
BatTS: a hybrid method for optimizing
deep feedforward neural network
Sichen Pan1, Tarun Kumar Gupta2 and Khalid Raza2

1 School of Computer Science and Technology, Guangdong University of Technology,
Guangzhou, Guangdong Province, China

2 Department of Computer Science, Jamia Millia Islamia, New Delhi, Delhi, India

ABSTRACT
Deep feedforward neural networks (DFNNs) have attained remarkable success in
almost every computational task. However, the selection of DFNN architecture is still
based on handcraft or hit-and-trial methods. Therefore, an essential factor regarding
DFNN is about designing its architecture. Unfortunately, creating architecture for
DFNN is a very laborious and time-consuming task for performing state-of-art work.
This article proposes a new hybrid methodology (BatTS) to optimize the DFNN
architecture based on its performance. BatTS is a result of integrating the Bat
algorithm, Tabu search (TS), and Gradient descent with a momentum
backpropagation training algorithm (GDM). The main features of the BatTS are the
following: a dynamic process of finding new architecture based on Bat, the skill to
escape from local minima, and fast convergence in evaluating new architectures
based on the Tabu search feature. The performance of BatTS is compared with the
Tabu search based approach and random trials. The process goes through an
empirical evaluation of four different benchmark datasets and shows that the
proposed hybrid methodology has improved performance over existing techniques
which are mainly random trials.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords ANN, Tabu search, Optimization

INTRODUCTION
Since the mid of 1960s, different types of artificial neural network models (like feedforward
neural network (FNN) and recurrent neural network (RNN)) have been suggested and
tested for many real-world problems. However, the feedforward neural network is a
prevalent model because of many reasons such as (a) it has structure flexibility, (b) it has a
good representative capability, and (c) the existence of good training algorithms to train
the FNN.

A simple feedforward neural network (also known as a multilayer perceptron) consists
of an input layer, one hidden layer, and an output layer. The FNN has already been applied
to many applications like signal processing (Hwang et al., 1997), classification and
clustering (Zhang, 2000), speech processing (Gorin & Mammone, 1994), pattern
recognition (Jain, Duin &Mao, 2000), function approximation (Selmic & Lewis, 2002), and
cancer class prediction (Raza & Hasan, 2015).

The simple FNN is applicable only when the prediction function is not much complex
or is not of very high dimensionality. Solving high dimensional nonlinear parts like

How to cite this article Pan S, Gupta TK, Raza K. 2023. BatTS: a hybrid method for optimizing deep feedforward neural network. PeerJ
Comput. Sci. 9:e1194 DOI 10.7717/peerj-cs.1194

Submitted 7 September 2022
Accepted 30 November 2022
Published 10 January 2023

Corresponding author
Khalid Raza, kraza@jmi.ac.in

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.1194

Copyright
2023 Pan et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1194
mailto:kraza@�jmi.�ac.�in
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1194
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

classification in 100-classes or maybe more will not work with single hidden layers. FNN
with more than one hidden layer is known as Deep feedforward neural network (DFNN).
In this model, neurons (processing units) can be connected with next-level neurons only in
the forward direction (i.e., no backward connection, no cycle, and no connection on the
same level). In DFNN, the number of processing units at the input layer equals the number
of input features. At the output layer, the number of processing units equals the number of
classes in which data must be classified. This network can have various hidden layers and
their respective neurons.

Selecting a proper design for DFNN is very important because it directly affects
performance. DFNN with a small size can be stuck in underfitting, and if the size is
considerable, the problem of overfitting arises. Most users perform hit-and-trial or random
experiments to find a good DFNNmodel for a particular situation. However, these kinds of
exercises will not guarantee an optimal architecture, and this kind of practice is a very
time-consuming task. If anyone also considers the number of connections, it becomes very
complex to adjust all these parameters.

When considering a simple FNN, which consists of single hidden layers, it needs to
calculate the number of neurons only for that single hidden layer, while in the case of
DFNN, it is pretty crucial. The uniqueness of this work is that it proposes a new approach
which integrates the benefits of the Bat algorithm (Yang, 2010) and Tabu search (Glover,
1986) (BatTS). The aim of this work is to start with one hidden layer and optimize the
single hidden layer FNN, then increase the hidden layer gradually and do the same task of
optimization for multiple hidden layers. Finally, the BatTS used GDM (Li et al., 2009) to
select an ideal model for DFNN. This whole scenario in earlier cases was accomplished as
handcraft. The performance of the proposed methodology is then tested on four different
datasets: (1) the MNIST dataset (LeCun & Cortes, 2010), (2) the ISOLET dataset (Dua &
Graff, 2019), (3) the face recognition dataset (Ma, Correll & Wittenbrink, 2015) and
(4) Gas Sensor Array Drift dataset (Rodriguez-Lujan et al., 2014; Vergara et al., 2012).

The article is structured into sections: “Related Work” briefly explains the literature
review on optimizing the neural network using different methodologies. “Proposed
Method” describes the proposed method and workings like solution representation, fitness
function used, generation of population, and stopping criteria. “Datasets” discusses the
used dataset with their properties. A detailed experimental setup with a summary of
findings is presented in “Experimental Result”. Finally, “Conclusion” will provide
conclusive remarks with some future scopes.

RELATED WORK
Even though numerous studies have been done to develop a perfect ANN model, the
automatic selection of a better ANN model for a specific objective is crucial. Over two
decades, several strategies for optimizing training rules and ANN design have been
presented. There can be many ways to automatically select the FNN model, such as
constructing, pruning, model selection, nature-inspired techniques, hybrid techniques that
combine two or more criteria, etc. Therefore, only a similar comparing algorithm is
included in this section.

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 2/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

For example, the constructive methodology starts with a simple network and increases
the network size iteratively according to the requirement. Mézard & Nadal (1989)
proposed a new technique where hidden units can only be added when required and
named this method a tiling algorithm. The authors guarantee that the architecture will
converge for zero error. Frean (1990) presented different ways to construct FNN
architecture and show that the newer architecture is less complex than Mézard & Nadal
(1989). Zeng & Yeung (2006) defined the pruning technique to remove hidden neurons
based on their relevance with the help of quantified sensitive measures. Islam et al. (2009)
suggest a new constructive methodology for architecture adjustment. The main focus was to
find hidden units for different layers. Augasta & Kathirvalavakumar (2011) predicted
activation and weight functions. The proposed work was verified over benchmark datasets
and showed its worthiness. Han & Qiao (2013) used constructive and pruning techniques
in a hybrid manner for optimal FNN structure, but this was only applicable to FNN having
only a single hidden layer.

To solve the issue of ANN architecture designing, a family of model selection approach
like Akaike information criteria (AIC) (Akaike, 1974), root mean square (RMSE), mean
absolute percentage error (MAPE), Bayesian information criteria (BIC) (Schwarz, 2007),
direction accuracy (DA), etc., has been already studied. Murata, Yoshizawa & Amari
(1994) proposed a novel model selection method for determining the appropriate hidden
processing units. The methodology explores AIC on a shapeless model to find whether or
not new units should be added to the network. Anders & Korn (1999) present a statistically
acceptable model that starts with null architecture, and then hidden units were inserted
one by one until the best architecture was identified. Aras & Kocakoç (2016) present new
method IHTS (I = input, H = hidden, TS = trail selection). This new method helps
determine input and hidden neurons using MSE, then validates the performance based on
trial selection. Khaw, Lim & Lim (1995) showed how the Taguchi method can be
implemented for neural network topology. Finally, Tortum et al. (2007) combine the
Taguchi and model selection methods for optimizing FNN parameters.

On the other hand, many researchers use the evolutionary algorithm in ANN model
prediction. Carvalho & Ludermir (2007) presented interleaved execution of two Particle
swarm intelligence (PSO). In said work, the inner PSO optimizes weights, and the outer one
optimizes topology. Yu, Xi & Wang (2007) explained the improved version of the PSO
network (IPSONet) for architecture and weight process. Yu, Wang & Xi (2008), the
authors presented the ESPNet result of the integration of PSO and DPSO (Kennedy &
Eberhart, 1997) having flexible nature. PSO and DPSO dynamically adjust FNN topology,
and self-addictiveness helps fine-tune the model. In Ludermir, Yamazaki & Zanchettin
(2006), an integrated TS and SA approach was used to optimize a single-layer neural
network. Gepperth & Roth (2006) optimized ANN architecture using a multi-evolutionary
process.

In contrast, a novel approach GaTSa (Zanchettin, Ludermir & Almeida, 2011),
integrates a genetic algorithm (GA), Tabu search (TS), and simulated annealing (SA) to
optimize weight and architecture. In this method, GA worked constructively while TA and
SA worked in a pruning way. In (Jaddi, Abdullah & Hamdan, 2015b), the authors present a

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 3/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

new approach to finding optimal ANN topology and weights. Jaddi, in the same
experiment, applied the Taguchi method to fine-tune the architecture. Later, the same
experiment was performed with a multi-population-based cooperative bat algorithm
(Jaddi, Abdullah & Hamdan, 2015a). Moreover, the authors (Jaddi, Abdullah & Hamdan,
2016) present a new dynamic model based on a genetic algorithm (GADNN). The
representation contains two vectors; the first vector represents the hidden layers and
individual neurons, while another represents weights according to the structure. The latest
review in this domain can be seen in (Gupta & Raza, 2019). Gupta & Raza (2020) used
Tabu Search and GDM to augment neural network architecture having more than one
hidden layer. In this work, the author explores each layer exhaustively to search for optimal
neurons for that particular layer. Finally, the algorithm decides how many layers and their
respective neurons are necessary for a particular dataset. This experiment was performed
over four benchmark datasets and shows that the proposed algorithm improves results.
Later, the same experiment was performed using Bat Algorithm (Gupta & Raza, 2022).
Pervaiz et al. (2021) shows a systematic analysis of PSO in health care. Bangyal et al. (2021)
used a population-based algorithm for solving global optimization problems. Kuo,
Kuruoglu & Chan (2022) developed a neural network design using simulated annealing
rather than back-propagation for branch weight training.

In this literature recapitulation, we found a few critical flaws in FNN model
optimization; they can be listed as (a) nearly all the algorithms work only for a single
hidden layer neural network, with less dedication in the case of deep feedforward category,
(b) merging and pruning techniques needs more devotion in pre-defining strategies, i.e.,
when and how to reject or accept hidden neurons in FNN and (c) In other algorithms the
size of chromosomes is fixed which affect the performance; the manual description of
chromosome dimension is problem specific.

The novelty of this article is to propose a hybrid method for optimizing hidden layers
with their respective processing units, which can also work in the case of deep feedforward
neural networks where hidden layers are more than one and the network could be more
complex. This work will automatically increase or decrease the size of FNN architecture on
the basis of probability (Algorithm 3).

PROPOSED METHOD
The aim of this section is to get introduce the Bat algorithm and Tabu search method. This
section first includes the features of the Bat algorithm and explains the working of Bat with
all of its equations and constants. Second, this section defines Tabu search with its
properties and finally explains the working of our proposed method (BatTS).

Bat algorithm
The bat algorithm (Yang, 2010) is a metaheuristic, swarm intelligence-based method. The
algorithm is inspired by the echolocation behavior of microbats when it helps them find
distances between themselves and their prey. In this algorithm, each bat has specific
properties, i.e., frequency (f), velocity (v), position (x), loudness (A), and pulse rate (r).
Initially, bats start randomly flying with a thunderous sound pulse and focus on the sound

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 4/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

that bounced back from the object. The bounced-backed echo will tell about the distance,
size, etc. The benefit of the bat algorithm is that it combines a swarm-based approach with
a local search. The progressive iterations update each bat’s frequency, velocity, and
position. In contrast, pulse and loudness adjusted only after accepting the new solution.
The adjustment in frequency, velocity, and position can be made based on the following
equations:

fi ¼ fmin þ fmax � fminð Þb (1)

vti ¼ vt�1i þ xt�1i � xtgbest

� �
fi (2)

xti ¼ xt�1i þ vti (3)

where b 2 0; 1½ � is a random number, fi represents the frequency of the i
th bat, velocity and

positions of the ith bat is denoted by vi and xi correspondingly. Also, xtgbest is global best
during iteration ‘t’.

Here a local search approach is applied to improve the variety of possible solutions
based on certain conditions in the bat algorithm. Once the solution satisfies the condition,
the random walk (Eq. (4)) strategy is used to populate a new solution:

xnew ¼ xold þ eAt (4)

In Eq. (4), e represents a random number between the range of [−1, −1], and ‘At’

represents the mean loudness of the population in tth iteration. As the bat moves toward its
prey, typically, its loudness reduces, and its pulse rate rises. Loudness and pulse rate can be
updated by using the following equations:

Atþ1
i ¼ / At

i (5)

rtþ1i ¼ r0i 1� exp �ctð Þ½ � (6)

In Eqs. (5) and (6), /, and c are the constant where / 2 0; 1½ � and c > 0.

Tabu search algorithm
Tabu search is also a metaheuristic algorithm for finding the optimal global solution. The
Tabu search method helps evaluate a group of solutions in each iteration, so it can reduce
the cost of computation and can rapidly converge to an optimal solution. In Tabu search, if
a solution is not improving, it can accept the lousy solution. This accepting bad solution
property in Tabu search helps not get stuck in local minima/maxima. Tabu search
algorithm, at each iteration, finds a local optimal s’ and then compares this s’ with sglobal. If
s’ < sglobal, then sglobal is updated by s’. To minimize repetition, the technique preserves a list
(tabu list) of previously visited solutions.

Optimization methodology
This article integrates the Bat algorithm with the Tabu search and GDM algorithm (Fig. 1).
This work aims to find the best solution sBest from the given set of solutions S, where
f(sBest) ≤ f(s’), f is the objective function ∀s’∈ S. The proposed methodology starts with
Algorithm 1 having a population of size ‘popSize.’ Then, the population in the said

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 5/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

algorithm is initialized randomly, keeping in mind that ‘Bat[p]’ (actually the position of bat
‘p’) represents the neural network architecture. Bat[p] is a single-dimensional list, where
the index of the list means hidden layer and the element represents respective processing
units. Bat[p] initially has one hidden layer with randomly initialized processing units. The
proposed algorithm works for maximum ‘Iter’ iterations and uses the tabu search to
generate the local best solution rather than random generation. If the new best f(Bat[p]) is
better than the current best f(s’) and has high loudness, then accept the new best, update
this to the current best and increase pulse and decrease the loudness. Finally, update the
current s’ best with sBest if f(s’) < f(sBest).

Figure 1 Flowchart of the proposed BatTS algorithm. Full-size DOI: 10.7717/peerj-cs.1194/fig-1

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 6/18

http://dx.doi.org/10.7717/peerj-cs.1194/fig-1
http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

Algorithm 1 Pseudocode for the proposed methodology.

INPUT: #input neurons; #output neurons; popSize; maxHid; Iter; minFreq; maxFreq

#input neurons; #output neurons; popSize; maxHid; Iter; minFreq; maxFreq

minLoud; maxLoud; minPulse; maxPulse; minVel; maxVel; trainData; testData

OUTPUT: globalBest½� //contains layer-wise best
for Layer in maxHid :

I #input neurons

O #output neurons

for p in popSize : //Initialization of Population

neuList ½� NULL

velList ½� NULL

for neurons in Layer : //calculate hidden neuron and velocity layer-wise

a I þ Oð Þ=2
b I þ Oð Þ � 2=3

neuList neurons½ � random a; bð Þ
velList neurons½ � random minFreq; maxFreqð Þ
I neuList neurons½ �

Bat p½ � neuList½�
Vel½p� velist½�
Freq p½ � random minFreq; maxFreqð Þ
Pulse p½ � random minPulse; maxPulseð Þ
Loud p½ � random minLoud; maxLoudð Þ

s0 calculateFitness Bat popSize½ �; Layerð Þ //Using the GDM training Algorithm with a
momentum of 0.7, s0 is a structure of Layer; neuList½�; training error and testing error

s0 is the initial Solution update with sBest

for x in Iter :

for b in popSize :

generate new solution by adjusting Freq; Vel; Bat

using Eqs. (1)–(3)

Control all new bats according to their domain

if Bat b½ � notin domain :

Bat b½ � update Bat by random walk

s0 calculateFitness Bat b½ �; Layerð Þ
if rand > Pulse b½ � :

Bat b½ �; f Bat b½ �ð Þ tabuSearch Bat b½ �ð Þ //Calling Algorithm 2

//tabu search will return a new best Bat

if rand < Loud b½ � and f Bat b½ �ð Þ < f s0ð Þ :

s0 f Bat b½ �ð Þ
increase pulse b½ � and decrease Loud b½ �using Eqs. (5) and (6)

(Continued)

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 7/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

Algorithm 1 shows the proposed methodology with its pseudocode. For proper
implementation, there is a particular condition that must be fulfilled first, like
(a) representation of the solution, (b) fitness function, (c) generation of population, and
(d) stopping conditions.

Representation of solution
In this article, FNN with various hidden layers is taken for evaluation. All the connections
are in the forward direction with no loop. Each neural network combines an Input layer
with ‘I’ processing units, various hidden layers where Hi represents hidden units at the ith

layer, and an output layer with ‘O’ processing units. Basically, ‘I’ and ‘O’ are problem-
dependent; the main task is to estimate the ideal number of hidden layers with their
corresponding neurons. Mathematically, the structure of a neural network is
represented as:

Nnet � I � H1þ B � H1ð Þ þ H1� H2þ B � H2ð Þ þ . . .þ Hmax � Oþ B � Oð Þ (7)

where B belongs to bias, in the proposed algorithm, every solution is represented by an
array of four sections. The first section of the solution represents the number of hidden
layers,HL, the second section of the solution represents a list of hidden neurons layer-wise,
HN, the third section of the solution represents training error, Ttr, and the fourth section or
the last section represents Tte testing error. Mathematically, the solution can be shown as:

S � HL; HN ; Ttr; Tteð Þ (8)

HN � H1; H2; H3; . . . ; Hmaxð Þ; Hi 2 N (9)

HL � 1; 2; 3; . . . ; maxð Þ and
Ttr; Tte 2 < (10)

where < represents the real numbers set and N represents the natural numbers set. In the
representation, input and output units can be estimated by a given problem. In Contrast, at
hidden levels, processing units are initialized by choosing randomly between the range of

two thumb rules i.e.,
I þ Oð Þ
2

; I þ Oð Þ � 2
3

� �
. The weights are initialized using a uniform

distribution [−1.0, +1.0].

Fitness function
The accuracy of a populated model can be evaluated by using a fitness function. Recording
the model’s fitness in all iterations is mandatory in any evaluation. Finally, it will return the

Algorithm 1 (continued)

if s0, sBest :

update sBest s0

globalBest Layer½ � sBest

Return Optimal globalBestð Þð Þ

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 8/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

model that optimizes that objective function. For example, considering the data is of ‘EN’
classes, let the true class of instance ‘d’ from training set ‘T’ can be defined as:

� dð Þ 2 1; 2; 3; . . . ; ENf g 8d 2 T (11)

In this article, the proposed methodology implemented the “winner takes all” way,
meaning the number of classes CN, and neurons at output layers are equal.

If OP(d) is the output value of neuron ‘P’ at the output layer, for instance, ‘d’, then the
class for the given sample ‘d’ can be:

u dð Þ � argmaxp 2 1;2;3; ...; CNf gOP dð Þ 8d 2 T (12)

The error in the network, for instance, ‘d’ can be defined as follows:

e dð Þ � 1; if � dð Þ 6¼ u dð Þ
0; if � dð Þ ¼ u dð Þ

�
(13)

Hence, for the training set T, the classification error i.e., incorrectly classified instances,
can be calculated in percentage and represented as:

E Tð Þ � 100
#T

X
d 2T

e dð Þ (14)

where #T is the number of instances in a given set T.

Generation of population
In the proposed methodology, the generation of the population can occur in four different
cases:

Case 1: This is the case when methodology starts for a particular hidden layer. Other
population parameters are randomly initialized except for bat position (Bat [p]). At the
same time, the bat position (represents network architecture) is initialized by choosing a

number between the range of
I þ Oð Þ
2

; I þ Oð Þ � 2
3

� �
. (Bat [x, y] means solution having

two hidden layers, and x, y is the respective neurons).
Case 2: After getting the initial solution, the population of the bat is used to generate

new solutions by using Eqs. (1)–(3).
Case 3: If the newly generated bat is not in the domain (the number of hidden neurons

for any layer going outside the range), then use Eq. (4) to generate a new bat.
Case 4: When the Pulse of any bat is lesser, use tabu search to generate a new bat as

shown in Algorithm 2.
For better exploration, tabu search divides the list of generated neighbors (Algorithm 3)

into two parts. The first part increases the hidden neurons by ‘K,’ and the second part
decrease the hidden neurons by ‘K,’ see Eqs. (15) and (16):

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 9/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

HN ¼ Kþ; r � p
no change; r , p

�
(15)

and,

HN ¼ K�; r � p
no change; r , p

�
(16)

Here, ‘r’ is the uniformly distributed [0, 1] random number, and ‘p’ is the probability of
change in neurons.

Stopping criteria
In this work, the optimizations stop if it reaches maximum iteration. Furthermore, there
are some other conditions also when the algorithm will stop updating the hidden neurons
and switch to successive steps: (i) when it tries to add hidden neurons using Eq. (15) while
the network reaches its maximum limit, (ii) when it tries to subtract hidden neurons using
Eq. (16) while the network reaches to its lower limit.

Algorithm 2 Pseudocode for Tabu Search.

INPUT: Bat b½ �; s0; Layer // Received from Algorithm 1

INITIALIZE: neuList½� NULL

tabuTenure 4; tbest s0

tabuList tbest ; tabuTenure½ �½ �
for x in range maxIter :

t0 generateNeighbour Bat b½ �ð Þ : //calling Algorithm 3

t0is the best with minimun testing error from neighbour of Bat b½ �
l len tabuListð Þ
Decrease tabuTenure of tabuList by one in last four solution

if f t0ð Þ < f tbestð Þ :
tabuList l þ 1½ � t0; tabuTenure½ �½ �
tbest t0

Bat b½ � t0

else :

if t0 ! ¼ tabuListð ÞOR t0 ¼¼ tabuList AND tabuTenure ¼¼ 0ð Þð Þ :
tabuList l þ 1½ � t0 ; tabuTenure½ �½ �
Bat b½ � t0

else :

Bat b½ � t0

Return tbestð Þ// tbest is the structure of Layer; neuList½�; training error and testing error

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 10/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

DATASETS
This section describes the datasets used in this article to validate the proposed
methodology. This proposed methodology aims to optimize DFNN i.e., a neural network
with multiple hidden layers, so it is mandatory to opt for a dataset with an extensive range
of input features that can be classified into multiple classes. Otherwise, with a small feature
dataset, the proposed algorithm will not be validated efficiently and will converge to a
simple neural network. We have used four different benchmark datasets comprised of

Algorithm 3 Pseudocode for generating neighbors.

INPUT: Bat, Layer // Bat contains the number of neurons

INITIALIZE: Smax ; p ; K; candidateList Smax½ � NULL

for j in range Smax=2 :

g NULL

for i in range Layer :

r ¼ random 0; 1ð Þ
if r � pð Þ : // p is a probability

Increase number of neurons by 0K 0 at that layer

else :

No change with neurons at that layer

update neuList for candidateList j½ �
g calculateFitness candidateList j½ �ð Þ //Use GDM with Momentum 0.7

update g of candidate j½ �
//candidateList collection of Layer; neuList; testing; and training error

for j in range Smax=2 :

g NULL

for i in range Layer :

r ¼ random 0; 1ð Þ
if r � pð Þ :

Decrease number of neurons by 0K 0 at that layer

else :

No change with neurons at that layer

update neuList for candidateList jþ Smax=2

� �
g calculateFitness candidateList j½ � þ Smax=2

	

//Use GDM with Momentum 0.7

update g of candidate j½ �
Return best of candidateList

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 11/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

different numbers of examples, features, and classes. A summary of the used datasets is
shown in Table 1.

Experimental result
As discussed in previous sections, choosing the correct architecture for a neural network is
crucial and time-consuming. To estimate the configuration, hit and trial experiments are in
trend, but this will not guarantee ideal architecture. Therefore, this section includes the
findings in random experiments and BatTS experiments.

All experiments are implemented in R using the H2O package. The implemented
methodology uses multinomial distribution, 0.2 dropout ratio, 0.7 momentum term, and
0.0001 learning rate. Each model is validated by using 20% of each dataset as a validation
dataset.

Random experiments
Generally, in random trial-based experiments, the user repeatedly selects a neural network
model by changing its parameters manually and running these models on a given dataset.
Finally, the best one based on minimum testing/training error is chosen. Here is a random
experiment for every dataset, we run 30 different topologies for a single hidden layer, then
30 different topologies for two hidden layers, and so on up to maxHid = 5. We fixed the
maximum hidden layer (maxHid) = 5 which can be increased on the basis of problem
complexity. Neurons for hidden layers were selected randomly by using a thumb rule
[(I+O)/2, (I+O) × 2/3]. Where ‘I’ is the Input features and ‘O’ is the output classes. At the
end, we choose the best architecture on the basis of minimum testing error. Every network
selected for evaluation was fully connected and trained by using GDM. The results are
shown in Table 2.

For the face classification, the optimal architecture returns by random experiments
having two hidden layers with {499, 262} hidden neurons. The topology gives a 12.561%
mean square error (MSE). The best architecture for the gas drift dataset received two
hidden layers holding {83, 52} units andMSE as 6.473%. In the case of the MNIST data, the
MSE of 1.839% was calculated with single hidden layer architecture and 521 hidden units.
The best performance for the ISOLET dataset measured MSE as 2.266%. The topology for
ISOLET using random experiments received with two hidden layers having {403, 211}
neurons for respective hidden layers.

Table 1 Datasets statistics considered for the experiments.

Dataset Examples Features Classes References

Face 1,846 784 2 Ma, Correll & Wittenbrink (2015)

Gas-drift 13,910 128 6 Vergara et al. (2012), Rodriguez-Lujan et al. (2014)

MNIST 70,000 784 10 LeCun & Cortes (2010)

ISOLET 7,797 617 26 Dua & Graff (2019)

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 12/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

BatTS experiments
The BatTS starts with one hidden layer network and randomly chosen hidden units. After
creating this as the initial topology, the fitness function is calculated with the help of the
H2O package and recorded as the best solution. Every solution here in this BatTS is iterated
by Iter = 10, and then in every iteration, every solution will create a population of size,
popSize = 20. If the generated solution is not in the domain (i.e., hidden units are going
outside the lower and upper range), then a random walk is used to create the new solution
and adjust this in the domain for any bat having a Pulse less than a certain threshold, Tabu
search (Algorithm 2) help to generate a new solution and return its fitness value. A bat is
only accepted if fitness is optimal and loudness is high. Once the solution is accepted, the
Pulse is increased, and Loudness, Loud is decreased. The BatTS runs for maxHid = 5. The
probability of changing neurons that is, one can increase or decrease (in Algorithm 3), p =
0.5. The size of the architecture is increased or decreased by K% = 3.

The experimental statistics are presented in Table 2. In the case of the face dataset,
BatTS proposes architecture with HL= 2 and the respective neurons are {423,259}. The
mean square error (MSE in percentage) was 9.281%. For Gas-Drift, the optimal
architecture suggested by the proposed algorithm was HL = 2 with {83,56} hidden

Table 2 Experimental statistics in terms of mean square error (MSE). Bold shows optimal architecture.

Data set HL Proposed methodology Tabu search based algorithm (Gupta &
Raza, 2020)

Random experiments (Gupta & Raza, 2020)

Hidden Neurons at each
layer

MSE (%) Hidden Neurons at each
layer

MSE (%) Hidden Neurons at each
layer

MSE (%)

Train Test Train Test Train Test

Face 1 508 2.783 10.605 515 2.612 11.396 476 1.022 13.976

2 423, 259 7.429 9.281 437, 260 8.0481 10.385 499, 262 5.93 12.561

3 512, 273, 138 9.352 10.785 506, 261, 140 9.568 11.438 398, 217, 134 10.14 13.387

4 460, 248, 136, 88 8.021 10.916 454, 261, 148, 73 8.491 11.007 497, 254, 168, 100 9.65 14.17

5 508, 267, 157, 95, 58 11.073 12.253 445, 250, 156, 189, 48 11.651 13.176 490, 245, 136, 80, 53 11.799 14.212

Gas-
Drift

1 85 5.301 6.041 75 5.317 6.347 82 5.611 6.875

2 83, 56 3.836 4.208 90, 62 4.986 5.024 83, 52 5.061 6.374

3 75, 48, 30 6.118 5.632 78, 53, 36 6.046 6.295 81, 52, 33 5.559 7.006

4 81, 52, 36, 22 10.4077 9.58 74, 49, 35, 25 10.5086 10.707 75, 48, 32, 21 12.0165 11.922

5 78, 47, 32, 20, 14 25.856 23.472 79, 45, 33, 25, 19 25.455 25.784 86, 54, 35, 24, 17 36.5256 36.212

MNIST 1 522 0.628 1.6501 518 0.651 1.823 521 0.761 1.893

2 528, 278 0.742 1.898 547, 225 0.645 1.902 416, 228 0.937 1.921

3 512, 328, 210 1.206 1.907 520, 289, 165 1.111 1.926 415, 214, 126 1.031 2.016

4 494, 298, 175, 95 1.264 2.001 532, 302, 130, 75 1.289 2.057 442, 262, 141, 81 1.308 2.008

5 448, 278, 173, 110, 61 4.438 3.131 490, 274, 158, 103, 64 3.232 3.081 406, 258, 150, 84, 53 8.095 7.843

ISOLET 1 348 0.073 2.18 335 0.0301 2.069 357 0.022 2.289

2 355, 198 0.247 1.532 362, 231 0.272 1.798 403, 211 0.255 2.664

3 414, 261, 155 1.994 2.186 397, 212, 119 0.851 2.393 322, 170, 103 1.199 2.635

4 393, 234, 126, 79 3.365 4.135 406, 254, 155, 100 3.312 4.655 356, 204, 137, 72 10.4142 11.63

5 424, 263, 157, 94, 63 92.276 91.334 402, 227, 135, 78, 46 92.448 91.484 381, 240, 132, 78, 48 92.452 92.4643

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 13/18

http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

processing units, and the MSE was 4.208%. In the case of MNIST, MSE return by the
algorithm was 1.6501, while the optimal topology has HL= 1 with {522} hidden units.
For the ISOLET, the optimal configuration required Hidden layers, HL = 2 and HN =
{355, 198}, and the MSE noted as 1.532%.

The fitness function is evaluated based on testing error rather than training error.
Table 2 shows that BatTS performed better than Random experiments and the Tabu-based
approach (Gupta & Raza, 2020). Figs. 2 and 3 present the performance comparison of the
proposed BatTS method with the Tabu search based method and random experiments on
the four benchmark datasets which clearly shows a significant reduction in the
classification error.

Figure 2 Performance of the BatTS and its comparison with Tabu search based methodology and random experiments.
Full-size DOI: 10.7717/peerj-cs.1194/fig-2

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 14/18

http://dx.doi.org/10.7717/peerj-cs.1194/fig-2
http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

CONCLUSION
This work aims to estimate the ideal number of hidden layers with respective hidden units
for deep feedforward neural networks. We consider minimum testing mean square error
for the optimal network. Another important task was to take a dataset with significant
input features that must be classified into large classes. If the input size of the dataset is less
than no meaning of deep feedforward neural network, it may converge to a simple
network. The methodology shows that if the bat is integrated with TS, it can generate
optimal topology, which can be hard to predict in hit and trial experiments. Table 2 shows
that BatTS finds a better network than the tabu-based approach.

The proposed methodology also shows that there is no requirement for predefining the
way of merging and pruning. This strategy does not fix the size of the solution which can
affect the performance of the methodology. The network considered here is fully
connected with more than one hidden layer; the algorithm can be improved if applied to
different convolutional neural networks (CNN) like VGG, DenseNet, or ResNet. In these
variants, the FNN portion is fixed, and the BatTS may also show some better findings.
Moreover, many other natures inspired algorithms like PSO, Ant Colony Optimization,
etc., may help develop this kind of methodology for optimal DFNN architecture.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Khalid Raza is an Academic Editor for PeerJ.

Author Contributions
� Sichen Pan conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

Figure 3 Comparison of BatTS with Tabu search based methodology and random experiments.
Full-size DOI: 10.7717/peerj-cs.1194/fig-3

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 15/18

http://dx.doi.org/10.7717/peerj-cs.1194/fig-3
http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

� Tarun Kumar Gupta conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, and
approved the final draft.
� Khalid Raza analyzed the data, prepared figures and/or tables, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The code and the data are available at Zenodo: Tarun Kumar Gupta. (2022). BatTS
[Data set]. Zenodo. https://doi.org/10.5281/zenodo.7321656.

REFERENCES
Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic

Control 19(6):716–723 DOI 10.1109/TAC.1974.1100705.

Anders U, Korn O. 1999. Model selection in neural networks. Neural Networks 12(2):309–323
DOI 10.1016/S0893-6080(98)00117-8.

Aras S, Kocakoç TD. 2016. A new model selection strategy in time series forecasting with artificial
neural networks: IHTS. Neurocomputing 174(2):974–987 DOI 10.1016/j.neucom.2015.10.036.

Augasta MG, Kathirvalavakumar T. 2011. A novel pruning algorithm for optimizing feedforward
neural network of classification problems. Neural Processing Letters 34(3):241–258
DOI 10.1007/s11063-011-9196-7.

Bangyal WH, Nisar K, Ibrahim AABA, Haque MR, Rodrigues JJPC, Rawat DB. 2021.
Comparative analysis of low discrepancy sequence-based initialization approaches using
population-based algorithms for solving the global optimization problems. Applied Sciences
(Switzerland) 11(16):7591 DOI 10.3390/app11167591.

Carvalho M, Ludermir TB. 2007. Particle swarm optimization of neural network architectures and
weights. In: Proceedings - 7th International Conference on Hybrid Intelligent Systems, HIS 2007.

Dua D, Graff C. 2019. ISOLET Dataset. Irvine, CA: University of California, School of Information
and Computer Science. Available at https://archive.ics.uci.edu/ml/datasets/isolet.

Frean M. 1990. The upstart algorithm: a method for constructing and training feedforward neural
networks. Neural Computation 2(2):198–209 DOI 10.1162/neco.1990.2.2.198.

Gepperth A, Roth S. 2006. Applications of multi-objective structure optimization.
Neurocomputing 69(7–9):701–713 DOI 10.1016/j.neucom.2005.12.017.

Glover F. 1986. Future paths for integer programming and links to artificial intelligence. Computers
and Operations Research 13(5):533–549 DOI 10.1016/0305-0548(86)90048-1.

Gorin AL, Mammone RJ. 1994. Introduction to the special issue on neural networks for speech
processing. IEEE Transactions on Speech and Audio Processing 2(1):113–114
DOI 10.1109/89.260355.

Gupta TK, Raza K. 2019. Optimization of ANN architecture: a review on nature-inspired
techniques. In: Machine Learning in Bio-Signal Analysis and Diagnostic Imaging. Cambridge:
Academic Press.

Gupta TK, Raza K. 2020. Optimizing deep feedforward neural network architecture: a tabu search
based approach. Neural Processing Letters 51(3):2855–2870 DOI 10.1007/s11063-020-10234-7.

Gupta TK, Raza K. 2022. Optimization of artificial neural network: a bat algorithm-based
approach. In: Intelligent Systems Design and Applications. Vol. 418. Cham: Springer, 286–295.

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 16/18

https://doi.org/10.5281/zenodo.7321656
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1016/S0893-6080(98)00117-8
http://dx.doi.org/10.1016/j.neucom.2015.10.036
http://dx.doi.org/10.1007/s11063-011-9196-7
http://dx.doi.org/10.3390/app11167591
https://archive.ics.uci.edu/ml/datasets/isolet
http://dx.doi.org/10.1162/neco.1990.2.2.198
http://dx.doi.org/10.1016/j.neucom.2005.12.017
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1109/89.260355
http://dx.doi.org/10.1007/s11063-020-10234-7
http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

Han H-G, Qiao J-F. 2013. A structure optimisation algorithm for feedforward neural network
construction. Neurocomputing 99(3):347–357 DOI 10.1016/j.neucom.2012.07.023.

Hwang JN, Kung SY, Niranjan M, Principe JC. 1997. The past, present, and future of neural
networks for signal processing: the neural networks for signal processing technical committee.
IEEE Signal Processing Magazine 14(6):28–48 DOI 10.1109/79.637299.

Islam MM, Sattar MA, Amin MF, Yao X, Murase K. 2009. A new constructive algorithm for
architectural and functional adaptation of artificial neural networks. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics 39(6):1590–1605
DOI 10.1109/TSMCB.2009.2021849.

Jaddi NS, Abdullah S, Hamdan AR. 2015a. Multi-population cooperative bat algorithm-based
optimization of artificial neural network model. Information Sciences 294:628–644
DOI 10.1016/j.ins.2014.08.050.

Jaddi NS, Abdullah S, Hamdan AR. 2015b.Optimization of neural network model using modified
bat-inspired algorithm. Applied Soft Computing Journal 37:71–86
DOI 10.1016/j.asoc.2015.08.002.

Jaddi NS, Abdullah S, Hamdan AR. 2016. A solution representation of genetic algorithm for
neural network weights and structure. Information Processing Letters 116(1):22–25
DOI 10.1016/j.ipl.2015.08.001.

Jain AK, Duin RPW, Mao J. 2000. Statistical pattern recognition: a review. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(1):4–37 DOI 10.1109/34.824819.

Kennedy J, Eberhart RC. 1997. Discrete binary version of the particle swarm algorithm. In:
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Vol. 5.
Piscataway: IEEE.

Khaw JFC, Lim BS, Lim LEN. 1995.Optimal design of neural networks using the Taguchi method.
Neurocomputing 7(3):225–245 DOI 10.1016/0925-2312(94)00013-I.

Kuo CL, Kuruoglu EE, Chan WKV. 2022. Neural network structure optimization by simulated
annealing. Entropy 24(3):348 DOI 10.3390/e24030348.

LeCun Y, Cortes C. 2010. MNIST handwritten digit database. Atlanta: AT&T Labs. Available at
Http://Yann.Lecun.Com/Exdb/Mnist.

Li Y, Fu Y, Zhang SW, Li H. 2009. Improved algorithm of the back propagation neural network
and its application in fault diagnosis of air-cooling condenser. In: 2009 International Conference
on Wavelet Analysis and Pattern Recognition, ICWAPR 2009.

Ludermir TB, Yamazaki A, Zanchettin C. 2006. An optimization methodology for neural
network weights and architectures. IEEE Transactions on Neural Networks 17(6):1452–1459
DOI 10.1109/TNN.2006.881047.

Ma DS, Correll J, Wittenbrink B. 2015. The Chicago face database: a free stimulus set of faces and
norming data. Behavior Research Methods 47(4):1122–1135 DOI 10.3758/s13428-014-0532-5.

Mézard M, Nadal J-P. 1989. Learning in feedforward layered networks: the tiling algorithm.
Journal of Physics A: Mathematical and General 22(12):2191–2203
DOI 10.1088/0305-4470/22/12/019.

Murata N, Yoshizawa S, Amari SI. 1994. Network information criterion—determining the
number of hidden units for an artificial neural network model. IEEE Transactions on Neural
Networks 5(6):865–872 DOI 10.1109/72.329683.

Pervaiz S, Ul-Qayyum Z, Bangyal WH, Gao L, Ahmad J. 2021. A systematic literature review on
particle swarm optimization techniques for medical diseases detection. Computational and
Mathematical Methods in Medicine 2021:5990999 DOI 10.1155/2021/5990999.

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 17/18

http://dx.doi.org/10.1016/j.neucom.2012.07.023
http://dx.doi.org/10.1109/79.637299
http://dx.doi.org/10.1109/TSMCB.2009.2021849
http://dx.doi.org/10.1016/j.ins.2014.08.050
http://dx.doi.org/10.1016/j.asoc.2015.08.002
http://dx.doi.org/10.1016/j.ipl.2015.08.001
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1016/0925-2312(94)00013-I
http://dx.doi.org/10.3390/e24030348
Http://Yann.Lecun.Com/Exdb/Mnist
http://dx.doi.org/10.1109/TNN.2006.881047
http://dx.doi.org/10.3758/s13428-014-0532-5
http://dx.doi.org/10.1088/0305-4470/22/12/019
http://dx.doi.org/10.1109/72.329683
http://dx.doi.org/10.1155/2021/5990999
http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

Raza K, Hasan AN. 2015. A comprehensive evaluation of machine learning techniques for cancer
class prediction based on microarray data. International Journal of Bioinformatics Research and
Applications 11(5):397 DOI 10.1504/IJBRA.2015.071940.

Rodriguez-Lujan I, Fonollosa J, Vergara A, Homer M, Huerta R. 2014. On the calibration of
sensor arrays for pattern recognition using the minimal number of experiments. Chemometrics
and Intelligent Laboratory Systems 130(4):123–134 DOI 10.1016/j.chemolab.2013.10.012.

Schwarz G. 2007. Estimating the dimension of a model. The Annals of Statistics 6(2):461–464
DOI 10.1214/aos/1176344136.

Selmic RR, Lewis FL. 2002. Neural-network approximation of piecewise continuous functions:
Application to friction compensation. IEEE Transactions on Neural Networks 13(3):745–751
DOI 10.1109/TNN.2002.1000141.

Tortum A, Yayla N, Çelik C, Gökdağ M. 2007. The investigation of model selection criteria in
artificial neural networks by the Taguchi method. Physica A: Statistical Mechanics and its
Applications 386(1):446–468 DOI 10.1016/j.physa.2007.07.064.

Vergara A, Vembu S, Ayhan T, Ryan MA, Homer ML, Huerta R. 2012. Chemical gas sensor
drift compensation using classifier ensembles. Sensors and Actuators, B: Chemical
166–167(1–3):320–329 DOI 10.1016/j.snb.2012.01.074.

Yang XS. 2010. A new metaheuristic bat-inspired algorithm. Studies in Computational Intelligence
284:65–74 DOI 10.1007/978-3-642-12538-6.

Yu J, Wang S, Xi L. 2008. Evolving artificial neural networks using an improved PSO and DPSO.
Neurocomputing 71(4–6):1054–1060 DOI 10.1016/j.neucom.2007.10.013.

Yu J, Xi L, Wang S. 2007. An improved particle swarm optimization for evolving feedforward
artificial neural networks. Neural Processing Letters 26(3):217–231
DOI 10.1007/s11063-007-9053-x.

Zanchettin C, Ludermir TB, Almeida LMI. 2011. Hybrid training method for MLP: optimization
of architecture and training. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 41(4):1097–1109 DOI 10.1109/TSMCB.2011.2107035.

Zeng X, Yeung DS. 2006. Hidden neuron pruning of multilayer perceptrons using a quantified
sensitivity measure. Neurocomputing 69(7–9):825–837 DOI 10.1016/j.neucom.2005.04.010.

Zhang GP. 2000. Neural networks for classification: a survey. IEEE Transactions on Systems, Man
and Cybernetics Part C: Applications and Reviews 30(4):451–462 DOI 10.1109/5326.897072.

Pan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1194 18/18

http://dx.doi.org/10.1504/IJBRA.2015.071940
http://dx.doi.org/10.1016/j.chemolab.2013.10.012
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1109/TNN.2002.1000141
http://dx.doi.org/10.1016/j.physa.2007.07.064
http://dx.doi.org/10.1016/j.snb.2012.01.074
http://dx.doi.org/10.1007/978-3-642-12538-6
http://dx.doi.org/10.1016/j.neucom.2007.10.013
http://dx.doi.org/10.1007/s11063-007-9053-x
http://dx.doi.org/10.1109/TSMCB.2011.2107035
http://dx.doi.org/10.1016/j.neucom.2005.04.010
http://dx.doi.org/10.1109/5326.897072
http://dx.doi.org/10.7717/peerj-cs.1194
https://peerj.com/computer-science/

	BatTS: a hybrid method for optimizing deep feedforward neural network
	Introduction
	Related work
	Proposed method
	Datasets
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

