-21384
will be selected for comparison.

Comparison with CvT
The proposed defense method is an improvement of the convolutional vision Transformer
(CvT) (Wu et al., 2021)method. TheCvTmodel uses convolutional operations formapping
in the Transformer block. To verify the effectiveness of the ResNet-SE module, two model
structures ResNet-SE-ViT and CvT are compared separately in terms of robustness in the
face of white-box attacks. The experimental results are shown in Table 3.

As can be seen from Table 3, the accuracy of the proposed network structure ResNet-
SE-ViT is higher than that of the CvT model in the face of adversarial examples, the
accuracy of the proposed defense method is 21.490% in the face of DI2FGSM, while CvT21

is only 16.833%, which indicates that compared to using convolutional operations in the
Transformer block, the ResNet-SE module can effectively highlight the important features
of each channel and suppress the useless features, which helps the model to extract key
features and enhance the robustness of the network model.

In order to further verify the robustness of the proposed method, the robustness
of ResNet-SE-ViT and CvT in the face of black-box attacks are compared separately,
experiments are conducted using three black-box attack methods, Parsimonious, P-RGF
and RGF, respectively. The experimental results are shown in Table 4, it can be seen that
the accuracy of the proposed defense methods are all higher than that of the CvT model.
In addition, Fig. 5 shows the difference between ResNet-SE-ViT and CvT in the face of the
black box attack P-RGF.

As can be seen from Table 4, the ResNet-SE-ViT model outperforms the CvT model in
defending against the three black-box attacks, improving the accuracy of the adversarial
examples by 4.534%, 3.914%, and 3.55%, respectively. Compared with CvT, Fig. 5 shows
more intuitively that ResNet-SE-ViT focuses on key regions when extracting image features,
focuses on the understanding of image contentwhile paying attention to global information,
further verifying that using the ResNet-SE module to replace the convolutional mapping
in the CvT model can effectively enhance the robustness of the network model.
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Table 4 Performance of ResNet -SE-ViT and CvT in defending against black box attacks.

ResNet-SE-ViT CvT21

Parsimonious 18.830 14.296
P-RGF 18.490 14.576
RGF 16.920 13.370

P-RGF

a

CvT21

ResNet-SE-ViT

b

a b

Figure 5 Differences between ResNet-SE-ViT and CvT when extracting features.
Full-size DOI: 10.7717/peerjcs.1197/fig-5

The role of the SE module
The SE module can effectively highlight the important features and reduce or suppress the
unimportant ones. To verify the effectiveness of the SE module in the face of adversarial
attacks, two different models of ResNet-ViT and ResNet-SE-ViT were experimented using
a white-box attack approach. The experimental results are shown in Table 5.

FromTable 5, it can be concluded that comparedwith the ResNet-ViT network structure,
the ResNet-SE-ViT structure shows higher accuracy in the five adversarial attack methods,
for example, in the DI2FGSM attack method, the accuracy of ResNet-SE-ViT is 2.120%
higher than that of ResNet-ViT, which indicates that the SEmodule plays an important role,
which can effectively highlight the key features of the adversarial example, suppressing the
perturbations in the adversarial example and mitigate the impact of the perturbations on
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Table 5 Performance of ResNet-SE-ViT and ResNet-ViT in the face of white-box attacks.

ResNet-SE-ViT ResNet-ViT

BIM 19.812 18.080
C&W 17.083 15.890
DeepFool 18.802 14.260
DI2FGSM 21.490 19.370
MDI2FGSM 18.010 19.630

MDI2FGSM ResNet-SE-ViT ResNet-ViT

Figure 6 Differences in feature extraction between ResNet-SE-ViT and ResNet-ViT.
Full-size DOI: 10.7717/peerjcs.1197/fig-6

Table 6 Performance of ResNet-SE-ViT and ResNet-ViT in the face of black-box attacks.

ResNet-SE-ViT ResNet-ViT

Parsimonious 18.830 14.480
P-RGF 18.490 14.020
RGF 16.920 15.040

the network structure as a way to enhance the robustness of the network structure; however,
in the face of MDI2FGSM attack method, the defense performance of ResNet-SE-ViT is
slightly lower than that of ResNet-ViT. By comparing the two models for analysis in Fig. 6,
it is found that compared to ResNet-ViT, ResNet-SE-ViT does not extract the key feature
regions of the image in the face of MDI2FGSM attack method, ResNet-SE-ViT does not
focus on the key features in extracting the features, which leads tomaking wrong judgments
in the final classification, so the performance is lower than that of ResNet-ViT.

To further verify the effectiveness of the SE module, experiments are conducted on
ResNet-SE-ViT andResNet-ViT using different black-box attackmethods, the experimental
results are shown in Table 6.

From Table 6, it can be concluded that the accuracy of ResNet-SE-ViT model is 1.880%
higher than that of ResNet-ViT in the face of RGF adversarial attack algorithm, the accuracy
of ResNet-SE-ViT is 4.350% and 4.470% higher than the ResNet-ViT model in the face
of Parsimonious and P-RGF black box attacks, respectively, showing strong robustness,
which further illustrates that adding SE module to the network structure can effectively
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Figure 7 Visualization of two different defense methods.
Full-size DOI: 10.7717/peerjcs.1197/fig-7

defend against both white-box and black-box attacks and improve the robustness of the
network model.

To visualize the effect of the SE module in the defense method, the two defense methods
are visualized by comparing the differences in feature extraction between the ResNet-SE-
ViT and ResNet-ViT models, the results are shown in Fig. 7, where SE viewable represents
the result after the SE module, x represents the input data of the ResNet network, BN
viewable represents the result after the batch normalization layer, output indicates the
result after the activation function ReLU.

Figure 7A shows the viewable view of features extracted by the ResNet-SE-ViT defense
method, Fig. 7B shows the viewable view of the ResNet-ViT defense method. Comparing
the results of the two models in the viewable view reveals that the SE module can effectively
highlight the content information of the image, focusing on the image feature regions and
less on the high frequency information of the image. It indicates that the addition of the SE
module will help the model defend against the impact of adversarial attacks and improve
the robustness of the model itself.

Ablation experiments
In order to study the rationality of the proposed defense method, different ablation
experiments are designed. First, the role of cls_token in different stages is investigated;
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Table 7 Performance of cls_token in different locations.

Stage 1 Stage 2 Stage 3 Rob.Acc

a X 16.530
b X 20.010
c X 21.490
d 20.820

then, the effect of different number of transformer blocks in different stages on the
robustness of the neural network is studied; finally, the effect of position embedding in
different positions is analyzed.

CLS_Token: ResNet-SE-ViT model adds cls_token in the third stage, to investigate
the effect of cls_token on the robustness of the network structure at different stages, it is
validated on the dataset DI2FGSM, the experimental results are shown in Table 7, where d
indicates that cls_token is not used in the network model.

From Table 7, it can be seen that adding CLS_Token in the third stage can effectively
improve the robustness of the network model compared to a and b adding CLS_Token in
the first and second stages, the accuracy can reach 21.490%, there is also an improvement in
robustness compared to d not using CLS_Token, indicating the rationality of the proposed
defense method. The reason for this result is that if the CLS_Token is used too early in the
first and second stages, the token will follow the subsequent network model for training,
integrating visual features at different locations, but these features contain perturbations
that have been added, which will eventually affect the robustness of the neural network.

Transformer Blocks: To research the effect of the number of Transformer blocks on the
robustness of the ResNet-SE-ViT model at different stages, different numbers of blocks are
set at each stage and the total number of Transformer blocks is kept as 21, the experimental
results are shown in Table 8, where Mem denotes memory consumption.

From Table 8, it can be concluded that setting different numbers of Transformer blocks
at different stages makes a difference in the robustness of the neural network. For example,
compared to methods b and c, when the number of Transformer blocks in method a is set
to 16, the network model shows a better robustness accuracy of 21.490%, but with a larger
memory consumption of 115.4 M. By comparing the a, b, c and d methods, it is found
that the robustness of the model is improved when the third stage of the model contains
more Transformer blocks with large spatial resolution; on the contrary, the robustness
and memory consumption of the model decrease when the number of Transformer
blocks is gradually reduced. The a method is chosen as the superior method under the
comprehensive consideration of the model robustness performance.

Similarly, to better demonstrate the differences in the number of Transformer blocks in
extracting features at different stages, the results of different layers are visualized as shown
in Fig. 8. Figures 8A, 8B, 8C, 8D, represent the visualizable views of the different layers in
the three stages, respectively. As in Fig. 8A, SE denotes the visualization result after the SE
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Table 8 Effect of the number of transformer blocks on robustness at different stages.

[S1,S2,S3] Mem Rob.Acc

a [1,4,16] 115.4M 21.490
b [1,16,4] 55.1M 20.594
c [16,1,4] 32.7M 17.510
d [5,16,0] 29.0M 14.560

a:[1,4,16] b:[1,16,4]

c:[16,1,4] d:[5,16,0]

SE ResNet+SE Output SE ResNet+SE Output

SE ResNet+SE Output SE ResNet+SE Output

Figure 8 Transformer blocks at different stages.
Full-size DOI: 10.7717/peerjcs.1197/fig-8

module, x+SE denotes the output result of the SE module summed with the input data of
the ResNet network, and Output is the result after the activation function ReLU.

Figure 8A shows that when stage S3 has more Transformer blocks, ResNet-SE-ViT can
focus on the content information when extracting features; From Figs. 8B and 8C, it can
be seen that when stages S1 and S2 have more Transformer blocks, the network model
does not focus on the content information of the images, and will add noise and other
unimportant information when extracting features, which is not conducive to improving
the robustness of the network model; Fig. 8D indicates that Transformer blocks are not set
in stage S3, the content information exhibited by the images is not obvious, resulting in
the network model not being able to fully extract the image information, so that the model
has poor robustness. Therefore, with the consideration of model robustness performance,
method a is chosen as the better method in this work.

Position Embedding: The position embedding encodes the position of each token,
which is crucial for learning shape-based semantic features and is robust to texture
changes. To research the effect of position embedding on the ResNet-SE-ViT model,
position embedding is added at different stages. The experimental results are shown in
Table 9, where d indicates that position embedding is not used in the model.

By comparing the three methods a, b and c, it is found that the different stages of
position embedding do not have much effect on the robustness of the network model
with the accuracy of 18.680%, 19.730% and 18.310%, respectively, while the accuracy
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Table 9 Effect of position embedding onmodel robustness.

Stage 1 Stage 2 Stage 3 Rob.Acc

a X 18.680
b X 19.730
c X 18.310
d 21.490

of method d increases after removing the position embedding, which indicates that the
position embedding is easy to change with the change of the input, if the appropriate
position embedding method is not chosen, it will cause the robustness of the network
model to become worse. Therefore, the proposed defense method in this paper does not
use position embedding, uses SE module and convolutional token embedding to make the
model establish the position relationship between image blocks.

CONCLUSION
In this work, an effective defense method ResNet-SE-ViT is proposed by introducing
ResNet structure and SE module. Firstly, the ViT model is slightly more robust than
the CNN model; secondly, the ViT model can effectively extract the global information
of features and capture the global similarity of features, while the SE module focuses
on the detailed information of images such as textures and lines, highlighting the key
information of feature maps and suppressing the secondary information. The introduction
of convolution operation in ViT helps the model to extract increasingly complex feature
information. The results show that the proposed defense method can effectively defend
against both white-box and black-box attacks with strong robustness.

In the adversarial example defense task, we propose an effective defense method that is
more accurate than other ViT models, but still less accurate compared to CNN models.
Therefore, in future work, the robustness of ViT models can be further improved by
drawing on the adversarial training method.
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