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21 INTRODUCTION 

22 Machine learning is a major branch of artificial intelligence. It deals with the study of computer systems 23 

and computer algorithms that can automatically learn and improve from experience 24 without being explicitly 

programmed to do so. It focuses on the development of computer programs that 25 can process data and give 

predictive analysis. Machine learning techniques are generally divided into 26 three major categories, namely 

supervised learning, unsupervised learning, and reinforcement learning. In 27 supervised learning, a system 

learns from a readily available training set of data with correctly labeled 28 observations. One of the major 

tasks or problems addressed by supervised learning is classification. 

29 Classification is the process of identifying, recognizing, grouping, and understanding new objects into 30 

categories/sub-populations (Alpaydin, 2014). A training dataset is composed of individual observations 

31 or n-dimensional data points which are split into an (n-1)-dimensional input vector often called fea- 

32 tures/explanatory variables, and into one-dimensional output vector/class/ label. These observations, also 33

 called instances, can be univariate, bivariate, or multivariate. These features also called attributes, are 

34 quantifiable properties that can be categorical, ordinal, integer-valued, or real-valued. A 

classification 35 algorithm, also called a classifier, is a procedure that implements classification 

tasks. Moreover, the term 36 classifiers may also refer to the mathematical function that maps input 

features to an output category. 

37 Classification algorithms have found many applications in the fields of computer vision, speech 

38 recognition, biometric identification, biological classification, pattern recognition, document classification, 

39 credit scoring, and many more. For instance, in medicine, the task of assigning a diagnosis to a given 

40 patient based on gathered features like age, gender, body mass index, presence of particular symptoms, 

41 etc., is a classification application. Classification problems can be categorized into binary classification or 

42 multi-class classification problems. Binary classification is the task of assigning an observation to exactly 

43 one of two categories, while multi-class classification is the process of assigning an instance to exactly 44 

one class out of more than two classes. Classification tasks tend to be harder in the presence of more than 

45 classes or more attributes. 

Data classification is an important task in machine learning, used to solve problems in numerous settings. There 
are many classifiers, but none of the algorithms work best for all kinds of data, as implied by the no free lunch 

theorem. Topological data analysis is a rapidly growing field that deals with the shape of data. One primary tool 
in this field used to analyze the shape or topological properties of a dataset is persistent homology, a method 

based on algebraic topology for computing topological features of a space of points 
which persists across multiple resolutions. 

This study proposes a supervised learning and classification algorithm using persistent homology of training data 

classes in the form of persistence barcodes and diagrams to predict the output category of new observations. 

The developed algorithm was validated using real-world datasets and a synthetic dataset. The performance of 

the proposed classification algorithm on these datasets was compared to that of the most commonly used 

classifiers. Validation runs showed that the proposed persistent homology classification algorithm performed at 

par if not better than most of the classifiers considered. 
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46 The study of classification algorithms is a vast field. Since the rise of artificial intelligence, numerous 47

 classification algorithms have been developed. Several of these techniques can be used to solve binary 

48 classification problems. Some algorithms are specially developed to solve binary classification 

problems, 49 while there are algorithms that can be used to solve binary and multi-class classification 

problems. Many 50 of these multi-class classifiers are extensions or modifications of one or more binary 

classifiers. 

51 The no free lunch theorems proved by David Wolpert and William Macready in 1997 implies that 

52 no learning or optimization algorithm that works best on all given problems (Wolpert and Macready, 

53 1997). A classifier can be chosen depending on the type of data at hand. Since then, there had been so 54 

many state-of-the-art classifiers that were developed. Some of the most commonly used classifiers are 55 

logistic regression, multinomial logistic regression, Naive Bayes classifier, perceptron algorithm, linear 56 

discriminant analysis, least squares support vector machines, quadratic classifiers, k-nearest neighbor 57 

kernel density estimation, decision trees (random forests), and neural networks. 

58 Many of these classifiers can be categorized as linear classifiers. A classification algorithm is a linear 59 

classifier if it uses a linear function or linear predictor that assigns a score to each category k based on 60 the 

dot product of a weight vector and the feature vector. The linear predictor is given by the score 61 functions, 

Score(Xi,k)=βkXi, where Xi is the feature vector for the observation i, βk is the weight vector 62 corresponding 

category k. Observation i is mapped by the linear predictor to the category k with the 63 highest score function 

βkXi. Examples of linear classifiers include logistic regression, the perceptron 64 algorithm, support vector 

machines, and linear discriminant analysis (Yuan et al., 2012). 

65 Data scientists employ techniques and theories drawn from many fields of mathematics, particularly 

66 algebraic topology, statistics, information science, and computer science. In Mathematics, in particular, 

67 there is a growing field called topological data analysis (TDA). It is an approach that uses tools and 68

 techniques from topology to analyze datasets. In the past two decades, TDA has been applied in various 

69 areas of science, engineering, medicine, astronomy, image processing, and biophysics. 

70 One of the motivations in TDA is analyzing the shape of data and one of the main tools researchers use 71 

is persistent homology (PH). PH is a method for computing topological features of a space of points which 

72 persists across multiple resolutions (Carlsson, 2009),(Edelsbrunner and Harer, 2008),(Edelsbrunner and 73 

Harer, 2010). It is based on the well-understood algebraic topology where invariant features can be derived 

74 algebraically. These gathered invariant features are sensitive to small changes in the input parameters 75 

which makes PH attractive to researchers who study qualitative features of data. PH involves representing 

76 a point cloud by a filtered sequence of nested complexes, which are turned into novel representations 77 

like barcodes and then interpreted statistically and qualitatively based on persistent topological features 78 

which were gathered (Otter et al., 2017). A detailed discussion of pertinent information about the homology 

of 79 simplicial complexes and the process of computing persistent homology of a point cloud can be found 

in 80 the appendix. 

81 Computation of PH has been applied in various areas including image analysis, shape comparison and 82 

recognition, network analysis, computer visions, computational biology, oncology, chemical structures 83, 

and many more. Developments in the various aspects of computing PH have been increasing at a very rapid 

84 rate. Various software were also developed to provide advanced and beginning practitioners platforms 

85 to compute PH or develop new techniques in computing PH. These include JavaPlex, Perseus, Dipha, 

86 Dionysus, jHoles, GUDHI, Rivet, Ripser, PHAT, R-TDA, and many more (Otter et al., 2017), (Pun et al., 87 

2018). 

88 This study is focused on the development of a supervised classification algorithm that mainly uses 

89 persistent homologies of the datasets to solve classification problems. Persistent homology, which 

has been 90 around for only a decade has been getting so much attention in the past few years. 

Published works about 91 the fusion of these topics are quite new. Pun et al. (2018) published a survey of 

persistent-homology-based 92 machine learning algorithms and their applications. They presented a 

roadmap on how to use persistent 93 homologies to refine machine learning algorithms such as support 

vector machines, tree-based methods 94, and artificial neural networks. Their work was the inspiration in this 

study on how to extract topological 95 features based on persistence barcodes which resulted from 
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computing data’s persistent homology. In 96 their study, these features were considered as additional 

attributes to enhance machine learning algorithms. 97 While in this study, the topological features based on 

persistence barcodes/diagrams were directly used 98 and the main considerations in the proposed 

classifiers. 
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99 PERSISTENT HOMOLOGY CLASSIFICATION ALGORITHM (PHCA) 

100 The use of persistent homology in topological data analysis has been gaining attraction among researchers 

101 and data scientists. PH is mainly used to analyze the shape of a given dataset. A given point cloud 

102 undergoes a filtration process which turns it into a sequence of nested simplicial complexes. This is 

done by 

103 considering a finite number of increasing parameters and recording the sublevel sets that track changes 

104 in topological information. These changes can be documented in many ways, but the most popular 

ones 105 are in terms of persistence barcodes or persistence diagrams. From these visualizations, 

the appearance and 106 disappearances (birth and death) of intrinsic topological features like homology 

groups and Betti numbers 107 are recorded and interpreted. The persisting duration (life span) of these 

topological features which are 108 evident in the PH visualizations are essential in analyzing the 

qualitative and topological properties of data 109 under study. PH has been used also to improve many 

machine learning algorithms. A list of these instances 110 were mentioned and discussed by Pun et al. 

(2018). However, one of the main results of this study is the 111 development of a supervised 

machine learning algorithm that mainly uses persistent homology of sets 112 of data which can be used 

to solve classification problems. 

113 Given a dataset or a point cloud composed of instances that belong to various classes, the first task 

114 is to divide the dataset into a training set and testing. Then, the goal is to analyze the dataset and 

develop 115 a persistent-homology-based algorithm that will correctly identify the class to which each 

point in the 116 testing set belongs to. 

117 Consider a point cloud of size M composed of (n+1)-dimensional data points. Suppose that in each 118 point, 

the first n entries are the attributes/features of the given point, and the (n+1)-th entry gives the class 119 where 

the point belongs to. The M points in the dataset are sorted into classes and each of the classes is 

120 split into a training set and testing set. For instance, in all the validation runs, we divide each of the 

classes 121 into at least 80% training set and the remaining points into the testing set. Suppose there 

are k classes and 122 each class i, i = 1,2,...,k, is composed of Mi points. Suppose also that in each class, 

there are mi points 123 in the training set and Mi −mi points in the testing set. If m is the sum of the mi’s, 

then m is the size of the 124 training set, and M −m is the size of the testing set. 

125 Let X be an m×(n+1) matrix in which rows represent the points in the training set. Similarly, letY be 

126 an (M −m)×(n+1) matrix containing the points in the testing set, the testing point cloud. Furthermore, 

127 let Xi be an mi ×(n+1) matrix which contains the training set points belonging to class i. Call each of 

128 these matrices as training cloud for class i. 

129 Before commencing the training, set the maximum dimension, denoted by maxd, that will be used in 130 

forming the Vietoris Rips complex filtration of the point clouds and computing the persistent homology 131 of 

each of the training clouds. The parameter maxd is usually set to one or two during the validation 132 runs. 

Validation runs show that these values of maxd are sufficient and the use of larger values of maxd will 

133 result to a longer computation time and may not be practical. Furthermore, there is also a need to 

set the 134 maximum scales, denoted by maxsc. The scale here refers to the size of the epsilon balls to be 

considered in 135 computing the persistent homology and topological features of the dataset. Preferably, the 

maxsc is set to 136 be half the maximum distance between any two points in the point cloud. 

137 After identifying the point cloud Xi for class i, where i goes from 1 to k and setting maxd and maxsc, 

138 the algorithm may proceed to the following iterative steps. 

139 Step 1. Training/Learning Stage For each i, i ∈{1,...,k}, form the Vietoris Rips complex filtration for 140 each 

point cloud Xi for class i. Then, for each i, i ∈{1,...,k}, compute the persistent homology 141 of Xi, based on the 

Vietoris Rips complex filtration for each point cloud Xi. The result in 142 computing the persistent homology 

of a point cloud is an nt f ×3 matrix, where nt f is the number 143 of d-dimensional topological features that 

appear in the filtration. Denote this matrix by P(Xi). 

144 These topological features include the connected components, the loops, the voids, and so on. The 
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145 number of topological features varies depending on the filtration. Let t fi,j be the j-th topological 146 

feature of the point cloud Xi. The first column entries give the dimension of each of the topological 

147 feature t fi,j. Denote this by dt fi,j, where i = 1,...,k and j = 1,...,nt f. These entries take the values 148 0 for 

connected components, 1 for loops/holes, 2 for voids, and so on. The entries in the second 149 column give the 

birth time of each of the topological feature t fi,j, and the third column entries 

150 gives the death time of each t fi,j. Denote the birth time and death time of topological feature t fi,j 151

 by βi,j and δi,j respectively. Visual presentation of each of the resulting persistent homology of a 152 given 

point cloud can be in the form of a persistence barcode or a persistence diagram. 

153 Step 2. Testing/Classification Stage. For each of the M −m data points in the testing set, identify the 154 

class/category to which each data point belongs to. 

155 Recall that Y is an (M −m)×(n+1) matrix, where each row is a data point in the testing set. Let 156

 Yj be the j-th row of Y and the j-th data point in the testing set. Let the first n entries of Yj be the 157 data 

point’s attributes and the (n+1)-th entry be the data point’s target class. 

158 For each j ∈{1,2,...,M −m} and for each i ∈{1,2,...,k} append Yj to Xi after the last row of 159 Xi. Name the 

resulting matrix XYi,j. Perform filtration and PH computation on XYi,j. That is, 

160 compute P(XYi,j). Record the change in topological features from Xi to XYi,j. Specifically, record 161 the change 

from P(Xi) to P(XYi,j). In this regard, consider two sets of point clouds, say point 

162 cloud A and point cloud B. Suppose there is an additional point p, to which we want to classify, 

163 whether it belongs to point cloud A or B. The proposed algorithm in this study will perform the 164 

classification using topological features based on persistent homology. This technique is different 

165 from the techniques used in the existing classifiers. Supposed that point p is closer to point cloud 

A 166 than point cloud B. Then, the persistent homology of A∪{p} possibly will have more 

topological 167 features compared to the persistent homology of B∪{p}. Also, the birth of new 

topological features 

168 will occur much earlier in A∪{p} and the death of some existing topological features may come 

earlier 

169 in A∪{p}. 

170 With this phenomenon in mind, the terms in the score function, which measure the change in 171 

topological features from Xi to XYi,j, are with reference to the following metrics. 

172 (a) Let Ωi,j be the difference of the sum of the entries of the first column of P(Xi) from the sum 173 of the 

entries of the first column of P(XYi,j). 

174 (b) Let Φi,j be the difference of the sum of the entries of the third column of P(Xi) from the 175 sum of the 

entries of the third column of P(XYi,j). 

176 (c) Let µΩi,j be the difference of the mean of the entries of the first column of P(Xi) from the 177

 mean of the entries of the first column of P(XYi,j). 

178 (d) Let µΦi,j be the difference of the mean of the entries of the third column of P(Xi) from the 179

 mean of the entries of the third column of P(XYi,j). 

180 (e) Let AMi,j be the sum over all k of the absolute value of the difference of the mean of the 181 entries of the 

k-th column of Xi and the mean of the entries of the k-th column of XYi,j. 

182 (f) Let Wi,j be p-th Wasserstein distance of P(Xi) from P(XYi,j), where p is set to 2. 

The score function Score(Yj,i) is computed as 

Score(Yj,i)=−Ωi,j +Φi,j −µΩi,j +µΦi,j +AMi,j +Wi,j 
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183 Finally, each data point Yj is assigned by the linear predictor to class i with the lowest score 

function 184 Score(Yj,i) over all i. 

185 What follows is the pseudo-code for the persistent homology classification algorithm (PHCA). 

186 EVALUATION METHODOLOGY 

187 Classification is an instance of supervised learning. It is the task of identifying which of the categories 188 a 

new observation belongs to, based on a training set of data containing observations whose category 

189 membership is known. Classifier is the term used to refer to the algorithm that implements the 

classification 

190 and the mathematical function used by the classification algorithm to map an observation to a category. 

A 

191 dataset is composed of (n+1)-dimensional data points, whose first n entries are called attributes of the 192 

observation and the (n+1)-th entry is one of the k categories to which the observation belongs to. The 

193 attributes can be real, integer, or categorical. The number of attributes, n, and the number of 

categories, k, 194 can be any fixed natural numbers. As the number of data points increases, or as the 

number of attributes 195 increases, the amount of computer time used to solve a classification problem 

also increases. 

Algorithm 1 Persistent Homology Classification Algorithm 

Require: X1, X2, ...Xk, Y, maxd, and maxsc 

Ensure: Class(Y) or Class(Yj) for each j procedure 

TRAINING STAGE 

∀i ∈{1,2,...,k} 

P(Xi)←(nt f)×3 matrix, a result of computing PH of Xi end 

procedure TESTING STAGE for j = 1 to M −m do for i = 1 to k 

do 

XYij ← Xi ∪{Yj} 

P(XYij)←(nt f)×3 matrix, a result of computing PH of XYij 

Compute for Ωi,j,Φi,j,µΩi,j,µΦi,j,AMi,j,Wi,j 

Score(Yj,i)=−Ωi,j +Φi,j −µΩi,j +µΦi,j +AMi,j +Wi,j 

Class(Yj)← arg min{Score(Yj,i)} 
∀i 

end for 

end for 

end procedure 

 

196 The classification algorithm developed in this study was validated by solving a number of classification 197 

problems involving various classical validation datasets and a synthetic dataset. It should also be noted 198 that 

validation of the proposed algorithm in this study was implemented using R and the R-package TDA. 

199 The different data used in the validation process were described in the following subsection. 

200 Validation Datasets. 

201 There were four datasets used in validating the proposed PHCA; three classical datasets and one 

synthetic 202 dataset. The number of classes per dataset is either two or three, while the number of 

attributes per dataset 203 ranges from two to seven. 

204 1. Iris Plants Dataset 
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205 The Iris plant dataset created by Fisher (1936), available at the UCI Machine Learning Repository 

206 (Dua and Graff, 2017), retrieved at https://archive.ics.uci.edu/ml/datasets/iris, one of the 

commonly 207 used dataset in pattern recognition, is composed of 150 observations. The dataset 

is divided into 208 3 categories or sub-populations, Iris Setosa, Iris Versicolour, and Iris Virginica. 

Each category is 209 comprised of 50 data points. All of the 4 attributes of each data point, sepal 

length, sepal width, 210 petal length, and petal width, are expressed in centimeters. 

211 2. Wheat Seeds Dataset 

212 The wheat seeds dataset was created by Charytanowicz et al. (2010) at the Institute of Agrophysics 

213 of the Polish Academy of Sciences in Lublin, available at the UCI Machine Learning 

Repository 

214 (Dua and Graff, 2017), and retrieved at https://archive.ics.uci.edu/ml/datasets/seeds. The dataset 215 is 

composed of 210 observations which are divided equally into 3 categories: Kama, Rosa, and 

216 Canadian wheat variety. That is, there are 70 observations per category. Each data point is 

217 characterized by seven attributes: area, perimeter, compactness, length of kernel, width of kernel, 

218 asymmetry coefficient, and length of kernel groove. All of these parameters were real-valued and 

219 continuous. 

220 3. Social Network Ads Dataset 

221 The social network ads dataset was created by Raushan (2017) and retrieved at 

https://www.kaggle. 

222 com/rakeshrau/social-network-ads/version/1. The dataset is composed of 400 data points. The 223 

observations were classified into two categories, whether a customer purchased a product (143) or 

224 not (257). Each data point has two attributes, age, and estimated salary. This classification task 

is 225 considered as a bivariate classification problem. 

226 4. Synthetic Dataset 

227 The author created this dataset by generating 200 uniformly sampling points from each of the 228 

following figures, the circle defined by x2+y2 = 25, the sphere defined by x2+y2+z2 = 1, and the 

229 torus defined by . The x,y, and z coordinates of the 600 points served as 

230 the attributes, and the category was assigned according to which figure the points belong to. 

231 Performance Measure. 

232 Measure of performance of the proposed PHCA were quantified and then compared with the 

performance 233 of major classification algorithms with respect to some validation datasets. The 

metrics used to evaluate 234 the methods were accuracy, sensitivity, and specificity. To compute for 

these metrics, the respective confusion 235 matrix for each method for the testing set was generated 

first. A confusion matrix is a table used to 

236 describe the performance of a classification model on a set of test data for which the true values are 237 

known. The confusion matrix gives the number of data points per class that are correctly predicted or 238 

incorrectly predicted. 

239 For instance, consider a particular class, say Ci, among k classes. Then, we can define the following 

240 for each i ∈{1,2,...,k}. 

241 TPi is the number of true positives in class Ci, or the number of instances in Ci which are predicted 

to 

242 belong in Ci. 

243 TNi is the number of true negatives in class Ci, or the number of instances outside Ci which are 

predicted 244 to not belong in Ci. 

245 FPi is the number of false positives in classCi, or the number of instances outsideCi which are 

predicted 
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246 to belong in Ci. 

247 FNi is the number of false negatives in class Ci, or the number of instances in Ci which are predicted 

to 248 not belong in Ci. 

249 The three metrics per class Ci are computed as follows 

TPi 

Sensitivity of Class C = 

Specificity of Class C = 

Accuracy of Class Ci = 

250 A high sensitivity prediction in Class Ci implies that the reliability of predicting that an instance 

doesn’t 251 belong to Ci is high. However, predicting that an instance belongs to Ci with high sensitivity 

is inconclusive. 

252 On the other hand, the high specificity of prediction in Class Ci implies that the reliability of predicting that 

an 253 instance belongs to Ci is high. And, predicting that an instance doesn’t belong to Ci with high sensitivity 

is 254 inconclusive. 

255 Validation Procedure. 

256 The following procedure details the steps implemented to measure the performance of PHCA as 

compared 257 to other classification algorithms. These steps were performed for all of the four datasets. 

258 1. Consider the dataset as a point cloud X. Divide it into 2 parts, training set, and testing set. For all 259 the 

validation runs, we have split the dataset to at least 80% training set and the remainder to testing 

260 set. 

261 2. Solve the classification problem using the proposed PHCA and each of the five algorithms: 

Linear 262 discriminant analysis (LDA), Classification and Regression Trees (CART), K-Nearest 

Neighbors 263 (KNN), Support Vector Machine (SVM), and Random Forest (RF). Depending on 

the algorithm 264 used, utilize the training set and classify each point in the testing set. Information 

about the nature of 

265 these classifiers, including examples and program codes, are available in Subasi (2020), Stanimirova 266 et 

al. (2013), Breiman et al. (1984), Loh (2011), Neath and Johnson (2010), Cortes and Vapnik 267 (1995), Ho 

(1995), and Ho (1998). 

268 3. Construct the confusion matrix per classification algorithm. 

269 4. Compute the performance of each classification algorithm in terms of accuracy, and sensitivity, 

and 270 specificity per class. 

271 RESULTS AND DISCUSSION 

272 Presented here are the performance of the proposed PHCA and the five major classification algorithms 

273 in solving four classification problems. Program codes written in R which implements PHCA, LDA, 

274 CART, KNN, SVM, and RF can be found on https://github.com/mlddelara/PHCA. There is a section for 

275 the discussion of validation results for each of the classification tasks. Presented in each section are 

the 

276 persistence diagrams and the persistence barcodes of the training sets. Recall that PHCA works in a way 

277 that a data point in the testing set will be classified under a class if its inclusion in the particular class’ 278 

training set results to the least change in the persistence diagram or persistence barcode of the training 

set 279 with the additional data point. 

280 Iris Plants Dataset. 

 
  +   

 
  

  +   

  +   
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281 The dataset is comprised of 50 data point from each of the three types of iris plant, namely, Iris Setosa, 

282 Iris Versicolour, and Iris Virginica. Each data point is composed of four features and a class label. For 

283 each class, ten data points were set aside to be part of the testing set and the remaining forty points 

were 284 collected as the training set per class. 

285 Figures 1, 2, and 3 shows the persistence diagram and persistence barcode of the respective training 

286 sets. These are the representations of computing the persistent homology of each of the training set 

per 287 class. 

 

Figure 1. Peristence Diagram and Barcode for the Iris Setosa (Class 1) Training Set 

 

Figure 2. Peristence Diagram and Barcode for Iris Versicolour (Class 2) Training Set 

 

Figure 3. Peristence Diagram and Barcode for Iris Virginica (Class 3) Training Set 

288 Table 1 shows the performance of PHCA and the five major classification algorithms in terms of 289 

accuracy, sensitivity per class, and specificity per class. PHCA ranked third in terms of accuracy. That 

290 is, of 30 testing data points, only one was wrongly classified. SVM performed equivalently with PHCA, 291 

while CART and RF performed poorer with 2 mistakes each. On the other hand, LDA and KNN performed 

292 perfectly for this problem. 

Classifier Accuracy Sensitivity per class Specificity per class 
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  Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

LDA 100% 100% 100% 100% 100% 100% 100% 

CART 93.33% 100% 100% 80% 100% 90% 100% 

KNN 100% 100% 100% 100% 100% 100% 100% 

SVM 96.67% 100% 100% 90% 100% 95% 100% 

RF 93.33% 100% 100% 80% 100% 90% 100% 

PHCA 96.67% 100% 90.91% 100% 100% 100% 95.24% 

Number of Data Points: 150 Number of Classes: 3  

Training Set Size: 120 Number of Attributes: 4  

Testing Set Size: 30    

Table 1. Result of classifying the Iris dataset using the six classifiers 

293 Wheat Seeds Dataset. 

294 The dataset is comprised of 70 data points for each of the three types of wheat varieties, namely, Kama, 

295 Rosa, and Canadian. Each of the data points has seven attributes and a class label. For each class, 

there 296 are 14 testing data points and 56 training data points. 

297 The persistence diagram and persistence barcode of the respective training set per class was 

computed 298 and represented in Fig. 4, Fig. 5, and Fig. 6. 

 

Figure 4. Peristence Diagram and Barcode for Kama Variety (Class 1) Training Set 

 

Figure 5. Peristence Diagram and Barcode for Rosa Variety (Class 2) Training Set 
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Figure 6. Peristence Diagram and Barcode for Canadian Variety (Class 3) Training Set 

299 Table 2 shows the performance of PHCA and the five major classification algorithms in terms of 300 

accuracy, sensitivity per class, and specificity per class. PHCA got the highest accuracy, together with 301 RF 

and SVM. These algorithms wrongly classified only one data point among 42 testing data points. 302 Moreover, 

PHCA got the highest sensitivity and specificity for each of the classes. On the other hand, 303 CART 

performed the worst in terms of accuracy which wrongly classified three data points. 

Classifier Accuracy Sensitivity per class Specificity per class 

  Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

LDA 95.24% 92.86% 100% 92.86% 96.43% 100% 96.43% 

CART 92.86% 92.86% 100% 85.71% 92.86% 100% 96.43% 

KNN 95.24% 92.86% 100% 92.86% 96.43% 100% 96.43% 

SVM 97.62% 100% 100% 92.86% 96.43% 100% 100% 

RF 97.62% 100% 100% 92.86% 96.43% 100% 100% 

PHCA 97.62% 100% 100% 93.33% 96.55% 100% 100% 

Number of Data Points: 210 Number of Classes: 3  

Training Set Size: 168 Number of Attributes: 7  

Testing Set Size: 42    

Table 2. Result of classifying the Wheat Seeds dataset using the six classifiers 

304 Social Network Ads Dataset. 

305 The dataset is comprised of uneven number of observations per class. There are 143 data points for 

class 306 1 and 257 data points for class 2. Each of the data points has two attributes and a class label. 

The former 307 represents observations from customers who purchased a product. There are a total of 80 

testing data 308 points and 320 training data points. 

309 The persistence diagram and persistence barcode of the respective training set per class was 

computed 310 and shown in the Fig. 7 and Fig. 8. 
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Figure 7. Peristence Diagram and Barcode for Purchaser (Class 1) Training Set 

 

Figure 8. Peristence Diagram and Barcode for Non-purchaser (Class 2) Training Set 

311 Table 3 shows the performance of PHCA and the five major classification algorithms in terms of 312 

accuracy, sensitivity, and specificity. PHCA ranked third in terms of accuracy. It got 100% sensitivity, but 313 

lower specificity at 90.91%. SVM performed equivalently with PHCA, in terms of accuracy. LDA and 314 

KNN got 100% accuracy, but RF and CART got the lowest accuracy of 93.33%. 

Classifier Accuracy Sensitivity Specificity 

LDA 86.08% 90.20% 78.57% 

CART 87.34% 86.27% 89.29% 

KNN 82.28% 92.16% 64.29% 

SVM 86.08% 88.24% 82.14% 

RF 86.08% 90.20% 78.57% 

PHCA 82.72% 91.30% 71.43% 

Number of Data Points: 400  

Training Set Size: 181  

Testing Set Size: 119  

Number of Classes: 2  

Number of Attributes: 2  

Table 3. Result of classifying the Social Network Ads dataset using the six classifiers 

315 Synthetic Dataset. 
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316 The dataset is comprised of 600 data points. There are three classes with 200 data points per class. 

Each 317 of the data points has three attributes and a class label. For each of the three classes, there 

are 40 testing 318 data points and 160 training data points. 

319 The persistence diagram and persistence barcode of the respective training set per class was 

computed 320 and represented in Fig. 9, Fig. 10, and Fig. 11. 

 

Figure 9. Peristence Diagram and Barcode for Circle (Class 1) Training Set 

 

Figure 10. Peristence Diagram and Barcode for Sphere (Class 2) Training Set 

 

Figure 11. Peristence Diagram and Barcode for Torus (Class 3) Training Set 321 Table 4 

shows the performance of PHCA and the five major classification algorithms in terms of 322 
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accuracy, sensitivity, and specificity. PHCA, together with CART, KNN, SVM, and RF, 

performed 

323 perfectly with 100% accuracy, sensitivity per class, and specificity per class. While LDA got a low 324 

accuracy of 93.33%. 

Classifier Accuracy Sensitivity per class Specificity per class 

  Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

LDA 93.33% 100% 82.50% 97.50% 91.25% 98.75% 100% 

CART 100% 100% 100% 100% 100% 100% 100% 

KNN 100% 100% 100% 100% 100% 100% 100% 

SVM 100% 100% 100% 100% 100% 100% 100% 

RF 100% 100% 100% 100% 100% 100% 100% 

PHCA 100% 100% 100% 100% 100% 100% 100% 

Number of Data Points: 600 Number of Classes: 3  

Training Set Size: 480 Number of Attributes: 3  

Number of Data Points: 120    

Table 4. Result of classifying the Synthetic dataset using the six classifiers 

325 Validation of the performance of PHCA was done by comparing its performance in solving four 

326 classification problems against the respective performances of the five major classification 

algorithms 327 in solving the same problems. The four validation datasets are comprised of a varying 

number of data 328 points, number of classes and number of attributes per observation. In terms of 

accuracy, sensitivity, and 329 specificity, PHCA and all the benchmark algorithms, excluding LDA, 

ranked first in two of four validation 330 data sets. However, only PHCA and SVM faired well in all 

four classification problems. All the other 331 algorithms had the worst accuracy, sensitivity, and 

specificity in at least one of the problems. CART has 332 the worst performance in solving the Iris 

dataset and Seeds dataset. LDA has the worst performance 333 in solving the synthetics dataset. And, 

KNN and RF have the worst performance in solving the Social 334 Network Ads dataset and Iris 

dataset, respectively. 

335 These validation results do not imply that PHCA is better than any of the other major classification 336 

algorithms. But, these results are just evidences to the no free lunch theorem which implies that no 

337 learning algorithm works best on all given problems. Moreover, these validation runs imply that PHCA 338 

can be at par or even better than some other classifiers in solving some particular classification problems. 

339 What sets PHCA apart from the well-known machine learning classifiers is that it is non-parametric, 

340 but at the same time a linear classifier. It is a non-parametric algorithm in the sense that it does not 

restrict 341 the data to follow a particular distribution nor fix the number of datasets’ parameters for 

the algorithm 

342 to work. PHCA works by assigning topological attributes from persistent homology of training data 343 

points per classes and uses this as the parameters needed for a linear classifier which the algorithm uses to 344 

classify new points. The referred topological attributes include the dimension, birth time, and death time 345 

of topological features of the different training datasets and classes, and the Wasserstein distance between 346 

classes. 

347 CONCLUSIONS 

348 The main result of this study was the development of PHCA, a non-parametric but linear classifier 

which 349 utilizes persistent homology, a major and very powerful TDA tool. Classification tasks are major 

concerns 350 in the field of machine learning which is why solving these kinds of problems has been a 

widely studied 351 discipline. The proliferation of the various classification algorithms is further fueled by 
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the fact implied 352 by the no free lunch theorem which implies that there is no single best algorithm 

which can be used to 353 solve all types of classification problems. 

354 PHCA was validated in this study by using it to solve four different classification problems with 355 varying 

sizes, number of classes, and number of attributes. PHCA’s performance per problem-based 356 on accuracy, 

sensitivity, and specificity was measured and compared with the performance of five other 357 well-known 

classifiers. The validation runs show that PHCA can perform well, or even better, than some 

358 of the major supervised machine learning classifiers, in solving particular classification tasks. 

Moreover, 359 this validation activity does not imply that PHCA works better than other machine learning 

algorithms, 360 but this exposition shows that PHCA can work in solving some classification problems. 

361 Validation in this study was limited to relatively small problems which are restricted by the computers 362 

used in this study. PHCA can be further validated by considering larger problems and by using more 363 

powerful computers which can solve problems with higher dimensions. These future researches could 

364 test whether PHCA can still perform at par with or better than other classifiers. Furthermore, various 365 

improvements may be imposed on the proposed classification algorithm in this study by considering other 366 

topological attributes or by considering persistent homology representations other than barcodes and 367 

diagrams. Recent improvements and modifications on the computation of persistent homology may also 

368 be adapted to possibly improve the performance of PHCA. PH computations and the validation of the 369 

proposed algorithm were implemented using R and TDA package in R. It should be noted that there are 

370 other platforms and solvers which can be used, like JavaPlex, Perseus, Dipha, Dionysus, jHoles, 

GUDHI, 

371 Rivet, Ripser and PHAT, which offer some variations in the the way PH can be computed. Indeed, this 

372 study has opened a lot of research opportunities which can be explored by mathematicians, data 

scientists, 373 topologists, and computer programmers. 
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