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ABSTRACT
Image super-resolution (SR) significantly improves the quality of low-resolution
images, and is widely used for image reconstruction in various fields. Although
the existing SR methods have achieved distinguished results in objective metrics,
most methods focus on real-world images and employ large and complex network
structures, which are inefficient for medical diagnosis scenarios. To address the
aforementioned issues, the distinction between pathology images and real-world images
was investigated, and an SR Network with a wider and deeper attention module called
Channel Attention Retention is proposed to obtain SR images with enhanced high-
frequency features. This network captures contextual information within and across
blocks via residual skips and balances the performance and efficiency by controlling
the number of blocks. Meanwhile, a new linear loss was introduced to optimize the
network. To evaluate the work and compare multiple SR works, a benchmark dataset
bcSR was created, which forces a model training on wider and more critical regions.
The results show that the proposed model outperforms state-of-the-art methods in
both performance and efficiency, and the newly created dataset significantly improves
the reconstruction quality of all compared models. Moreover, image classification
experiments demonstrate that the suggested network improves the performance of
downstream tasks in medical diagnosis scenarios. The proposed network and dataset
provide effective priors for the SR task of pathology images, which significantly
improves the diagnosis of relevant medical staff. The source code and the dataset are
available on https://github.com/MoyangSensei/CARN-Pytorch.

Subjects Bioinformatics, Computer Vision, Neural Networks
Keywords Breast cancer, Pathology images, Super-resolution, Residual network, Channel
attention

INTRODUCTION
The single image super-resolution (SISR) (Wang, Chen & Hoi, 2020) is a task that uses
low-level features to reconstruct a high-resolution (HR) image from a low-resolution (LR)
one. It has been widely used in surveillance equipment, satellite remote sensing, medical
imaging, and other fields (Farooq et al., 2020; Li et al., 2020; Chen et al., 2020; Zhang et al.,
2018a; Falahkheirkhah et al., 2019). Since each input image usually corresponds to multiple
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reasonable output images in the SISR tasks, the tasks are defined as a typical ill-posed
inverse problem (Yoo, Lee & Kwak, 2018). In this context, traditional SISR methods (Kim,
Bose & Valenzuela, 1990; El-Khamy et al., 2005; Li & Orchard, 2001; Irani & Peleg, 1991;
Hardie, Barnard & Armstrong, 1997) have focused on using a large amount of image prior
information, and have made key achievements. In the past 20 years, as convolutional neural
networks (CNNs) have been developed rapidly and achieved great success in computer
vision, a large number of CNN-based models have also emerged in SISR. These models
generate LR images by applying a degradation model (such as bicubic down-sampling)
according to existing HR images to form HR-LR pairs and subsequently concentrate on
developing and training models to generate high-quality HR images.

The majority of deep learning-based SISR models were initially designed for real-world
images. As a pioneer work, Dong, Loy & Tang (2016) proposed a SISR model SRCNN, that
only used three convolutional layers to build a sparse coding-based convolutional network,
ushering in the SISR deep learning era. Ledig et al. (2017) proposed SRGAN, which was
the first use of Generative Adversarial Networks (GAN) to address the SISR problem,
emphasizing the importance of subjective metrics in the evaluation of a SISR model. After
the self-residual structure (He et al., 2016) was suggested and widely used in various deep
learning models, Lim et al. (2017) proposed EDSR/MDSR models, which extended the
residual structure in SRResNet (Ledig et al., 2017) for SISR tasks. Afterwards, Zhang et al.
(2018b) suggested the model RCAN , which adopted an attention mechanism to select
different feature channels. Based on the residual network, Zhang et al. (2018c) introduced
a dense network RDN to further improve the performance of SISR on real-world images.

Furthermore, with the widespread interest in medical digital diagnostics, SISR models
have been developed and used in processing medical images. Srivastav, Gangi & Padoy
(2019) integrated 2D human pose estimation into the super-resolution (SR) Network
to address the privacy concerns of cameras installed in operating rooms. Zhao et al.
(2019) proposed a model named CSN for HR Magnetic Resonance Imaging (MRI)
images. Qiao et al. (2021) constructed a dataset BioSR and trained a network named
DFCAN/DFGAN for scientific microscope images. They used the SSIM loss as a
part of the optimization strategy and pointed out the role of SSIM in medical image
reconstruction. Li et al. (2019) suggested a two-stage SR network for HR reconstruction
of arterial spin-labeled perfusion MRI images. Chen et al. (2020) proposed SWD-Net
to SR histopathology images using the wavelet transform. They used two interpolation
algorithms as degenerate kernels: bicubic and nearest neighbor. Using bicubic enables
SWD-Net to exhibit better performance. Mukherjee et al. (2019) reconstructed HR images
from intermediate-resolution images at multiple levels in whole slide imaging (WSI).
Based on SRGAN, Shahidi (2021) suggested the Wide Attention SRGAN (WA-SRGAN)
and applied improved Wasserstein with gradient penalty to stabilize the model during
training.

Although existing SR methods have achieved significant results on objective metrics
such as Peak Signal to Noise Ratio (PSNR) (Hore & Ziou, 2010) and Structural Similarity
(SSIM) (Hore & Ziou, 2010; Wang et al., 2004), they relied on large and complex network
structures to improve network performance in terms of their depth or width. Taking
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RCAN (Zhang et al., 2018b) as an example, its baseline network uses 10 residual modules,
each of which contains 20 residual blocks based on channel attention, and even the overall
convolutional layer depth exceeds 1,000 layers. In medical diagnosis scenarios, large-scale
SR Networks inevitably make the prediction results extremely smooth and blur the edges
of a generated HR image for reaching distinguished objective metrics (Wang, Chen & Hoi,
2020), resulting in the loss of major image details and disturbing the decision-making of
diagnosticians or diagnostic algorithms. Simultaneously, a deeper network generates more
computation costs, which is not allowed in medical diagnosis scenarios with extremely
tight timelines. Multiple SISR models in other fields failed to achieve a satisfactory
balance between efficiency and performance when applied to medical diagnosis due to this
contradiction. Furthermore, since the high and low-frequency information distribution
of pathology images differs greatly from real-world images, SR Networks or pre-trained
models—which are not designed for pathology images—are not able to achieve the best
performance results for pathology images in SR tasks, obviously. Besides, the majority of
the existing SR Networks were built on a single backbone structure with no skips (Wang,
Chen & Hoi, 2020), making it difficult to capture multi-scale contextual information.

Recently, residual structures have been used in an increasing number of image
reconstruction tasks. A large body of works has demonstrated the superior performance
of residual structures in SISR tasks (Ledig et al., 2017; Lim et al., 2017; Zhang et al., 2018b;
Zhang et al., 2018c;Kim, Lee & Lee, 2016;Dai et al., 2019). Comparedwith other structures,
residual connections in a network are easier to learn and optimize, making the optimization
of an extremely deep SR Network possible. Furthermore, the Channel Attention (CA)
mechanism enables a network to identify target areas while scanning a global image and
subsequently invest additional computing resources in these target areas to suppress
redundant information. This mechanism has been adopted and proved to be useful in
multiple SISR models (Zhang et al., 2018b; Mei et al., 2020; Dai et al., 2019).

To balance the efficiency and accuracy of a SISR model for medical pathology images,
this study proposes a deep residual structure-based module called the Channel Attention
RetentionBlock (CARB),which extracts asmuch feature information as possible in a limited
block depth through multiple convolutions with wider and deeper attention channels.
Afterwards, a small number of CARBs is used to form the Channel Attention Retention
Network (CARN), in which inter-block residuals, as well as intra-block residuals, are used
to compensate for the performance reduction caused by the decreasing network depth.
To fully utilize the ability of the attention mechanism in the CARN network, a combined
loss function with MSE loss, L1 loss, and SSIM loss is specifically designed (Wang et al.,
2004). To force this network to pay further attention to wider and more critical regions in
a pathology image, a new dataset named bcSR is created by collecting and filtering breast
cancer tissue lymphatic slice images from the public dataset CAMELYON (Litjens et al.,
2018).

The contributions of this study are summarized as follows: (1) A benchmark dataset
bcSR is constructed; it contains 1,200 images with a large pixel-mean difference of RGB
channels. The dataset makes SR models focus on a wider range of regions. Moreover, it
does not only provide reliable data for SR tasks of breast cancer pathology images but is
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also used as input for general regression tasks, such as cancer region detection. (2) An SR
Network CARN is developed based on residual structures and the attention mechanism
to balance its efficiency and accuracy on the SISR tasks for pathology images. According
to the nature of pathology images and the task orientation of the network, a combined
loss function is designed based on the MSE loss, L1 loss, and SSIM loss to improve the
overall performance of the network. The superior performance and efficiency of CARN
are demonstrated by multiple contrast experiments.

RELATED WORK
Asmentioned in the previous section, Ledig et al. (2017) used residual structures in SRGAN
for the first time and built the SRResNet as their network’s generator. The SRResNet enables
the network to support the inpainting of higher frequency image details, compensating
the decrease in objective metrics caused by SRGAN’s perceptual loss. They pointed
out that residual connections effectively ensure gradient information propagation in
deep networks and enhance the robustness of GANs. Kim, Lee & Lee (2016) introduced
residual networks to train deeper SR Network structures and achieved an outstanding
performance. They specifically mentioned that skip connections could reduce the burden
of carrying identity information in an SR Network. In this content, nested skip connections
significantly reduce the computational load of the corresponding network, allowing
its quick convergence. Inspired by the SRGAN, Lim et al. (2017) constructed EDSR by
removing some unnecessary modules in the residual structure, such as BN layers. The
residual structure is usually used on high-level vision tasks. Thus, they proposed that when
the residual structure is used on low-level tasks, such as SR, deep learning networks do not
need a big number of network layers to achieve the expected results. However, the EDSR
still has a large number of parameters compared to the contemporaneous research work.

In fact, directly stacking residual modules similar to EDSR has limited contribution for
improving objective metrics. This is due to the fact that stacking modules do not utilize
the features in a deeper network in a better way, even though the increase in network
depth may improve the network’s data mining capabilities. Zhang et al. (2018b) adopted
the Residual in Residual (RIR) structure in RCAN, so that the network would not lose
a lot of its ability to represent features as it grows deeper. Dai et al. (2019) suggested a
Second-Order Attention Network (SAN) with a Share-Source Residual Group (SSRG)
core structure to capture long-range spatial context information. The SSRG added the LR
features of the top layer in the network to the input of each basic residual group. This
connection could effectively transfer the rich low-frequency information in LR images to
the network’s depth.

It is known that the CA mechanism has been widely used in deep neural networks in
recent years, greatly improving the performance of corresponding networks in various
tasks. Hu, Shen & Sun (2018) claimed that the output of a convolutional layer does not
consider the dependence of each channel, and the CA allows a network to selectively
enhance feature channels with large amounts of information. Zhang et al. (2018b) firstly
employed the CAmechanism in SISR tasks. They assumed that the featuremaps of different
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channels in the network contributed differently to the reconstruction of high-frequency
information in an image, and the difference between channels was necessarily increased
so that the network could make full use of the enhanced channels while suppressing other
ones. Dai et al. (2019) added a Second-Order Channel Attention module (SOCA) to the
end of their base module besides a regular CA module in the whole model SAN, which
used covariance normalization to explore the attention of second-order feature statistics.
They believed that this module was able to explore the intrinsic correlation of features in a
more effective way, thereby improving the expressive ability of CNNs.

Furthermore, this study focuses on the role of the CA mechanism for SR reconstruction
of pathology images. The existing CA-based SRwork ignores the information loss caused by
CA, while acknowledging the significant contribution of CA to feature map reconstruction.
This is because these models have a limited receptive field. Specifically, when there is a
small amount of input information, the weight assigned by the attention mechanism is
closer to the average value, causing features to be lost or fewer features to be caught. Hence,
drawing diagnostic conclusions based on the status of a single cell in a medical diagnosis
scenario is typically difficult because multiple regions of an image are usually correlated
and the similarity of adjacent cell tissues is extremely high. One solution is non-local
attention (Wang et al., 2018), which can adequately achieve the long-distance dependence
between pixels. Mei et al. (2020) argued that cross-scale block similarity exists widely in
natural images and proposed the Cross-Scale Non-Local (CS-NL) Attention module to
compute pixel-to-block and block-to-block similarity within an image. However, this
makes the calculation amount - of the network - increase rapidly. This study intends to
design a new model to significantly reduce the information loss induced by the CA while
retaining the CA’s performance improvement.

METHOD
Overall structure
The overall architecture of the proposed model CARN is shown in Fig. 1. It was mainly
constructed using a limited number of Channel Attention Retention Blocks (CARBs).

First, for each HR image IHR, the corresponding LR image was generated ILR using
the bicubic algorithm. Most SISR works choose Bicubic as the main degeneration kernel
(Lim et al., 2017; Zhang et al., 2018b; Zhang et al., 2018c), and Bicubic is closer to the true
degeneration of histopathological digital images (Chen et al., 2020). Subsequently, these
images were segmented into fixed-size patches as the inputs of CARN. Considering that
pathology images from a whole slide image (WSI) have various image styles, such as
converted RGB images differentiated from the color structure caused by the staining of
physical sections and scanningmachines, the network has begun by normalizing the images
by channels. Specifically, for an image In with size of H×W in the dataset I containing N
images, the normalization result I normn is obtained in Eq. (1):

I normn =

H∑
i=1

W∑
j=1

[
IRn(i,j)− I

Rmean
N ,IGn(i,j)− I

Gmean
N ,IBn(i,j)− I

Bmean
N

]
(1)
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Figure 1 The overall architecture of CARN. To overcome the challenge of training different multiples
of SR networks on breast cancer pathology images, a basic network module is proposed based on resid-
ual connections, namely the Channel Attention Retention Block (CARB). Its end contains an attention
submodule with wider internal channels and the capability of lingering attentional information, called CA
Retention, which is able to handle inputs with arbitrary aspect ratios and resolutions. A fixed number of
CARBs is used for concatenation to construct the CARN. Progressively upscaled convolutional layers and
sub-pixel shuffling layers are employed to generate results for multiple up-sampling tasks.

Full-size DOI: 10.7717/peerjcs.1196/fig-1

where
[
IRn(i,j),I

G
n(i,j),I

B
n(i,j)

]
are the R, G, and B value of image In at position (i, j), and[

IRmean
N ,IGmean

N ,IBmean
N

]
is the mean value of RGB channel of dataset I .

Subsequently, the data went through several CARBs, where a long-skip connection
with a residual structure was included, inspired by Zhang et al. (2018b). It is found that
simply stacking CARBs does not enable the network to perform better. The purpose of
the long jump is to send the unconvolved low-level features in the image to the bottom
of the network, supplementing the low-frequency information ignored by the multi-layer
residual inside a CARB. At the end of the network, to generate IHR with the required scale,
the sub-pixel shuffle layer (Shi et al., 2016) is used to amplify the features. For the SR tasks
of 2×, 4×, and 8×, we specify the magnification of the sub-pixel shuffle layer as 2 and
build the upsampling module using 1, 2, or 3 groups of such layers, respectively. For the
3× SR task, the number of features in multiple channels firstly increases to 9 times, and
then the features pass through 1 group of sub-pixel shuffle layers with magnification of 3.

Channel Attention Retention Block (CARB)
Previous CNN-based SR methods treated all feature channels as equal, which is not in line
with reality. Each filter in a convolutional layer has a local receptive field of the same size,
and its output does not contain any contextual information, as shown in Fig. 2A. Thus,
Zhang et al. (2018b) used the CA mechanism to resolve this contradiction, as shown in
Fig. 2B. The existing CA methods usually assign different weights to each feature channel,
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Figure 2 Different channel attentionmechanisms. (A) Networks without attention usually use a single
feature width throughout the training process. (B) A narrow down-sampling convolutional layer was used
to extract channel features. (C) A wider down-sampling convolutional layer for the CA retention was em-
ployed with the same channel width to extract further features after down-sampling.

Full-size DOI: 10.7717/peerjcs.1196/fig-2

while focusing on how to build a CA block using the spatial distribution of breast cancer
pathology images. It is observed that high-frequency information in ILR derive from the
palisade or honeycomb arrangement of human organs for pathology images. Therefore,
pathology images contain richer high-frequency information and more evenly distributed
low-frequency information than real-world images. Pathology images in RGB format
converted from a digital pathology images format suitable for medical imaging devices,
have a narrower range of color distribution than real-world images due to the staining
operation of cell sections.

As a result, in this study, a global average pooling was adopted to convert the channel-
related global spatial information into channel descriptors, and use Sigmod as the end-
gating function. Meanwhile, two convolutional layers were added to further strengthen
the up-sampling and the down-sampling features after the features were pooled as
1× 1. Subsequently, a ReLU (Nair & Hinton, 2010) layer was added between the two
convolutional layers to further activate the gating result, as shown in Fig. 2C.
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To preserve the beneficial features of a pathology image as much as possible in a CARB
and reduce the loss caused by channel compression, further down-sampling channels
were set in the proposed model. In detail, the number of channels C became

√
C after

the features were down-sampled. From the observation of most of the computer vision
tasks using the CA mechanism, it is found that the value of Reduction significantly affects
the training speed of deep networks. Although a minor Reduction value reduces the
information loss caused by channel compression, it is not conducive to the convergence
of a network and the stimulation of beneficial channels in the original feature map. On
the other hand, increasing the Reduction value diminishes the computational load of a
network to a certain extent. Hence, a wider down-sampling convolutional layer than the
traditional CA mechanism was chosen to perform weight excitation and learn the weights
in a wider feature distribution. This is due to the fact that SR tasks for pathology images
require to average the weights over channels to offset the effects of the low inter-pixel
variance and low-frequency regions that account for the vast majority of the areas in an
image on features. In the following section, multiple ablation experiments demonstrate the
rationality of the Reduction value.

Let the feature map F = (f1,...,fx ,...,fC) be the input features, that means the feature
map H ×W with depth C . The average pooling layer shrinks F to 1×1 to get the main
representation of this channel fg , as defined in Eq. (2):

fg =AvgPool
(
fx
)
=

1
H×W

H∑
i=1

W∑
j=1

fx(i,j) (2)

where fx(i,j) represents the value of the (i,j) position in the x-th two-dimensional feature fx ,
and AvgPool(.) denotes the global average pooling. In a CA Retention, feature up-sampling
and feature down-sampling are respectively performed on the main representation of all
channels Fg , to obtain the attention-retained feature FCAR, as defined in Eq. (3):

FCAR= Sig
(
FeatUS

(
δ
(
FeatDS

(
Fg
))))

(3)

where δ(.) and Sig (.) represent the ReLU activation and Sigmod activation, respectively.
FeatDS(.) and FeatUS(.) denote down-sampling convolution and up-sampling convolution
for CA-retained features, respectively. The sampling multiples are set to

√
C to get more

learning caps for the CA Retention. This is different from existing SISR models for
real-world images. Using the same settings as this study will not lead to a significant
improvement in SR tasks for real-world images, but will introduce more information loss.
At the end of the block, the residual component FCAR will be adaptively re-amplified.

In each CARB, the residual connection is introduced from the beginning to the end of
the block, so that each CARB inherits and fully utilizes the residual information brought
by the previous basic module. Let the initial feature vector of the network be F0, and the
transfer process of residual information is defined in Eq. (4):

Fm=Rm(Fm−1)=Rm(Rm−1(Fm−2))=Rm(Rm−1(...R1(F0))) (4)

where Fm is the feature transformation of F0 after m CARBs and Rm(.)the residual
representation of them-thCARB. Then for a CARNwith nCARBs, the residual information
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is defined as Eq. (5):

FN = F0+Fn. (5)

This nested residual structure has a major positive effect on the tasks. The whole
model (CARN) utilizes contextual information to improve objective metrics within a
small network depth. Simultaneously, this allows the reduction of the number of CARBs
in CARN as much as possible. NCARB = 8 in the benchmark model is set, to prove the
efficiency and effectiveness of the setting in Section 4.

Loss function
Multiple CNN-based SR models chose MSE as the optimization loss of their networks
because MSE usually leads to higher scores in the evaluation metrics such as PSNR. The
MSE Loss is defined in Eq. (6):

LMSE =

∑rH
i=1
∑rW

j=1

{
IHR(i,j)−θG

(
I LR
)
(i,j)

}2
r2×H×W

(6)

where θG(.) represents the network optimization process; r, H, and W denote the number
of samples, the number of pixels of sample height, and width, respectively. It is mentioned
in Ledig et al. (2017) that once the magnification exceeds 4, ILR outputted by an MSE-
optimized network lacks high-frequency details and appears to be extremely smooth
in terms of texture while maintaining high-objective metrics. This is not in line with
the subjective thinking direction of human beings when judging whether the image is
clear or not. In terms of objective metrics, PSNR or SSIM are not highly consistent with
the perceptual quality and human subjective visual effects. Lim et al. (2017); Zhang et al.
(2018b); Zhang et al. (2018c) used the L1 loss, as defined in Eq. (7), to improve the models’
performance, as Blau et al. (2018) pointed out that the L1 loss could tolerate larger errors
compared to the MSE loss. Moreover, in terms of texture, the L1 loss enables networks to
reproduce more high-frequency details than the MSE loss.

LL1=

∑rH
i=1
∑rW

j=1

∥∥∥θG(I LR)(i,j)− IHR(i,j)

∥∥∥
1

r2×H×W
. (7)

In most scenarios such as medical diagnosis, humans do not calculate the distance
between two images pixel by pixel, but rather judge the structural similarity between them.
A measure based on structural similarity was proposed inWang et al. (2004), as defined in
Eq. (8):

LSSIM = 1−SSIM
[
θG
(
I LR
)
,IHR(i,j)

]
(8)

where SSIM (.,.) represents the structural similaritymeasure of two samples. A loss function
LCARN for CARN is designed, as defined in Eq. (9), which is a linear combination of L1
loss, MSE loss, and SSIM loss.

LCARN =αLL1+βLMSE+γ LSSIM (9)

where α,β,andγ are the weights of L1 loss, MSE loss, and SSIM loss, respectively.
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In the conducted experiments, it is clear that when (α,β,γ )= (0.8,0.1,0.1), CARN
showed the best performance by grid search. Therefore, LL1 is the main component of
the total loss function, enabling CARN to show better convergence and ensuring better
subjective visual effects of pathology image SR results. LMSE improves the pixel-level
accuracy and reduces fluctuations in objective metric values. During the training process,
the change of LSSIM is extremely small (0.0974−0.0979 in CARN’s 2× SR task), which
not only enhances the structural similarity of the output results but also fixedly enlarges
the difference between the testing samples and training samples to improve the model’s
optimization level.

EXPERIMENT
Dataset: bcSR
The dataset CAMELYON (Litjens et al., 2018) originated from two pathology challenges
organized by the Diagnostic Image Analysis Group (DIAG) and the Department of
Pathology of the Radboud University Medical Center in Nijmegen, the Netherlands in
2016 and 2017. The goal of these challenges was to evaluate new and existing algorithms
for automatic detection and classification of breast cancer metastases in WSI images of
breast cancer sentinel lymph node sections.

WSI is a technique for multi-scale digitization of traditional slides at various resolutions
and is commonly used in the field of pathology cell images.High-performanceWSI scanners
are usually very expensive. It is a highly feasible, efficient, and relatively inexpensive strategy
to use SR technology to enlarge LR images fromWSI, replacing the process ofWSI scanning
HR images. Thus, data were collected from CAMELYON17 and a benchmark dataset bcSR
was established to facilitate SISR applications on pathology images of breast cancer.

Deep CNN networks cannot directly use the WSI file format as experimental samples
and require efficient sampling of information-rich and representative patches. Li & Ping
(2018) sampled 400 initial WSI files within the CAMELYON dataset and provided 220,000
pre-sampled coordinate pairs and five levels of sampling resolution for cancer and non-
cancer regions, respectively. 1,000 pre-sampled coordinates were selected from each of the
two regions and they were sampled from the original level (level 0) of the WSI file with a
block size of 1,024×1,024.

Considering that the cell tissue cannot cover the entire slice plane tightly when using
certain coordinate positions for sampling to make a digital image, multiple areas without
cell tissue will be acquired, such as sampling at the edge of the entire slice. Image areas
without cellular organization have little effect in the SR task, and these areas appear white
in the digital images. Consequently, to improve the content of useful information in the
dataset, the procedure is as follows: To begin, convert all digital images to grayscale images;
Afterwards, binarize the image with the grayscale threshold of 224; Finally, calculate the
proportion of white pixels (with a grayscale range of 225–255) in each image, and delete
images with more than 60% of the white pixel area.

On the basis of the previous step, the RGB mean value Ri of all pixels in each image
and the RGB mean value Rall of all pixels in all images were separately calculated. All the
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images were ranked according to the distance from Ri to Rall . Finally, the 1,200 images with
the largest distance were chosen as the experimental dataset, called bcSR. This operation
further amplified the pixel differences between samples.

Figure 3 describes the construction process of bcSR. The newly constructed dataset is
beneficial for improving the objective metrics of deep CNN networks, making networks
observe more regions, and training diverse samples to enhance the SR capability of the
networks. Meanwhile, compared with random sampling, the proposed sampling strategy
significantly improves the efficiency of SR tasks.

Training details
The bcSR was split using 1000 images as the training set and 200 images as the test set for all
models. Themean values of R, G, and B channels in training set are [0.7204,0.4298,0.6397].
LR images were generated by bicubic down-sampling. SRCNN (Dong, Loy & Tang, 2016),
SRGAN (Ledig et al., 2017), EDSR (Lim et al., 2017), RDN (Zhang et al., 2018c), RCAN
(Zhang et al., 2018b), and SWD-Net (Chen et al., 2020) were selected as comparison
models. The network depth of EDSR, RDN, and RCAN were appropriately adjusted
to match the total amount of CARN’s parameters (see Table 1).

For CARN,NCARB= 8 was set; the filter size of all convolutional layers was 3×3, and the
number of channels was equal to 64, except that the number of channels in the middle layer
of the CA Retention was 8 (Reduction= 8). During training, all samples were randomly
rotated by 90 degrees to achieve the purpose of data augmentation and split the training
samples into 64×64 patches as input and 48×48 in the 3× up-sampling task. The ADAM
was used to optimize the network. The learning rate was initialized to 10−4 and halved
after every 2×105 minibatch update.

We use PSNR and SSIM to evaluate the performance of all SR models. PSNR is usually
used to measure the distance between the final processed result and the original image,
and its unit is ’dB’. The larger the PSNR, the lower the distortion of result. SSIM is usually
used to estimate the similarity between two digital images. The range of SSIM is [0, 1].
The closer the SSIM is to 1, the more similar the two images are. For the experiments of
all models in quantitative evaluation, the random seeds were respectively set to 1, 7, 11, 18
and 1011 to conduct the 5 groups of experiments. The average value of all experiments was
taken as the final result of objective metrics.

The proposed network was implemented on the torch 1.8.0 platform and used a NVIDIA
GeForce RTX 3090 (24GB) and a NVIDIA TITAN Xp (12GB) for all experiments. SRCNN
and SRGAN are not able to run on the used device due to the problem of the original code
platform, and SWD-Net only provides a 2× up-sampling model in the original code. Thus,
this study re-wrote and re-implemented these models.

Quantitative experiments
This study presents objectivemetric results on 2×, 3×, 4×, and 8× up-sampling tasks for all
models in Table 2. Compared with other methods, the CARN achieved the state-of-the-art
PSNR/SSIM in all tasks and had an objective metric gain of 0.188/0.0203 over the second-
place SWD-Net. It is worth noting that using bcSR to train deep CNNmodels such as RDN,
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Figure 3 Production process of bcSR. (A) Select level 0 data in the CAMELYON dataset. (B) Randomly select coordinates and segment images.
(C) Remove images with too many blank pixels. (D) Count the RGB channel means of all images and each image, and remove the images with the
smallest distance. (E) Final results of bcSR.

Full-size DOI: 10.7717/peerjcs.1196/fig-3

Table 1 The parameters of each model.

Model bicubic SRCNN SRGAN EDSR RDN RCAN SWD-Net CARN (ours)

Param. – 0.008 M 6.097 M 1.367 M 2.375 M 1.965 M 3.158 M 1.389 M

RCAN, SWD-Net, and CARN, the objective metric results in the 2× up-sampling task
surpass all current published SR works based on real-world images or pathology images,
strongly demonstrating the adaptability of the bcSR in the SR tasks. RCAN and RDN are
verified on Set5, Set14, B100, Urban100 andManga109 datasets, and their best results come
from Manga109. In 2× task, RCAN achieves 39.61/0.9788 and RDN achieves 39.38/0.9874
in PSNR/SSIM. The best result of EDSR comes from Set5: 38.20/0.9606. The performance
of these competitive SR models in 3×, 4× tasks is lower than that of real-world image SR
tasks: the best results of PSNR are higher than 34dB (3×) and 31dB (4×). Clearly, the SR
task of histopathology images is more challenging than that of real-world images. In the
8× task, the performance of all models drops significantly. SWD-Net is specially designed
for the SR task of histopathology images. The performance of the model on the 2× task
in the HistoSR dataset (also from CAMELYON) is 32.769/0.9510, and the corresponding
performance of EDSR is 32.676/0.9502. CARN can maintain a stable performance output
in high-level upsampling tasks, and maintain an advantage in the reconstruction of texture
details.

To demonstrate the effect of the loss function LCARN , the suggested network was
retrained with MSE loss (see CARN(MSE) in Table 2). The performance of the proposed
model with MSE loss on 2×, 3×, or 4× SR task was slightly lower than the model itself.
And the higher the magnification, the smaller the contribution of MSE loss is for SR
image reconstruction. Furthermore, the CARN network was tested by adding a portion
of samples—that have been removed during the bcSR construction, since they contain
more than 60% blank area and have a short pixel channel distance—into the test set (see
CARN* in Table 2). According to the results, the proposed network still shows similar or
even better performance in these low-frequency regions, even though the removed images
do not participate in the training process of CARN. This is exactly what people want to
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Table 2 Results of objective evaluationmetrics. The best results are marked in bold, the second results are underlined.

2× 3× 4× 8×

Model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

bicubic 35.247 0.9427 27.763 0.7655 27.019 0.6659 22.475 0.2776
SRCNN 35.522 0.9515 28.021 0.8117 27.475 0.7329 22.489 0.3624
SRGAN 35.998 0.9731 30.990 0.8244 28.606 0.7719 23.729 0.5580
EDSR 39.657 0.9728 31.095 0.8773 29.830 0.8058 24.366 0.5715
RDN 40.058 0.9762 31.240 0.8794 29.913 0.8074 24.392 0.5711
RCAN 40.144 0.9764 31.284 0.8812 29.916 0.8085 24.404 0.5749
SWD-Net 40.170 0.9639 31.186 0.8610 29.853 0.8000 24.465 0.5755
CARN(MSE) 40.336 0.9825 31.265 0.8986 29.888 0.8393 24.452 0.5739
CARN 40.358 0.9842 31.302 0.8995 29.964 0.8408 24.479 0.5763
CARN* 40.383 0.9837 31.297 0.8974 29.933 0.8407 24.484 0.5748

Figure 4 The average time taken by all models to process an image. In the 2× up-sampling task, the
CARN spends 0.0283 s on each image. In the 4× up-sampling task, it takes 0.0342 s.

Full-size DOI: 10.7717/peerjcs.1196/fig-4

see. These results further demonstrate the satisfactory quality of this newly created dataset
bcSR.

Figure 4 shows the average reconstruction time taken by all methods to process an image.
The difference in efficiency mainly originates from the network depth and the optimization
method. The suggested method is 29% faster than the second place in the 2× task, and the
average time consumption is 15% faster than the second place in all up-sampling tasks.
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Qualitative experiments
Figure 5 shows the qualitative results of the CARN on 2× and 4× up-sampling tasks,
respectively. The image details obtained by the proposed model far exceed other models,
especially in some high frequency regions.

Ablation experiments
Influence of the number of CARBs
In Table 3, the results of bcSR on the 2× up-sampling task are shown with different
numbers of CARBs. When the number of CARBs increases, the computational load of
the network measured by FLOPs (Molchanov et al., 2019) augments significantly, and the
network performance also improves. Among them, when the number of CARBs is 4, the
network requires only 56.8% of the computation and 63.9% of the average time spent,
achieving 99.4% of the PSNR results in the baseline model. On the other hand, when the
number of CARBs is 12, the network requires 143.2% of the computation and 142.2%
of the average time spent, reaching 100.2% of the PSNR result in the baseline model.
Therefore, considering the performance of the comparative models, setting the number
of CARBs to 8 is the best trade-off between the objective metric results and the model’s
training efficiency. Furthermore, a smaller number of CARBs enables CARN to exhibit
optimal performance, approximately, which demonstrates the effectiveness of the model’s
substructure CARBs. In real medical diagnosis scenarios, a lightweight CARN with only
several CARBs might be a convenient choice for maintaining the model’s performance and
real-time diagnosis efficiency.

Influence of loss function
Figure 6 shows the effect of the loss function on the network’s performance (PSNR) for all
up-sampling tasks. It is clear that the convergence speed and final performance of CARN
using the suggested combined loss are superior to those of CARN with commonly used
MSE loss in all tasks. Since the area and spread of high-frequency information in pathology
images are larger than those in general images, for SR tasks, the aforementioned loss
performs better in terms of the model’s convergence speed and objective metric results.

For CARN, exclusively using MSE loss will cause severe oscillation in the early training
period, which is greatly obvious in the 2×, 3×, and 4× up-sampling tasks. Using the
above-mentioned loss function enables CARN to have high stability throughout the
training phase and maintain the same or even a faster convergence rate than the MSE loss.

Moreover, this study trained the CARN with the SSIM loss, only. The results show that
the SSIM loss fails to converge the CARN: the PSNR on 2×, 3×, 4×, and 8× tasks are
12.341 dB (at epoch 119), 12.099 dB (at epoch 121), 12.124 dB (at epoch 19), and 4.072 dB
(at epoch 1), which is quite different from the baseline results.

Influence of reduction value in channel attention retention
The number of channels C in the convolutional layers of the proposed baseline model is
64. Table 4 shows the effect of different Reduction values on the training process in the
2× up-sampling task. When Reduction= 8, namely C becomes

√
C through the following

down-sampling convolutional layer in CARB, CARN obtains higher objective metrics. In
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Figure 5 Qualitative results. (A) 1049.png in the 2× up-sampling task. (B) 1183.png in the 2×
up-sampling task. (C) 1123.png in the 4× up-sampling task. (D) 1175.png in the 4× up-sampling task.

Full-size DOI: 10.7717/peerjcs.1196/fig-5
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Table 3 Investigations on the number of CARBs.

NCARB 2 4 8 12 16 20

PSNR(dB)/SSIM 39.780/0.9526 40.137/0.9792 40.385/0.9839 40.446/0.9846 40.456/0.9845 40.513/0.9846
FLOPs 3.981 G 6.421 G 11.300 G 16.179 G 21.058 G 25.936 G
Avg. Time (s) 18.7 26.5 41.5 59.0 76.2 90.6

Figure 6 The effect of two different loss functions on PSNR in the training process of CARN.
Full-size DOI: 10.7717/peerjcs.1196/fig-6

Table 4 The PNSR results of different Reduction values in the 2× upsampling task.

Reduction (C = 64) 2 4 8 16 32
PSNR(dB)/SSIM 40.270/0.9792 40.262/0.9817 40.367/0.9832 40.291/0.9835 40.247/0.9830
Reduction (C = 128) 4 12 16 32 64
PSNR(dB)/SSIM 40.353/0.9777 40.421/0.9813 40.406/0.9797 40.271/0.9805 40.089/0.9794

fact, when the Reduction value is extremely small (such as 2 or 4), the network does not
fully converge under the same training time constraint. In other words, CARN is not able
to achieve a comprehensive performance gain on bcSR in terms of accuracy and efficiency
when the Reduction value is small. Moreover, this study found that when C is set to 128 and
Reduction= 12, higher objective metrics are acquired. At this time, the value of Reduction
is also close to

√
C .

Results on binary classification for image diagnosis task
To further evaluate the role of CARN in the diagnosis task, this study chose ResNet-50 (He
et al., 2016) as the baseline classifier and conducted the histopathology image classification
task on the 2× SR results of the bcSR and PCam (Veeling et al., 2018) datasets. ResNet
is one of the classic structures in the field of computer vision and has been widely used
for tasks such as object classification. The PCam dataset is derived from Camelyon16,
which contains 327,680 patches extracted from slides of 10× magnification (at 0.972 µm
per pixel). Their size is 96×96. In the classification task, considering the input size of
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Table 5 Results on the binary classification task of breast cancer pathology images using ResNet-50.

Acc.

SRModel bcSR Pcam (Veeling et al., 2018)

GT 91.83% 90.03%
bicubic (2×↓) 62.89% 63.22%
bicubic 79.53% 66.40%
SRCNN 77.76% 68.87%
SRGAN 81.04% 70.35%
EDSR 85.61% 77.83%
RDN 87.49% 80.24%
RCAN 87.31% 83.10%
SWD-Net 89.47% 84.42%
CARN 91.09% 87.20%

the ResNet-50 network, each image was segmented in bcSR into 64 images of 128×128
size. These segmented images maintained the same class labels as the original ones. The
classification results are shown in Table 5. The deep learning-based SR models both
achieved higher gains in performance than bicubic. Notably, CARN achieved the best
results in both the bcSR and PCam datasets, with accuracies 11.56% and 20.80% higher
than bicubic, and 1.62% and 2.78% higher than the second-ranked SWD-Net. The results
for the image classification task show that the aforementioned CARN is able to recover
more details from pathology images, thus facilitating downstream tasks such as real-time
image diagnosis.

CONCLUSION
In this study, a high-quality benchmark dataset bcSR was extracted from the public dataset
CAMELYON for the pathology image SR tasks and developed an SR deep learning model
(CARN). For dataset construction, WSI image files were collected in raw format from
the public dataset, the format was converted and the images that are easy to use for SR
deep models were filtered out. In the process of making the dataset bcSR, we expect that
the set of selected images has the largest pixel distance, which can force the SR model
to focus on more regions and benefit the training process of the SR model. Considering
that most of the classical SR deep learning models are designed for real-world images,
the characteristics of the real-world images and pathology images were analyzed, and
a more effective CARB as well as a linear combination loss function were designed in
the proposed model, CARN. Based on the above design, CARN can better transfer the
information obtained in other types of images to histopathological images. The model
was verified by multiple comparative experiments. Experimental results indicate that
CARN achieves state-of-the-art performance on multiple upsampling tasks, with a boost
of 0.18/0.0203 in the 2× SR task. Ablation experiments demonstrates that CARN makes
a satisfactory trade-off between accuracy and efficiency. CARN improves the accuracy of
image classification networks for diagnosis by 1.62%/2.78% on two datasets of different
scales. In summary, bcSR and CARN provide effective priors for SR tasks of multiple
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pathology images such as breast cancer and supply an efficient and robust solution for real
medical diagnosis scenarios.
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