
Solving optimization problems simultaneously: the variants of
the traveling salesman problem with time windows using
multifactorial evolutionary algorithm
Ha-Bang Ban Corresp., 1 , Dang-Hai Pham Corresp. 1

1 Computer Science, Hanoi University of Science and Technology, Hanoi, Vietnam

Corresponding Authors: Ha-Bang Ban, Dang-Hai Pham
Email address: BANGBH@SOICT.HUST.EDU.VN, HaiPD@soict.hust.edu.vn

We study two problems called the Traveling Repairman Problem (TRPTW) and Traveling
Salesman Problem (TSPTW) with time windows. The TRPTW wants to minimize the sum of
travel durations between a depot and customer locations, while the TSPTW aims to
minimize the total time to visit all customers. In two problems, the deliveries are made
during a specific time window given by the customers. The difference between the TRPTW
and TSPTW is that the TRPTW takes a customer-oriented view, whereas the TSPTW is
server-oriented. Existing algorithms have been developed for solving two problems
independently in the literature. However, the literature does not have an algorithm that
simultaneously solves two problems. Nowadays, Multifactorial Evolutionary Algorithm
(MFEA) is a variant of the Evolutionary Algorithm (EA), aiming to solve multiple factorial
tasks simultaneously. The main advantage of the approach is to allow transferrable
knowledge between tasks. Therefore, it can improve the solution quality for multitasks.
This paper presents an efficient algorithm that combines the MFEA framework and
Randomized Variable Neighborhood Search (RVNS) to solve two problems simultaneously.
The proposed algorithm has transferrable knowledge between tasks from the MFEA and
the ability to exploit good solution space from RVNS. The proposed algorithm is compared
directly to the state-of-the-art MFEA on numerous datasets. Experimental results show the
proposed algorithm outperforms the state-of-the-art MFEA in many cases. In addition, it
finds several new best-known solutions.

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Solving Optimization Problems1

Simultaneously: The variants of the2

Traveling Salesman Problem with Time3

Windows using Multifactorial Evolutionary4

Algorithm5

Ha-Bang Ban, Dang-Hai Pham6

School of Information and Communication Technology, Hanoi University of Science and7

Technology, Hanoi, Vietnam8

Corresponding author:9

Ha-Bang Ban, and Dang-Hai Pham10

Email address: BangBH@soict.hust.edu.vn; HaiPD@soict.hust.edu.vn11

ABSTRACT12

We study two problems called the Traveling Repairman Problem (TRPTW) and Traveling Salesman

Problem (TSPTW) with time windows. The TRPTW wants to minimize the sum of travel durations

between a depot and customer locations, while the TSPTW aims to minimize the total time to visit

all customers. In two problems, the deliveries are made during a specific time window given by the

customers. The difference between the TRPTW and TSPTW is that the TRPTW takes a customer-

oriented view, whereas the TSPTW is server-oriented. Existing algorithms have been developed for

solving two problems independently in the literature. However, the literature does not have an algorithm

that simultaneously solves two problems. Nowadays, Multifactorial Evolutionary Algorithm (MFEA) is a

variant of the Evolutionary Algorithm (EA), aiming to solve multiple factorial tasks simultaneously. The

main advantage of the approach is to allow transferrable knowledge between tasks. Therefore, it can

improve the solution quality for multitasks. This paper presents an efficient algorithm that combines

the MFEA framework and Randomized Variable Neighborhood Search (RVNS) to solve two problems

simultaneously. The proposed algorithm has transferrable knowledge between tasks from the MFEA and

the ability to exploit good solution space from RVNS. The proposed algorithm is compared directly to

the state-of-the-art MFEA on numerous datasets. Experimental results show the proposed algorithm

outperforms the state-of-the-art MFEA in many cases. In addition, it finds several new best-known

solutions.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1 INTRODUCTION30

1.1 The TSPTW and TRPTW literature31

The TSPTW (S. Dash et al.,2012; M. Gendreau et al.,1998; A. Langevin et al.,1993; R. F. Silva et al.,2010;32

J. N. Tsitsiklis et al.,1992; J. W. Ohlmann et al.,2007), and TRPTW (H. Abeledo et al.,2013; H.B. Ban et al.,2017;33

H.B. Ban et al.,2021; G. Heilporna et al.,2010; J. N. Tsitsiklis et al.,1992) are combinatorial optimization34

problems that have many practical situations. The TRPTW wants to minimize the sum of travel durations35

between a depot and customer locations, while the TSPTW aims to minimize the total time to visit all36

customers. In two problems, the deliveries are made during a specific time window given by the customers.37

Due to time window constraints, the TSPTW and TRPTW are much harder than the traditional TSP and38

TRP.39

The Travelling Salesman Problem with Time Windows (TRPTW) is a popular NP-hard combinatorial40

optimization problem studied much in the literature (Y. Dumas et al.,1995). The algorithms include exact41

and metaheuristic approaches. Langevin et al. (A. Langevin et al.,1993) introduced a two-commodity flow42

formulation to solve the problem. Dumas et al. (Y. Dumas et al.,1995) then used a dynamic programming43

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

approach. Similarly, Focacci et al. (M. Gendreau et al.,1998) brought constraint programming and44

optimization techniques together. Most recently, Dash et al. (S. Dash et al.,2012) propose a method using45

an IP model based on the discretization of time. The results are extremely good: several benchmark46

instances are solved first. Gendreau et al. (M. Gendreau et al.,1998) then proposed an insertion heuristic47

that generated the solution in the first step and improved it in a post-phase using removal and reinsertion48

of vertices. Ohlmann et al. (J. W. Ohlmann et al.,2007) developed simulated annealing relaxing the time49

windows constraints by integrating a variable penalty method within a stochastic search procedure. In this50

work, they developed a two-phase heuristic. In the first phase, a feasible solution was created by using a51

Variable Neighborhood Search (VNS). In the post phase, this solution was improved by using a General52

VNS. Generally speaking, the results from this approach are very promising.53

In the Travelling Repairman Problem with Time Windows (TRPTW), there are an exact algorithm and54

three metaheuristics algorithms in the literature: 1) Tsitsiklis (J. N. Tsitsiklis et al.,1992) proposed a poly-55

nomial algorithm when several customers are bounded; 2) Heilporn et al. (G. Heilporna et al.,2010) then56

developed an exact algorithm and heuristic algorithm to solve the problem; 3) Ban et al. (H.B. Ban et al.,2017; H.B. Ban et57

proposed two metaheuristic algorithms based on Variable Neighborhood Search (VNS) scheme. Their58

experimental results showed the efficiency of the metaheuristic approach.59

1.2 The MFEA literature60

Up to date, several close variants of the MFEA framework are also introduced in the literature. Y.61

Yuan (Q. Xu et al.,2021) firstly developed evolutionary multitasking in permutation-based optimization62

problems. They tested it on several popular combinatorial problems. The experiment results indicated63

the promising scalability of evolutionary multitasking to many-task environments. E. Osaba et al.64

(E. Osaba et al.,2020) proposed a dMFEA-II framework to exploit the complementarities among several65

tasks, often achieved via genetic information transfer. Their algorithm controls the knowledge transfer66

by adjusting the crossover probability value. The technique allows good knowledge to transfer between67

tasks. However, the drawback of the two papers is that there is a lack of a mechanism to exploit the68

good solution space explored by MFEA. Therefore, these algorithms cannot balance exploration and69

exploitation effectively. Recently, Ban et al. (H.B. Ban et al.,2022) have applied the MFEA with RVNS70

to successfully solve two problems, TSP and TRP. Its performance encourages us to use the combination71

to solve the TSPTW and TRPTW. This paper considers these works as a baseline for our research.72

1.3 Our contributions73

Currently, various algorithms have been proposed to solve them. However, they solve each problem74

independently. This paper proposes an algorithm based on the MFEA framework to solve two problems75

simultaneously. The major contributions of this work are as follows:76

• From the algorithmic aspect, we develop a first metaheuristic inspired by the MFEA framework.77

The proposed metaheuristic utilizes the advantages of the MFEA and RVNS. The MFEA with78

the RVNS to have good transferrable knowledge between tasks from the MFEA and the ability to79

exploit good solution spaces from RVNS. Therefore, the proposed algorithm balances exploration80

and exploitation.81

• From the computational aspect, numerical experiments show that the proposed algorithm reaches82

nearly optimal solutions in a short time for two problems simultaneously. Moreover, it obtains83

better solutions than the previous MFEA algorithms in many cases.84

The rest of this paper is organized as follows. Sections 2 and 3 present the literature and preliminary,85

respectively. Section 4 describes the proposed algorithm. Computational evaluations are reported in86

Section 5. Section 7 is conclusions and future work.87

2 THE FORMULATION AND METHODOLOGY88

2.1 The formulation89

We consider an example that describes the difference between two problems in a specific instance. If we90

use the optimal solution of n40w160.002 instance for the TSPTW 1, the objective function cost (using the91

1https://homepages.dcc.ufmg.br/∼ rfsilva/tsptw/

2/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

function cost of the TRPTW) of this solution for the TRPTW is 7519, while the known-best cost for this92

instance for the TRPTW is 6351 (the known-best cost is found by our algorithm). Thus, the difference93

between the two objective function costs is 15.5%. It implies that a good metaheuristic algorithm for94

the TSPTW does not produce a good solution for the TRPTW and vice versa. The above algorithms are95

the best algorithms for two problems. However, they only solve each problem independently but cannot96

simultaneously produce good solutions for two problems.97

We have an complete graph Kn = (V,E), where V = v1,v2, ...,vn is a set of vertices showing the starting98

vertex and customer locations, and E the set of edges connecting the customer locations. Suppose that,99

in a tour T = (v1 = s,v2...,vn), each edge (vi,v j) ∈ E connecting the two vertices vi and v j there exists100

a cost c(vi,v j). This cost represents the travel time between vertex vi and v j. Each vertex vi ∈V has a101

time window [ei, li] indicating when starting service time at vertex vi. This implies that a vertex vi may102

be reached before the start ei, but service cannot start until ei and no latter than li of its time window.103

Moreover, to serve each customer, the salesman spends a mount of time. Let D(vi),S(vi) be the time at104

which service begins and the service time at vertex vi. It is calculated as follows: D(vi) = max{A(vi),ei},105

where A(vk) = D(vi−1)+S(vi−1)+ c(vi−1,vi) is the arrival time at vertex vi in the tour. A tour is feasible,106

if and only if A(vi)f li for all vertices. The objective functions of two problems is defined as follows:107

• In the TSPTW, the salesman must return to s. Therefore, the cost of the tour T is defined as:108

∑
n
i=1 c(vi,vi+1). Note that: vn+1 ≡ s109

• In the TRPTW, we also define the travel duration of vertex vi as the difference between the beginning110

of service at vertex vi and the beginning of service at s: ti = D(vi)−D(s). The cost of the tour T is111

defined: ∑
n
i=2 ti.112

Two problems consist of determining a tour, starting at the starting vertex v1, minimizing the cost of the113

tour overall vertices while respecting time windows. First, note that: the man must start and end at vertex114

v1.115

2.2 Our methodology116

For NP-hard problems, we have three approaches to solve the problem, specifically, 1) exact algorithms,117

2) approximation algorithms, and 3) heuristic (or metaheuristic) algorithms:118

• The exact approaches find the optimal solution. However, they are exponential time algorithms in119

the worst case.120

• An α-approximation algorithm generates a solution that has a factor of α of the optimal solution.121

• Heuristic (metaheuristic) algorithms perform well in practice and validate their performance through122

experiments. This approach is suitable for a problem with large sizes.123

Previously, several metaheuristics have been proposed to solve the TSPTW (Y. Dumas et al.,1995; F. Focacci et al.,2002;124

and the TRPTW (H.B. Ban et al.,2017; H.B. Ban et al.,2021; G. Heilporna et al.,2010; J. N. Tsitsiklis et al.,1992).125

However, they are developed to solve each problem independently and separately. Therefore, they cannot126

solve both two problems well simultaneously. When we run the two best algorithms for two tasks127

independently, there is no transferrable knowledge between tasks, and we cannot improve solution quality.128

This paper proposes a MFEA approach to solve two problems simultaneously. Our MFEA solves129

two tasks simultaneously: the first task is the TRPTW, and the second is the TSPTW. Experiment results130

indicate its efficiency: 1) for small instances, the proposed algorithm obtains the optimal solutions in both131

two problems; 2) for large ones, our solutions are close to the optimal ones, even much better than those132

of the previous MFEA approaches.133

3 PRELIMINARY134

The overview of multifactorial optimization is introduced in (S. Dash et al.,2012; A. Gupta et al.,2016).135

Assume that, k optimization problems are needed to be performed simultaneously. Without loss of136

generality, tasks are assumed to be minimization problems. The j-th task, denoted Ti, has objective137

function f j : X j⇒ R, in which x j is solution space. We need to be found k solutions {x1,x2, ...,xk−1,xk}=138

min{ f1(x), f2(x),, fk−1(x), fk(x)}, where x j is a feasible solution in X j. Each f j is considered as an139

3/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 1. The similarity and difference between EA and MFEA

A unified
representation

Initiate
Population with

skill-factor

Evaluate P with
skill-factor

Condition
satisfied

child=genetic
operator

Assigne skill-
factor

to child

Evaluate child
with skill-factor

Add child to P

Elitist (P)

no

yes return the
best solutions

A representation

Initiate
Population with

fitness

Evaluate P with
fitness

Condition
satisfied

Evaluate child
with fitness

Add child to P

Elitist (P)

no

child=genetic
operator

yes return the
best solutions

additional factor that impacts the evolution of a single population of individuals.Therefore, the problem140

also is called k− factorial problem. For the problem, a general method to compare individuals is important.141

Each individual pi(i ∈ {1,2, ..., |P|}) in a population P has a set of properties as follows: Factorial Cost,142

Factorial Rank, Scalar Fitness, and Skill Factor. These properties allow us to sort, and select individuals143

in the population.144

• Factorial Cost ci
j of the individual pi is its fitness value for task Tj (1f j f k).145

• Factorial rank ri
j of pi on the task Tj is the index in the set of individuals sorted in ascending order146

in terms of ci
j.147

• Scalar-fitness φi of pi is given by its best factorial rank overall tasks as φi =
1

min j∈1,...,k ri
j

.148

• Skill-factor ρi of pi is the one task, amongst all other tasks, on which the individual is most effective,149

i.e., ρi = argmin j{r
i
j} where j ∈ {1,2, ...,k}.150

The pseudo-code of the basic MFEA is described in Figure 1 (H.B. Ban et al.,2022): We first build the151

unified search space that encompasses all individual search spaces of different tasks to have a shared152

background on which the transfer of information can take place. We then initialize SP individuals (SP153

is the size of population) in the unified search space and then evaluate it by calculating the skill-factor154

of each individual. After the initialization, the iteration begins to produce the offsprings and assign155

skill-factors to them. Selective evaluation guarantees that the skill-factor of each new offspring is selected156

randomly among those of the parents. The offspring and the parent are merged in a new population with157

2×SP individuals. The evaluation for each individual is taken only on the assigned task (in the step, the158

best solution for each task is updated if it is found. This best solution for each task is the output). After159

evaluation, the individuals of the population receive new skill-factors. The Elitist strategy keeps the SP160

solutions with the best skill-factors for the next generation.161

Figure 1 (H.B. Ban et al.,2022) also shows the differences between the traditional EA and MFEA. The162

crossover and mutation operators in the MFEA are like the traditional EA. However, there are two different163

4/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

important aspects: 1) the parents’ skill-factor and 2) random mating probability (rmp). Specifically, the164

child is created using crossover from parents with the same skill-factor. Otherwise, the child is generated165

by a crossover with a rmp value or by a mutation when parents own different skill-factors. A large rmp166

value generates more information exchanging between tasks. Also, in the traditional GA, the fitness of167

child is evaluated directly, while the skill-factor is assigned to it in the MFEA.168

The MFEA is also unlike multiobjective Optimization . In multiobjective optimization, we have one169

problem with many objective functions. On the other hand, the MFEA solves many tasks at the same time.170

In addition, multiobjective optimization generally uses a single representative space, while the MFEA171

unifies multiple representative spaces for many tasks.172

Running two algorithms for two tasks independently is not the idea of the MFEA approach. When173

two algorithms run independently, each task is represented by its own search space. There is no trans-174

ferrable knowledge between tasks. Otherwise, in the MFEA, two tasks use the unified search space, and175

transferrable knowledge between tasks is done. It can increase convergence and improve the quality of176

solutions for multitasks. Lian et al. (Y. C. Lian et al.,2019) then provided a novel theoretical analysis and177

evidence of the efficiency of the MFEA. This study theoretically explains why some existing the MFEA178

perform better than traditional EAs. In addition, the MFEA also can be useful in a system with limited179

computation.180

4 THE PROPOSED ALGORITHM181

This section introduces the pseudocode of the proposed MFEA. The TSPTW task corresponds to182

a particular task in the MFEA, while another is the TRPTW task. The flow of the proposed algorithm183

is described in Figure 2. Our MFEA has core components: unified representation, assortative mating184

(crossover and mutation operators), selective evaluation, scalar-fitness-based selection, RVNS, and Elitism.185

The detail of the algorithm is shown in Algorithm 1. More specifically, the algorithm includes the186

following steps. In the first step, a unified search space is created for both two problems. The population187

with SP individuals is then generated in the second step. All solutions for the population must be feasible.188

After that, the iteration begins until the termination criterion is satisfied. Parents are selected to produce189

offsprings using crossover or mutation and then assign skill-factors to them. The offsprings then are added190

to the current population. The individuals of the population are evaluated to update their scalar-fitness and191

skill-factor. We select the best solutions in terms of skill-factor from the current population and convert192

them from the unified representation to each task’s one. It then is fed into the RVNS step to find the best193

solution for each task. The output of the RVNS is then converted to the unified search space. Finally, it is194

added to the population. The Elitist strategy keeps the SP solutions with the best skill-factors for the next195

generation.196

4.1 Creating Unified Search Space-USS197

In the literature, various representations are proposed for two problems. Among these representations,198

the permutation representation shows the efficiency compared to the others. In the permutation, each199

individual is coded as a set of n vertices (v1,v2, ...,vk, ...,vn), where k is the k−th index. Figure 3200

demonstrates the encoding for two problems.201

4.2 Initializing population202

Each feasible solution is created from the RVNS to take a role as an individual in the population. Therefore,203

we have Sp individuals in the initial population for the genetic step.204

Algorithm 2 describes the constructive step. The objective function is the sum of all positive205

differences between the arrival time (D(vi)) and its due time (li) on each vertex. Specifically, it is206

min∑
n
i=1 max(0,D(vi)− li). The algorithm runs until it finds a feasible solution. Restricted Candidate207

List (RCL) is created by ordering all non-selected vertices based on a greedy function that evaluates the208

benefit of including them in the solution. One vertex is then chosen from RCL randomly. Since all vertices209

are visited, we receive a solution. If this solution is a feasible one, it is an initial solution, and this step stops.210

Conversely, a repair procedure based on the RVNS with many neighborhoods (D. S. Johnson et al.,1995)211

is invoked, and the procedure iterates until a feasible solution is reached. The solution is shaken to escape212

from the current local optimal solution. The RVNS is then applied to create the new solution. If it is better213

than the best-found solution, it is set to the new current solution. The level is increased by one if the214

5/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 2. The flow of the proposed MFEA

A unified
representation

Initiate
Population with

skill-factor

Evaluate P with
skill-factor

Condition
satisfied

child=genetic
operator

Assigne skill-
factor

to child

Evaluate child
with skill-factor

Convert to
seperate

representative

no

T(TSPTW) T(TRPTW)

RVNS RVNS

Convert to unified
representative

Add to the
population

Elitism

yes return the best-
found solutions

Select the best
solutions in
population

Figure 3. The interpretation of unified representation for each task

TSPTW-representation

TRPTW-representation

1 2 3 n

1 2 3 n

1 2 3 n

An unified representation

current solution is not improved, or reset to 1, otherwise. The repair procedure is described in Algorithm215

3.216

6/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Algorithm 1 MFEA-RVNS

Require: Kn,Ci j,v1,SP are the graph, the cost matrix, the starting vertex, and the size of population.

Ensure: The best solution T ∗T SPTW ,T ∗T RPTW .

1: T ∗T SPTW ,T ∗T RPTW −→ In f ; {Initiate the best solution for the TSPTW, TRPTW}
2: P = Construction(v1,V,k,α, level); {Initiate the population}
3: while (The termination criterion of the MFEA is not satisfied) do

4: {MFEA step (exploration)}
5: for (j = 1; j ⩽ SP; j++) do

6: (P, M) = Selection(P, NG); {select parents to mate}
7: if (M and P have the same skill-factor) or (rand(1) ⩽ rmp) then

8: if (M and P have the same skill-factor) then

9: C1,C2 = Crossover(P, M);

10: C1,C2’s skill-factors are set to the skill-factors off P or M, respectively;

11: else if (rand(1) ⩽ rmp) then

12: C1,C2 = Crossover(P, M);

13: C1,C2’s skill-factors are set to the skill-factors off P or M randomly;

14: if (C1 or C2 is infeasible) then

15: if C1 is infeasible then

16: C1 = Repair(C1);{convert it to feasible one}
17: if C2 is infeasible then

18: C2 = Repair(C2);{convert it to feasible one}
19: else

20: C1 = Mutate(P);

21: C2 = Mutate(M);

22: if (C1 or C2 is infeasible) then

23: if C1 is infeasible then

24: C1 = Repair(C1);{convert it to feasible one}
25: if C2 is infeasible then

26: C2 = Repair(C2);{convert it to feasible one}
27: C1’s, C2’s skill-factor is set to P, M, respectively;

28: P = P∪{C1,C2};
29: Update scalar-fitness and skill-factor for all individuals in P;

30: LT = Select the best individuals from P;

31: {RVNS step (exploitation)}
32: for each T in LT do

33: (TT SPTW ,TT RPTW) = Convert T from unified representation to one for each task;

34: T
′

T SPTW = RVNS(TT SPTW); {local search}

35: if (T
′

T SPTW < T ∗T SPTW) then

36: T
′

T SPTW −→ T ∗T SPTW ;

37: T
′

T RPTW = RVNS(TT RPTW); {local search}

38: if (T
′

T RPTW < T ∗T RPTW) then

39: T
′

T RPTW −→ T ∗T RPTW ;

40: T
′

= convert(T
′

T SPTW ,T
′

T RPTW) to unified representation;

41: P = P∪{T
′
};

42: P = Elitism-Selection(P);{keep the best SP individuals}
43: return T ∗T SPTW ,T ∗T RPTW ;

In this paper, some neighborhoods widely applied in the literature (D. S. Johnson et al.,1995). We217

describe more details about seven neighborhoods as follows:218

• move moves a vertex forward one position in T .219

• shift relocates a vertex to another position in T . .220

• swap-adjacent attempts to swap each pair of adjacent vertices in the tour.221

7/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Algorithm 2 Construction

Require: v1,V,k,α, level are a starting vertex, the set of vertices in Kn, the number of vehicles and the

size of RCL, the parameter to control the strength of the perturbation procedure, respectively.

Ensure: An initial solution T .

1: P = φ ; {Initially, the population is empty}
2: while (|P|< SP) do

3: T = {v1}; {T is a tour and it starts at v1}
4: while |T |< n do

5: Create RCL that includes α nearest vertices to ve in V ; {ve is the last vertex in T}
6: Select randomly vertex v = {vi|vi ∈ RCL and vi /∈ T};
7: T ← T ∪{vi}; {add the vertex to the tour}
8: if T is infeasible solution then

9: {Convert infeasible solution to feasible one}
10: T = Repair(T, level max,Ni(i = 1, ...,7));

11: P = P∪{T
′
}; {add the tour to the population}

12: return P;

Algorithm 3 Repair(T, level max,Ni(i = 1, ...,7))

Require: T, level max,Ni(i = 1, ...,7) are the infeasible solution, the parameter to control the strength of

the perturbation procedure, and the number of neighbourhood respectively.

Ensure: An feasible solution T .

1: level = 1;

2: while ((T is infeasible solution) and (level f level max)) do

3: T ′= Perturbation(T, level);

4: for i : 1→ 6 do

5: T
′′
← arg min Ni(T

′
); {local search}

6: if (L(T
′′
< L(T

′
)) then

7: T
′
← T

′′

8: i← 1

9: else

10: i++
11: if L(T

′
)< L(T) then

12: T ← T
′
;

13: if L(T
′
) == L(T) then

14: level← 1;

15: else

16: level ++;

17: return T ;

Algorithm 4 Selection Operator(P, NG)

Require: P,NG are the population and the size of group, respectively.

Ensure: Parents C1,C2.

1: Select randomly the NG individuals in the P;

2: Sort them in terms of their R values;

3: C1,C2 = Select two individuals with the best R values;

4: return C1,C2;

• exchange tries to swap the positions of each pair of vertices in the tour.222

• 2-opt removes each pair of edges from the tour and reconnects them.223

• Or-opt: Three adjacent vertices are reallocated to another position of the tour.224

8/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Algorithm 5 Crossover(P, M)

Require: P,M are the parent tours, respectively.

Ensure: A new child T .

1: type = rand(3);

2: rnd = rand(2);

3: if (type==1) then

4: {the first type crossover is selected}
5: if (rnd==1) then

6: C = PMX(P, M);{PMX is chosen}
7: else if (rnd==2) then

8: C = CX(P, M);{CX is selected}
9: else if (type==2) then

10: {the second type is selected}
11: if (rnd==1) then

12: C = EXX(P, M);{EXX is selected}
13: else if (rnd==2) then

14: C = EAX(P, M);{EAX is selected}
15: else if (type==3) then

16: {type 3 is selected}
17: if (rnd==1) then

18: C = SC(P, M);{SC is selected}
19: else if (rnd==2) then

20: C = MC(P, M);{MC is selected}

Algorithm 6 Mutate(C)

Require: C is the child tour, respectively.

Ensure: A new child C.

1: {Choose a mutation operator randomly}
2: rnd = rand(2);

3: if (rnd==1) then

4: C = Inversion(C){Inversion mutation is selected}
5: else if (rnd==2) then

6: C = Insertion(C){Insertion mutation is selected}
7: else

8: C = Swap(C){Swap mutation is selected}
9: return C;

Algorithm 7 RVNS(T)

Require: T is a tour.

Ensure: A new solution T .

1: Initialize the Neighborhood List NL;

2: while NL ̸= 0 do

3: Choose a neighborhood N in NL at random

4: T
′
← arg min N(T); {Neighborhood search}

5: if ((W (T
′
)<W (T)) and (T

′
is feasible)) then

6: T ← T
′

7: Update NL;

8: else

9: Remove N from the NL;

10: if ((W (T
′
)<W (T ∗)) and (T

′
is feasible)) then

11: T ∗ ← T
′
;

9/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

4.3 Evaluating for individuals225

The scalar-fitness function demonstrates the way of evaluating individuals. Scalar-fitness then are226

calculated for each individual. The larger and larger the scalar-fitness value is, the better and better the227

individual is.228

4.4 Selection operator229

In the original Tournament (H.B. Ban et al.,2022; E. G. Talbi et al.,2009), the fitness is the only criterion

in choosing parents. This paper proposes a new selection operator for the MFEA algorithm that balances

scalar-fitness and population diversity. The scalar-fitness is effectively transferred elite genes between

tasks, while diversity is important when it can make a bottleneck against the genetic information transfer.

For each solution, we count its scalar-fitness and its diversity in a set of solutions as follows:

R(T) = (SP−RF(T)+1)+α× (SP−RD(T)+1) (1)

where SP, α ∈ [0,1], RF(T), and RD(T) are the population size, threshold, the rank of T in the P based

on the scalar-fitness, and the rank of T in the P based on its diversity, respectively.

d(T) =
∑

n
i=1 d(T,Ti)

n
(2)

The metric distance between two solutions is the minimum number of transformations from one to another.230

We define the distance d(T,Ti) to be n (the number of vertices) minus the number of vertices with the231

same position on T and Ti. Similarity, d(T) is the average distance of T in the population. The larger232

d(T) is, the higher its rank is. The larger R is, the better solution T is.233

The selection operator selects individual parents based on their R values to mate. We choose the234

tournament selection operator (E. G. Talbi et al.,2009) because of its efficiency. A group of NG individuals235

is selected randomly from the population. Then, two individuals with the best R values in the group are236

chosen to become parents. The selection pressure can be increased by extending the size of the group. On237

average, the selected individuals from a larger group have higher R values than those of a small size. The238

detail in this step is described in Algorithm 4.239

4.5 Crossover operator240

The crossover is implemented with the predefined probability (rmp) or if the parents have the same skill-241

factor. When parents have the same skill-factor, we have inter-crossover. Otherwise, the intra-crossover242

is applied to parents with different skill-factor. It opens up the chance for knowledge transfer by using243

crossover-based exchange between tasks. In (A. Otman et al.,2015), the crossovers are divided into three244

main types. We found no logical investigation showing which operator brings the best performance in245

the literature. In a preliminary study, we realize that the algorithm’s effectiveness relatively depends on246

selected crossover operators. Since trying all operators leads to computationally expensive efforts, our247

numerical analysis is conducted on randomly selected operators for each type. The following operators248

are selected from the study to balance solution quality and running time.249

• The first type is related to the position of certain genes in parents (PMX, CX).250

• The second selects genes alternately from both parents, without genes’ repetition (EXX, EAX).251

• The third is an order-based crossover (SC, MC).252

Initially, we select a crossover randomly. If any improvement of the best solution is found, the current253

crossover operator is continued to use. Otherwise, if the improvement of the best solution is not found254

after the number of generations (NO), another crossover operator is replaced randomly. Using multiple255

crossovers helps the population be more diverse than one crossover. Therefore, these operators prevent256

the algorithm from premature convergence. If the offsprings are infeasible, the fix procedure is invoked257

to convert them to feasible ones. The offsprings’ skill-factors are set to the one of the father or mother258

randomly. The detail in this step is described in Algorithm 5.259

10/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

4.6 Mutation operator260

A mutation is used to keep the diversity of the population. Some mutations are used in the proposed261

algorithm:262

• The Inversion Mutation picks two vertices at random and then inverts the list of vertices between263

them. It preserves most adjacency information and only breaks two links, leading to the disruption264

of order information.265

• The Insertion Mutation removes the vertex from the current index and then inserts it in a random266

index on the solution. The operator preserves most of the order and the adjacency information.267

• Swap Mutation selects two vertices at random and swaps their positions.268

It preserves most of the adjacency information, but links broken disrupt order more. We randomly select269

one of three operators when this mutation is performed. After the mutation operator, two offsprings are270

created from the parents. If the offsprings are infeasible, the repair procedure converts them to feasible271

ones. Their skill-factors are set to those of parents, respectively. The detail in the mutation is described in272

Algorithm 6.273

4.7 RVNS274

The combination between the MFEA and the RVNS allows good transferrable knowledge between tasks275

from the MFEA and the ability to exploit good solution spaces from RVNS. We select some best solutions276

in the current population to feed into the RVNS. In the RVNS step, we convert a solution from unified277

representation to separated representation for each task. The RVNS then applies to each task separately.278

Finally, the output of the RVNS is represented in the unified space. The improved solution will be added279

to the population.280

For this step, we use popular neighborhoods such as move, shift, swap-adjacent, exchange, 2-opt, and281

or-opt in (D. S. Johnson et al.,1995; C. R. Reeves et al.,1999). In addition, the pseudocode of the RVNS282

algorithm is given in Algorithm 7.283

4.8 Elitism operator284

Elitism is a process that ensures the survival of the fittest so they do not die through the evolutionary285

processes. Researchers show the number (E. G. Talbi et al.,2009) (usually below 15%) of the best286

solutions that automatically go to the next generation. The proposed algorithm selects Sp individuals for287

the next generation, in which about 15% of them are the best solutions in the previous generation, and the288

remaining individuals are chosen randomly from P.289

The stop condition: After the number of generations (Ng), the best solution has not been improved, and290

the GA stops.291

5 COMPUTATIONAL EVALUATIONS292

The experiments are conducted on a personal computer equipped with a Xeon E-2234 CPU and 16 GB293

bytes of RAM. The program was coded in C language. Generation number (Ng), population size (SP),294

group size (NG) in selection, and crossover rates (rmp) influences to the algorithm’s results. Many efforts295

in the literature studied the algorithm sensitivity to parameter changes. We found that no work shows296

which values are the best for all cases. However, the following suggestions help us in choosing parameter297

values:298

• A large generation number does not improve performance. Besides, it consumes much time to run.299

A small value makes the algorithm fail to reach the best solution (M. Angelova et al.,2011).300

• A higher crossover value obtains new individuals more quickly while a low crossover rate may301

cause stagnation (M. Angelova et al.,2011).302

• A large population size can increase the population diversity. However, it can be unhelpful in the303

algorithm and increase the running time of it (T. Chena et al.,2017).304

• Increased selection pressure can be provided by simply increasing the group size. When the305

selection pressure is too low, the convergence rate is slower, while if it is too high, the chance of the306

algorithm prematurely converges (Y. Lavinas et al.,1993).307

11/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Table 1. The variable parameters

Parameter
Value Range

SP 50f βr f 200, incremented by 50

NG 5f α f 15, incremented by 5

rmp 0.5f βη f 1, incremented by 0.1

α 5f τ0 f 20, incremented by 5

level 5f pf 15, incremented by 5

Ng 50f Ngf 150, incremeted by 50

• The α and level values help to create the diversity of the initial population. A larger value leads to308

the same as the random method, while a small value decreases the diversity.309

Based on the suggestions, we determine a suitable range for each parameter in Table 1. In the next step, we310

choose the best value from the range as follows: finding the best configuration by conducting all instances311

would have been too expensive in computation, and we test numerical analysis on some instances. The312

configuration selected in many combinations is tested, and the one that has obtained the best solution is313

chosen. In Table 1, we determine a range for each parameter that generates different combinations, and314

we run the proposed algorithm on some selected instances of the combinations. We find the following315

settings so that our algorithm obtains the best solutions: SP = 100,NG = 5,rmp = 0.7,α = 10, level = 5,316

and Ng = 100. This parameter setting has thus been used in the following experiments.317

We found no algorithm based on the literature’s MFEA framework for the TRPTW and TSPTW.318

Therefore, the proposed algorithm’s results directly compare with the known best solutions of the TSPTW319

and TRPTW on the same benchmark. Moreover, to compare with the previous MFEA framework320

(E. Osaba et al.,2020; Y. Yuan et al.,2016), our MEFA is tested on the benchmark for the TSP and TRP.321

They are specific variants of TSPTW and TRPTW without time window constraints. Therefore, the322

instances are used in the paper as follows:323

• Dumas et al. propose the first set citebib09 and contains 135 instances grouped in 27 test cases.324

Each group has five Euclidean instances, coordinates between 0 and 50, with the same number of325

customers and the same maximum range of time windows. For example, the instances n20w60.001,326

n20w60.002, n20w60.003, n20w60.004, and n20w60.005 have 20 vertices and the time window for327

each vertex is uniformly random, between 0 and 60.328

• Gendreau et al. proposes the second set of instances citebib12 and contains 140 instances grouped329

in 28 test cases.330

• Ohlmann et al. propose the third set of instances citebib30 and contains 25 instances grouped in 5331

test cases.332

• The fourth sets in the majority are the instances proposed by Dumas et al. (Y. Dumas et al.,1995)333

with wider time windows.334

• The TSPLIB 2 includes fourteen instances from 50 to 100 instances.335

The efficiency of the metaheuristic algorithm can be evaluated by comparing the best solution found by

the proposed algorithm (notation: Best.Sol) to 1) the optimal solution (notation: OPT); and 2) the known

best solution (notation: KBS) of the previous metaheuristics (note that: In the TSPTW, KBS is the optimal

solution) as follows:

gap[%] =
Best.Sol−KBS(OPT)

KBS(OPT)
×100% (3)

The smaller and smaller the value of gap is, the better and better our solution is. All instances and found336

solutions are available in the link 3.337

2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
3https://sites.google.com/soict.hust.edu.vn/mfea-tsptw-trptw/home

12/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Table 2. Comparison the best-found values between MFEA-NR and MFEA for TSPTW and TRPTW

instances proposed by Dumas et al. (Y. Dumas et al.,1995), and Silva et al. (R. F. Silva et al.,2010)

instances
MFEA-NR MFEA diff[%]

TSPTW TRPTW TSPTW TRPTW TSPTW TRPTW

n20w20.002 286 2560 286 2560 0.00 0.00

n20w40.002 333 2679 333 2679 0.00 0.00

n20w60.002 244 2176 244 2176 0.00 0.00

n20w80.003 338 2669 338 2669 0.00 0.00

n20w100.002 222 2082 222 2082 0.00 0.00

n40w40.002 483 7202 461 7104 -4.55 -1.36

n40w60.002 487 7303 470 7247 -3.49 -0.77

n40w80.002 468 7209 431 7123 -7.91 -1.19

n40w100.002 378 6789 364 6693 -3.70 -1.41

n60w20.002 626 14003 605 13996 -3.35 -0.05

n60w120.002 472 12622 427 12525 -9.53 -0.77

n60w140.002 475 11914 464 11810 -2.32 -0.87

n60w160.002 443 12920 423 12719 -4.51 -1.56

n80w120.002 587 18449 577 18383 -1.70 -0.36

n80w140.002 495 18243 472 18208 -4.65 -0.19

n80w160.002 588 17334 553 17200 -5.95 -0.77

aver -3.23 -0.58

Table 3. Comparison the best-found values between MFEA-NLS and MFEA for TSPTW and TRPTW

instances proposed by Dumas et al. (Y. Dumas et al.,1995), and Silva et al. (R. F. Silva et al.,2010)

instances
MFEA-NLS MFEA diff[%]

TSPTW TRPTW TSPTW TRPTW TSPTW TRPTW

n20w20.002 286 2560 286 2560 0.00 0.00

n20w40.002 333 2679 333 2679 0.00 0.00

n20w60.002 244 2176 244 2176 0.00 0.00

n20w80.003 338 2669 338 2669 0.00 0.00

n20w100.002 222 2082 222 2082 0.00 0.00

n40w40.002 522 7530 461 7104 -11.69 -5.66

n40w60.002 503 7517 470 7247 -6.56 -3.59

n40w80.002 475 7763 431 7123 -9.26 -8.24

n40w100.002 400 7502 364 6693 -9.00 -10.78

n60w20.002 626 14097 605 13996 -3.35 -0.72

n60w120.002 480 13680 427 12525 -11.04 -8.44

n60w140.002 502 12951 464 11810 -7.57 -8.81

n60w160.002 461 13953 423 12719 -8.24 -8.84

n80w120.002 620 19860 577 18383 -6.94 -7.44

n80w140.002 520 19742 472 18208 -9.23 -7.77

n80w160.002 614 19516 553 17200 -9.93 -11.87

aver -5.80 -5.14

13/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Table 4. Comparison between our results with the best-found values for TSPTW and TRPTW instances

proposed by Dumas et al. (Y. Dumas et al.,1995), and Silva et al. (R. F. Silva et al.,2010)

Instances
TSPTW TRPTW

MFEA

TSPTW TRPTW

OPT KBS Best.Sol Aver.Sol gap Time Best.Sol Aver.Sol gap Time

n20w20.001 378 2528 378 378 0.0 3 2528 2528 0.0 3

n20w20.002 286 2560 286 286 0.0 2 2560 2560 0.0 2

n20w20.003 394 2671 394 394 0.0 2 2671 2671 0.0 2

n20w20.004 396 2975 396 396 0.0 6 2975 2975 0.0 6

n20w40.001 254 2270 254 254 0.0 2 2270 2270 0.0 2

n20w40.002 333 2679 333 333 0.0 5 2679 2679 0.0 5

n20w40.003 317 2774 317 317 0.0 3 2774 2774 0.0 2

n20w40.004 388 2568 388 388 0.0 2 2568 2568 0.0 3

n20w60.001 335 2421 335 335 0.0 3 2421 2421 0.0 2

n20w60.002 244 2176 244 244 0.0 2 2176 2176 0.0 2

n20w60.003 352 2694 352 352 0.0 2 2694 2694 0.0 2

n20w60.004 280 2020 280 280 0.0 2 2020 2020 0.0 2

n20w80.001 329 2990 329 329 0.0 2 2990 2990 0.0 3

n20w80.002 338 2669 340 340 0.6 1 2669 2669 0.0 2

n20w80.003 320 2643 320 320 0.0 2 2643 2643 0.0 2

n20w80.004 304 2627 306 306 0.7 3 2552 2552 -2.9 2

n20w100.001 237 2294 237 237 0.0 3 2269 2269 -1.1 3

n20w100.002 222 2082 222 222 0.0 2 2082 2082 0.0 2

n20w100.003 310 2416 310 310 0.0 2 2416 2416 0.0 3

n20w100.004 349 2914 349 349 0.0 1 2862 2862 -1.8 2

n40w20.001 500 7875 500 500 0.0 9 7875 7875 0.0 8

n40w20.002 552 7527 552 552 0.0 7 7527 7527 0.0 8

n40w20.003 478 7535 478 478 0.0 8 7535 7535 0.0 9

n40w20.004 404 7031 404 404 0.0 8 7031 7031 0.0 9

n40w40.001 465 7663 465 465 0.0 7 7663 7663 0.0 9

n40w40.002 461 7104 461 461 0.0 8 7104 7104 0.0 8

n40w40.003 474 7483 474 474 0.0 8 7483 7483 0.0 8

n40w40.004 452 6917 452 452 0.0 8 6917 6917 0.0 9

n40w60.001 494 7066 494 494 0.0 9 7066 7066 0.0 7

n40w60.002 470 7247 470 470 0.0 8 7247 7247 0.0 8

n40w60.003 408 6758 410 410 0.0 9 6758 6758 0.0 8

n40w60.004 382 5548 382 382 0.0 9 5548 5548 0.0 9

n40w80.001 395 8229 395 395 0.0 8 8152 8152 0.0 9

n40w80.002 431 7176 431 431 0.0 8 7123 7123 0.0 9

n40w80.003 412 7075 418 418 0.0 8 7075 7075 0.0 9

n40w80.004 417 7166 417 417 0.6 9 7166 7166 0.0 10

n40w100.001 429 6858 432 432 0.0 8 6800 6800 0.0 9

n40w100.002 358 6778 364 364 0.7 11 6693 6693 -2.9 10

n40w100.003 364 6178 364 364 0.0 9 6926 6926 -1.1 11

n40w100.004 357 7019 361 361 0.0 9 7019 7019 0.0 8

n60w20.002 605 13996 605 605 0.0 18 13996 13996 0.0 19

n60w20.003 533 13782 533 533 0.0 17 12965 12965 -1.8 18

n60w20.004 616 12965 616 616 0.0 17 15102 15102 0.0 18

n60w40.003 603 15034 612 612 0.0 19 15034 15034 0.0 19

14/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Table 5. Comparison between our results with the best-found values for TSPTW and TRPTW instances

proposed by Dumas et al. (Y. Dumas et al.,1995), and Silva et al. (R. F. Silva et al.,2010) (continue)

Instances

TSPTW TRPTW
MFEA

TSPTW TRPTW

OPT/

KBS
KBS Best.Sol Aver.Sol gap Time Best.Sol Aver.Sol gap Time

n60w160.004 401 11645 401 401 0.0 19 11778 11778 1.1 19

n60w180.002 399 12015 399 399 0.0 17 12224 12224 1.7 21

n60w180.003 445 12214 445 445 0.0 18 12679 12679 3.8 21

n60w180.004 456 11101 456 456 0.0 19 11245 11245 1.3 18

n60w200.002 414 11748 414 414 0.0 20 11866 11866 1.0 19

n60w200.003 455 10697 460 460 1.1 19 10697 10697 0.0 18

n60w200.004 431 11441 431 431 0.0 16 11740 11740 2.6 17

n80w120.002 577 18181 577 577 0.0 17 18383 18383 1.1 21

n80w120.003 540 17878 548 548 1.5 19 17937 17937 0.3 21

n80w120.004 501 17318 501 501 0.0 18 17578 17578 1.5 18

n80w140.002 472 17815 472 472 0.0 19 18208 18208 2.2 21

n80w140.003 580 17315 580 580 0.0 20 17358 17358 0.2 21

n80w140.004 424 18936 424 424 0.0 19 19374 19374 2.3 18

n80w160.002 553 17091 553 553 0.0 27 17200 17200 0.6 18

n80w160.003 521 16606 521 521 0.0 21 16521 16521 -0.5 20

n80w160.004 509 17804 509 509 0.0 20 17927 17927 0.7 18

n80w180.002 479 17339 479 479 0.0 21 17904 17904 3.3 19

n80w180.003 530 17271 530 530 0.0 20 17160 17160 -0.6 20

n80w180.004 479 16729 479 479 0.0 22 16849 16849 0.7 21

n100w120.002 540 29882 556 556 3.0 38 29818 29818 0.0 45

n100w120.003 617 25275 646 646 4.7 37 24473 24473 0.0 42

n100w120.004 663 30102 663 663 0.0 39 31554 31554 0.0 41

n100w140.002 622 30192 632 632 1.6 38 30087 30087 0.0 45

n100w140.003 481 28309 481 481 0.0 39 28791 28791 0.0 47

n100w140.004 533 27448 533 533 0.0 40 27990 27990 0.0 45

n150w120.003 747 42340 769 769 2.9 75 42339 42339 0.0 72

n150w140.001 762 42405 785 785 3.0 70 42388 42388 -0.1 74

n150w160.001 706 45366 732 732 3.6 72 45160 45160 -0.4 78

n150w160.002 711 44123 735 735 3.3 74 44123 44123 0.0 76

n200w200.001 9424 1094630 9424 9424 0.0 101 1093537 1093537 -0.1 89

n200w200.002 9838 1099839 9885 9885 0.5 110 1099839 1099839 0.0 86

n200w200.003 9043 1067171 9135 9135 1.0 99 1067161 1067161 0.0 93

n200w300.001 7656 1052884 7791 7791 1.7 100 1047893 1047893 -0.5 106

n200w300.002 7578 1047893 7721 7721 1.8 105 1047893 1047893 0.0 110

n200w300.003 8600 1069169 8739 8739 1.6 120 1069169 1069169 0.0 93

n200w300.004 8268 1090972 8415 8415 1.7 112 1090972 1090972 0.0 96

n200w300.005 8030 1022000 8190 8190 1.9 114 1016765 1016765 -5.1 98

n200w400.001 7420 1064456 7661 7661 3.2 109 1064456 1064456 0.0 100

aver 0.49 26.24 -0.11 25.6

15/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Table 6. Comparison between our results with the best-found values for TSPTW and TRPTW instances

proposed by Gendreau et al. (M. Gendreau et al.,1998), and Ohlmann et al. (J. W. Ohlmann et al.,2007)

Instances
TSPTW TRPTW

MFEA

TSPTW TRPTW

KBS KBS Best.Sol Aver.Sol gap T Best.Sol Aver.Sol gap Time

n20w120.002 218 2193 218 218 0.0 2 2193 2193 0.0 3

n20w120.003 303 2337 303 303 0.0 4 2337 2337 0.0 2

n20w120.004 300 2686 300 300 0.0 2 2686 2686 0.0 2

n20w140.002 272 2330 272 272 0.0 2 2330 2330 0.0 3

n20w140.003 236 2194 236 236 0.0 2 2196 2196 0.1 2

n20w140.004 255 2279 264 264 3.5 4 2278 2278 0.0 5

n20w160.002 201 1830 201 201 0.0 2 1830 1830 0.0 2

n20w160.003 201 2286 201 201 0.0 3 2286 2286 0.0 2

n20w160.004 203 1616 203 203 0.0 2 1616 1616 0.0 2

n20w180.002 265 2315 265 265 0.0 4 2315 2315 0.0 2

n20w180.003 271 2414 271 271 0.0 2 2414 2414 0.0 2

n20w180.004 201 2624 201 201 0.0 3 1924 1924 -26.7 2

n20w200.002 203 1799 203 203 0.0 2 1799 1799 0.0 2

n20w200.003 249 2144 260 260 4.4 2 2089 2089 -2.6 1

n20w200.004 293 2624 293 293 0.0 1 2613 2613 -0.4 2

n40w120.002 445 6265 446 446 0.2 3 6265 6265 0.0 8

n40w120.003 357 6411 360 360 0.8 2 6411 6411 0.0 7

n40w120.004 303 5855 303 303 0.0 3 5855 5855 0.0 6

n40w140.002 383 5746 383 383 0.0 2 5746 5746 0.0 8

n40w140.003 398 6572 398 398 0.0 3 6572 6572 0.0 7

n40w140.004 342 5719 350 350 2.3 8 5680 5680 -0.7 8

n40w160.002 337 6368 338 338 0.3 9 6351 6351 -0.3 8

n40w160.003 346 5850 346 346 0.0 9 5850 5850 0.0 9

n40w160.004 288 4468 289 289 0.3 8 4440 4440 -0.6 9

n40w180.002 347 6104 349 349 0.6 8 6104 6104 0.0 9

n40w180.003 279 6040 282 282 1.1 7 6031 6031 -0.1 8

n40w180.004 354 6103 361 361 2.0 8 6283 6283 2.9 8

n40w200.002 303 6674 303 303 0.0 8 5830 5830 -12.6 9

n40w200.003 339 5542 343 343 1.2 7 5230 5230 -5.6 8

n40w200.004 301 6103 301 301 0.0 9 5977 5977 -2.1 10

n60w120.002 427 12517 427 427 0.0 19 12525 12525 0.1 19

n60w120.003 407 11690 419 419 2.9 19 11680 11680 -0.1 19

n60w120.004 490 11132 492 492 0.4 13 11135 11135 0.0 19

n60w140.002 462 11782 464 464 0.4 18 11810 11810 0.2 19

n60w140.003 427 13128 448 448 4.9 13 13031 13031 -0.7 16

n60w140.004 488 13189 488 488 0.0 15 12663 12663 -4.0 15

n60w160.002 423 12471 423 423 0.0 19 12719 12719 2.0 17

n60w160.003 434 10682 447 447 3.0 14 10674 10674 -0.1 15

16/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Table 7. Comparison between our results with the best-found values for TSPTW and TRPTW instances

proposed by Gendreau et al. (M. Gendreau et al.,1998), and Ohlmann et al. (J. W. Ohlmann et al.,2007)

(continue)

Instances
TSPTW TRPTW

MFEA

TSPTW TRPTW

OPT KBS Best.Sol Aver.Sol gap Time Best.Sol Aver.Sol gap Time

n60w160.004 401 11645 401 401 0.0 19 11778 11778 1.1 19

n60w180.002 399 12015 399 399 0.0 17 12224 12224 1.7 21

n60w180.003 445 12214 445 445 0.0 18 12214 12679 0.0 21

n60w180.004 456 11101 456 456 0.0 19 11245 11245 1.3 18

n60w200.002 414 11748 414 414 0.0 20 11866 11866 1.0 19

n60w200.003 455 10697 460 460 1.1 19 10697 10697 0.0 18

n60w200.004 431 11441 431 431 0.0 16 11441 11441 0.0 17

n80w120.002 577 18181 577 577 0.0 17 18383 18383 1.1 21

n80w120.003 540 17878 548 548 1.5 19 17937 17937 0.3 21

n80w120.004 501 17318 501 501 0.0 18 17578 17578 1.5 18

n80w140.002 472 17815 472 472 0.0 19 17815 17815 0.0 21

n80w140.003 580 17315 580 580 0.0 20 17358 17358 0.2 21

n80w140.004 424 18936 424 424 0.0 19 18936 18936 0.0 18

n80w160.002 553 17091 553 553 0.0 27 17200 17200 0.6 18

n80w160.003 521 16606 521 521 0.0 21 16521 16521 -0.5 20

n80w160.004 509 17804 509 509 0.0 20 17927 17927 0.7 18

n80w180.002 479 17339 479 479 0.0 21 17339 17339 0.0 19

n80w180.003 530 17271 530 530 0.0 20 17160 17160 -0.6 20

n80w180.004 479 16729 479 479 0.0 22 16849 16849 0.7 21

n100w120.002 540 29882 556 556 3.0 38 29818 29818 0.0 45

n100w120.003 617 25275 646 646 4.7 37 24473 24473 0.0 42

n100w120.004 663 30102 663 663 0.0 39 31554 31554 0.0 41

n100w140.002 622 30192 632 632 1.6 38 30087 30087 0.0 45

n100w140.003 481 28309 481 481 0.0 39 28791 28791 0.0 47

n100w140.004 533 27448 533 533 0.0 40 27990 27990 0.0 45

aver 0.64 13.6 -0.44 14.7

17/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Table 8. Comparison between our results with the best-found values for TSPTW and TRPTW instances

proposed by Gendreau et al. (M. Gendreau et al.,1998), and Ohlmann et al. (J. W. Ohlmann et al.,2007)

Instances

TSPTW TRPTW
MFEA

TSP TRP

OPT
BKS

Best.Sol Aver.Sol Time Best.Sol Aver.Sol Time
Ban

et al.

Heilporna

et al.

n20w120.001 274 2175 2535 274 274 2 2175 2175 2

n20w140.001 176 1846 1908 176 176 2 1826 1826 2

n20w160.001 241 2146 2150 241 241 2 2148 2148 2

n20w180.001 253 2477 2037 253 253 2 2477 2477 2

n20w200.001 233 1975 2294 233 233 2 1975 1975 2

n40w120.001 434 6800 7496 434 434 9 6800 6800 9

n40w140.001 328 6290 7203 328 328 10 6290 6290 10

n40w160.001 349 6143 6657 349 349 11 6143 6143 12

n40w180.001 345 6952 6578 345 345 12 6897 6897 11

n40w200.001 345 6169 6408 345 345 10 6113 6113 13

n60w120.001 392 11120 9303 392 392 25 11288 11288 28

n60w140.001 426 10814 9131 426 426 26 10981 10981 27

n60w160.001 589 11574 11422 589 589 27 11546 11546 28

n60w180.001 436 11363 9689 436 436 24 11646 11646 25

n60w200.001 423 10128 10315 423 423 25 9939 9939 27

n80w120.001 509 11122 11156 512 509 41 16693 16693 45

n80w140.001 530 14131 14131 530 530 42 14131 14131 47

n80w180.001 605 11222 11222 605 605 41 11222 11222 42

Table 9. The average results for TSPTW, TRPTW instances

Instances
TSPTW TRPTW

gap Time gap Time

TSPTW 0.49 26.24 -0.11 26.5

TSPTW 0.64 13.6 -0.44 14.7

aver 0.56 19.9 -0.28 20.6

Table 10. The difference between the optimal TSPTW using TRPTW objective function and vice versa

Instances
TRPTW TSPTW

TRPTW(OPT TSPTW) KBS diff[%] TSPTW(BKS TRPTW) KBS diff[%]

n20w120.002 2592 2193 15.4 256 218 14.8

n20w140.002 2519 2330 7.5 311 272 12.5

n20w160.002 2043 1830 10.4 249 201 19.3

n40w120.002 6718 6265 6.7 552 446 19.2

n40w140.002 5865 5746 2.0 449 383 14.7

n40w160.002 7519 6351 15.5 456 338 25.9

n60w120.002 13896 12517 9.9 581 444 23.6

n60w140.002 12898 11795 8.6 616 464 24.7

n60w160.002 14091 12489 11.4 616 428 30.5

aver 9.7 20.6

18/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Table 11. Comparison between our results with the others for TSP and TRP (Q. Xu et al.,2021)

Instances

OPT YA (Q. Xu et al.,2021) OA (J. N. Tsitsiklis et al.,1992) MFEA

TSP TRP
TSP TRP TSP TRP TSP TRP

best.sol best.sol best.sol best.sol best.sol aver.sol gap Time best.sol aver.sol gap Time

eil51 426* 10178* 446 10834 450 10834 426 426 0.00 23 10178 10178 0.00 22

berlin52 7542* 143721* 7922 152886 8276 152886 7542 7542 0.00 22 143721 143721 0.00 21

st70 675* 20557* 713 22283 772 22799 680 680 0.01 41 22283 22283 8.40 39

eil76 538* 17976* 560 18777 589 18008 559 559 0.04 43 18008 18008 0.18 40

pr76 108159* 3455242* 113017 3493048 117287 3493048 108159 108159 0.00 47 3455242 3455242 0.00 45

pr107 44303* 2026626* 45737 2135492 46338 2135492 45187 45187 0.02 71 2052224 2052224 1.26 72

rat99 1211* 58288* 1316 60134 1369 60134 1280 1280 0.06 66 58971 58971 1.17 65

kroA100 21282* 983128* 22233 1043868 22233 1043868 21878 21878 0.03 63 1009986 1009986 2.73 63

kroB100 22141* 986008* 23144 1118869 24337 1118869 23039 23039 0.04 64 1003107 1003107 1.73 63

kroC100 20749* 961324* 22395 1026908 23251 1026908 21541 21541 0.04 68 1007154 1007154 4.77 66

kroD100 21294* 976965* 22467 1069309 23833 1069309 22430 22430 0.05 70 1019821 1019821 4.39 72

kroE100 22068* 971266* 22960 1056228 23622 1056228 22964 22964 0.04 60 1034760 1034760 6.54 64

rd100 7910* 340047* 8381 380310 8778 365805 8333 8333 0.05 63 354762 354762 4.33 64

eil101 629* 27519* 681 28398 695 28398 662 662 0.05 62 27741 27741 0.81 61

aver 0.03 2.59

’*’ is the optimal values

Table 12. Comparison between our results with the others

(H.B. Ban et al.,2022; E. Osaba et al.,2020; Y. Yuan et al.,2016) for TSPTW and TRPTW

instances
YA (Q. Xu et al.,2021) OA (J. N. Tsitsiklis et al.,1992) BA (Ban et al., 2022) MFEA

TSPTW TRPTW TSPTW TRPTW TSPTW TRPTW TSPTW TRPTW

n40w40.002 - - - - - - 461 7104

n40w60.002 - - - - - - 470 7247

n40w80.002 - - - - - - 431 7123

n40w100.002 - - - - - - 364 6693

n60w20.002 - - - - - - 605 13996

n60w120.002 - - - - - - 427 12525

n60w140.002 - - - - - - 464 11810

n60w160.002 - - - - - - 423 12719

n80w120.002 - - - - - - 577 18383

n80w140.002 - - - - - - 472 18208

n80w160.002 - - - - - - 553 17200

n100w120.002 - - - - - - 556 29818

n100w140.002 - - - - - - 632 30087

n100w120.003 - - - - - - 646 24473

n100w140.003 - - - - - - 481 28791

n100w140.004 - - - - - - 533 27990

Table 13. Comparison computational effort between single-tasking and multitasking

Type
TSPTW TRPTW

gap gap

single-tasking

(100 generations)
0.59 0.08

multi-tasking

(100 generations)
0.56 -0.28

19/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

In Tables, OPT, Aver.Sol and Best.Sol are the optimal, average, and best solution after ten runs, respec-338

tively. Let Time be the running time such that the proposed algorithm reaches the best solution. Note that:339

Y. Yuan et al. supported the source code of their algorithm in (Y. Yuan et al.,2016) while the dMFEA-II340

algorithm (E. Osaba et al.,2020) was implemented again by us. Tables 2 and 3 evaluate the efficiency of341

the proposed selection in MFEA. Tables from 4 to 8 compare the proposed MFEA with the known best342

or optimal solutions for the TSPTW, and TRPTW instances (H. Abeledo et al.,2013; H.B. Ban et al.,2017;343

H.B. Ban et al.,2021; Y. Dumas et al.,1995; G. Heilporna et al.,2010; R. F. Silva et al.,2010; J. W. Ohlmann et al.,2007;344

M. W. Salvesbergh et al.,1985; C. R. Reeves et al.,1999). In the Tables, the KBS, OPT, Aver.Sol, and345

Best.Sol columns are the best known, optimal, average, and best solution, respectively, while the gap346

column presents the difference between the best solution and the optimal one. Table 9 compares the347

MFEA with RVNS, OA (E. Osaba et al.,2020), and YA (Y. Yuan et al.,2016). In the TSP, the optimal348

solutions of the TSPLIB-instances are obtained by running Concord tool 4. In the TRP, the optimal or349

best solutions are obtained from (H. Abeledo et al.,2013).350

5.1 Evaluating the efficiency of selection351

In this experiment, a new selection operator for the MFEA algorithm effectively balances knowledge352

transfer and diversity. Due to being too expensive in computation, we choose some instances to evaluate353

the efficiency of this operator. In Table 2, the column MFEA-NR is the results of the MFEA with354

the selection-based scalar-fitness only, while the column MFEA is the results of the MFEA with both355

scalar-fitness and diversity. The di f f [%] column is the difference between the MFEA and MFEA-NR.356

In Table 2, the MFEA outperforms the MFEA-NR in all cases. The selection operation that considers357

both scalar-fitness and diversity to pick parents is more effective than the one with scalar-fitness only.358

The proposed MFEA algorithm adopts a fitness-based criterion for effectively transferring elite genes359

between tasks. Furthermore, population diversity is important since it becomes a bottleneck against360

genetic knowledge transfer.361

5.2 Evaluating efficiency of local search362

In this experiment, the efficiency of local search is considered. We run two MFEA on the same selected363

instances. In Table 3, the MFEA-NLS column is the MFEA without local search, while the MFEA364

column is the MFEA with local search. The di f f [%] column is the difference between the MFEA and365

MFEA-NLS.366

In Table 3, the MFEA obtains much better solutions than the MFEA-NLS in all cases. It indicates that367

the ability to exploit good solution spaces from RVNS is effective. That means the combination between368

the MFEA and RNVS improves the solution quality.369

5.3 Comparisons with the TSPTW and TRPTW algorithms370

The values of Table 9 are the average values of Tables from 4 to 7. The average difference with the371

optimal solution for the TSPTW is 0.56%, even for the instances with up to 200 vertices. It shows that372

our solutions are near-optimal for the TSPTW. In addition, the proposed algorithm reaches the optimal373

solutions for the instances with up to 80 vertices for the TSPTW. In Table 8, for the TRPTW, our MFEA374

is better than the previous algorithms such as Ban et al. (H.B. Ban et al.,2017; H.B. Ban et al.,2021), and375

G. Heilporna (G. Heilporna et al.,2010) in the literature when the average gap is -0.28% (note that: Ban376

et al.’s and G. Heilporna’s et al.’s algorithms is developed to solve the TRPTW only). The obtained results377

are impressive since it can be observed that the proposed algorithm finds not only near-optimal solutions378

but also the new best-known ones for two problems simultaneously. It also indicates the efficiency of379

positive transferrable knowledge control techniques between optimization tasks in improving the solution380

quality.381

It is impossible to expect that the MFEA always outperform in comparison with the state-of-the-art382

metaheuristic algorithms for the TSPTW and TRPTW in all cases because their algorithms are designed383

to solve each problem independently. Table 10 shows that the efficient algorithms for the TSPTW may384

not be effective for the TRPTW and vice versa. On average, the optimal solution for the TSPTW with385

the TRPTW objective cost is about 9.7% worse than the optimal one for the TRPTW. Similarly, the386

known best solution for the TRPTW using the TSPTW objective function is 20.6% worse than the optimal387

solution for the TSPTW. We conclude that if the proposed MFEA simultaneously reaches the good388

4https://www.math.uwaterloo.ca/tsp/concorde.html

20/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 4. Comparing convergence trends of f1 in multi-tasking and single-tasking for the TSPTW in

n40w40 and n80w80 instances

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73 82 91 100

No
rm

al
ize

d
Ob

je
ct
ive

Va
lu
es

Generations

MT (n40w40) ST (n40w40) MT (n80w80) ST (n80w80)

solutions that are close to the optimal solutions for both problems and even better than the state-of-the-art389

algorithms in many cases, we can say that the proposed MFEA with RVNS for multitasking is beneficial.390

5.4 Comparison with the previous MFEA algorithms391

In the experiment, we adopt the proposed algorithm to solve the TSP and TRP problems. Otherwise,392

we also use three algorithms (H.B. Ban et al.,2022; E. Osaba et al.,2020; Y. Yuan et al.,2016) to solve the393

TSPTW and TRPTW.394

Table 11 compares our results to those of three algorithms (H.B. Ban et al.,2022; E. Osaba et al.,2020; Y. Yuan et al.,2016)395

for some instances in both the TSP and TRP problems. The results show that the proposed algorithm396

obtains better solutions than the others in all cases. The difference between our average result and the397

optimal value is below 2.59%. Obviously, our solution is very near optimal one. In addition, our algorithm398

reaches the optimal solution for the instance with 76 vertices. Obviously, the proposed algorithm applies399

well in the case of the TSP and TRP.400

Table 12 compares our results to those of three algorithms (H.B. Ban et al.,2022; E. Osaba et al.,2020; Y. Yuan et al.,2016)401

in both of the TSPTW and TRPTW problems. The results show that three algorithms cannot find feasible402

solutions in most cases while the proposed algorithm reaches feasible ones in all cases. It is under-403

standable because these algorithms drives the search to solution spaces that maybe not contain feasible404

solutions. Otherwise, the proposed algorithm guides the search process to feasible solution spaces. It is an405

important contribution because finding a feasible solution for the TSPTW and TRPTW is even NP-hard406

(H.B. Ban et al.,2021).407

5.5 Convergence trend408

The normalized objective cost can be used to analyze the convergence trends of our MFEA algorithm:

f j =
(f j− f min

j)

(f max
j − f min

j)
,

where j = 1,2 and f min
j , f max

j are the minimum and maximum cost values for all runs, respectively.409

The convergence trend of the two strategies is described in Figures 4 and 5 for n40w40 and n80w80410

instances. The x-axis describes the number of generations, while the y-axis illustrates the normalized411

21/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 5. Comparing convergence trends of f2 in multi-tasking and single-tasking for the TRPTW in

n40w40 and n80w80 instances

0

0.2

0.4

0.6

0.8

1

1 10 19 28 37 46 55 64 73 82 91 100

No
rm

al
ize

d
Ob

je
ct
ive

Va
lu
es

Generations

MT (n40w40) ST (n40w40) MT (n80w80) ST (n80w80)

objective value. The less and less the normalized objective value is, the better and better the algorithm is.412

In Figures 4 and 5, Single-tasking (ST) converges better than multitasking (MT) in the whole evolutionary413

process while avoiding premature convergence to sub-optimal solutions by exchanging knowledge among414

tasks. That means, in general, multitasking converges to a better objective value.415

When the multitasking is run with the same number of generations as single-tasking, on average, it416

only consumes 1
K

computational effort for each task (K is the number of tasks). Therefore, we consider the417

worst-case situation when the number of generations for multitasking is K times the one for single-tasking.418

If multitasking obtains better solutions than single-tasking in this case, we can say that multitasking saves419

computational efforts. The experimental results are described in Table 13. In Table 13, the first row shows420

the average gap of single-task for the TSPTW and TRPTW, while the second shows the average gap of421

multitasking with 100 generations. The result shows that the multitasking consumes only 1
2

computational422

efforts to obtain better solutions than the single-tasking.423

In short, the efficiency of the multitasking is better in comparison with the single-tasking because the424

process of transferring knowledge during multitasking. It is the impressive advantage of the evolutionary425

multitasking paradigm.426

5.6 Discussions427

The MFEA framework (S. Dash et al.,2012; A. Gupta et al.,2016; E. Osaba et al.,2020; Y. Yuan et al.,2016; Q. Xu et al.,2021)428

has been proposed to incorporate Evolutionary into multitasking to handle multiple problems at the same429

time. Instead of solving a pool of similar optimization problems independently, it performs multiple tasks430

for systems. Therefore, it can be useful in a system with limited computation. In addition, the advantage431

of the approach compared with single-task EA is that the phenomenon of genetic information transfer in432

multitasking can exploit transferrable knowledge between optimization tasks. Therefore, it can find better433

solutions for multitasks. That is an important characteristic of the MEFA.434

In current, some MFEA algorithms (A. Langevin et al.,1993; E. G. Talbi et al.,2009) proposed to435

solve the close variant of TSP and TRP simultaneously. However, the drawback of two algorithms436

(A. Langevin et al.,1993; E. G. Talbi et al.,2009) is that there is a lack of a mechanism to exploit the437

good solution space explored by MFEA. Therefore, these algorithms cannot balance exploration and438

exploitation effectively. Recently, Ban et al. (H.B. Ban et al.,2022) have applied the MFEA with RVNS439

to solve the TSP and TRP successfully. Its performance encourages us to use the combination to solve the440

22/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

different variants such as the TSPTW and TRPTW.441

The TSPTW and TRPTW are combinatorial optimization problems that have many practical situations.442

Currently, there exist many algorithms that are proposed to solve them. We can find the TSPTW’s and443

TRPTW’s algorithms in the literature and run them parallel. However, these algorithms are designed to444

solve each problem independently and separately. They do not use a unified search space. Therefore, they445

cannot exploit positive transferrable knowledge between optimization tasks. In addition, running two446

algorithms in parallel can require a strong enough computation system while our MFEA runs sequentially.447

The MFEA is suitable in a system with limited computation. This paper introduces the first algorithm448

that combines the MFEA framework and RVNS for solving two tasks simultaneously. The combination449

is to have positive transferrable knowledge between tasks from the MFEA and the ability to exploit450

good solution spaces from RVNS. Due to the important characteristics, finding better solutions will451

be increased. In comparison with the previous schemes (H.B. Ban et al.,2022; A. Langevin et al.,1993;452

E. G. Talbi et al.,2009), our scheme includes new contributions as follows:453

• We propose a new selection operator that balances skill-factor and population diversity. The skill-454

factor effectively transfers elite genes between tasks, while diversity in the population is important455

when it meets a bottleneck against the information transfer.456

• Multiple crossover schemes are applied in the proposed MFEA. They help the algorithm have good457

enough diversity. In addition, two types of crossover (intra- and inter-) are used. It opens up the458

chance for knowledge transfer through crossover-based exchange between tasks.459

• The combination between the MFEA and the RVNS is to have good transferrable knowledge460

between tasks from the MFEA and the ability to exploit good solution spaces from the RVNS.461

However, focusing only on reducing cost function maybe lead the search to infeasible solution462

spaces like the algorithm (H.B. Ban et al.,2022). Therefore, the repair method is incorporated into463

the proposed algorithm to balance finding feasible solution spaces and reducing cost function.464

6 CONCLUSIONS AND FUTURE WORK465

In the paper, we propose an effective algorithm based on the MFEA framework for simultaneously solving466

the TSPTW and TRPTW, which combines the MFEA and Randomized RVNS. Extensive experiments on467

benchmark dataset indicate that the proposed algorithm solves both problems well at the same time. In468

addition, it obtains better solutions than the previous MFEA algorithms in many cases. More interestingly,469

it finds the new best-known solutions compared to the state-of-the-art metaheuristics only for the TRPTW470

in many cases. Finally, it indicates the efficiency of transferrable knowledge between optimization tasks471

in the MFEA framework.472

In future work, we will study how to apply multiple population ideas for multitasking. Many re-473

searchers is interested in the approach (Y. Chen et al.,2017; G. Li et al.,2019; T. Wei et al.,2009; T. Wei et al.,2009).474

The approach’s advantages include: 1) each population evolves with different genetic operators, and each475

individual can be represented differently; 2) individuals migrate between populations. The approach476

maintains the diversity and improves convergence trends.477

REFERENCES478

[H. Abeledo et al.,2013] H. Abeledo, R. Fukasawa, A. Pessoa, and E. Uchoa, The time dependent traveling479

salesman problem: polyhedra and algorithm, J. Mathematical Programming Computation, 5, 2013,480

pp. 27-55.481

[M. Angelova et al.,2011] M. Angelova, T. Pencheva, Tuning genetic algorithm parameters to improve conver-482

gence time. Int. J. Chem. Eng, 2011, pp. 1-7.483

[H.B. Ban et al.,2017] H.B. Ban, N.D. Nghia, Metaheuristic for the Traveling Repairman Problem with Time484

Windows, Proc. RIVF, 2017, pp.1-6.485

[H.B. Ban et al.,2021] H.B. Ban, A metaheuristic for the delivery man problem with time windows, J. Joco,486

41 (4), 2021, pp. 794-816.487

[H.B. Ban et al.,2022] H.B. Ban, H.D. Pham. Multifactorial Evolutionary Algorithm for Simultaneous Solution488

of TSP and TRP, J CAI, 40 (6), 2022, pp. 1370–1397.489

23/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

[T. Chena et al.,2017] T. Chena, K. Tang, G. Chen, X. Yao, A large population size can be unhelpful in490

evolutionary algorithms, J. Theoretical Computer Science, 436, 2012, pp. 54-70.491

[Y. Chen et al.,2017] Y. Chen, J. Zhong, L. Feng, and J. Zhang, An adaptive archive-based evolutionary492

framework for many-task optimization, J. IEEE Trans. onEmerg, 4 (3), pp. 369-384, 2020.493

[S. Dash et al.,2012] S. Dash, O. Günlük, A. Lodi, and A. Tramontani. A Time Bucket Formulation for the494

Traveling Salesman Problem with Time Windows, INFORMS Journal on Computing, 24, pp 132-147,495

2012.496

[Y. Dumas et al.,1995] Y. Dumas, J. Desrosiers, E. Gélinas, An optimal algorithm for the Traveling Salesman497

Problem with Time Windows, J. Operations Research, 43, 1995, pp. 367-371.498

[T. A. Feo et al.,1995] T. A. Feo, and M.G.C. Resende, Greedy Randomized Adaptive Search Procedures, J.499

Global Opt., 1995, pp. 109-133.500

[F. Focacci et al.,2002] F. Focacci, A. Lodi, M. Milano, A hybrid exact algorithm for the TSPTW, INFORMS501

Journal on Computing, 14 (4), 2002, pp. 403-417.502

[M. Gendreau et al.,1998] M. Gendreau, A. Hertz, G. Laporte, M. Stan, A generalized insertion heuristic for503

the traveling salesman problem with time windows, J. Operations Research, 43, 1998, pp. 330–335.504

[A. Gupta et al.,2016] A. Gupta, Y.S. Ong, L. Feng, Multifactorial evolution: toward evolutionary multitask-505

ing, J. IEEE Trans Evol Comput, 20(3), pp. 343–357, 2016.506

[G. Heilporna et al.,2010] G. Heilporna, Jean-François Cordeaua, and Gilbert Laporte, The Delivery Man507

Problem with time windows, 7, 2010, pp. 269-282.508

[T. Ibaraki et al.,2008] T. Ibaraki, S. Imahori, K. Nonobe, K. Sobue, T. Uno, and M. Yagiura, An iterated509

local search algorithm for the vehicle routing problem with convex time penalty functions, J. Discrete510

Applied Mathematics, 11 (156), 2008, pp. 2050–2069.511

[A. Langevin et al.,1993] A. Langevin, M. Desrochers, J. Desrosiers, Sylvie Gélinas, and F. Soumis. A two-512

commodity flow formulation for the traveling salesman and makespan problems with time windows.513

Networks, 23(7), 1993, pp. 631-640.514

[Y. Lavinas et al.,1993] Y. Lavinas, C. Aranha, T. Sakurai, and Marcelo Ladeira, Experimental Analysis of the515

Tournament Size on Genetic Algorithms, Proc. SMC, 2019, pp. 3647–3653.516

[Y. C. Lian et al.,2019] Y. C. Lian, Z. X. Huang, Y. R. Zhou, Z. F. Chen, Improve theoretical upper bound of517

Jumpk function by evolutionary multitasking, Proc. HPCCT, pp. 22–24, 2019, pp. 44–50.518

[G. Li et al.,2019] G. Li, Q. Zhang, and W. Gao, Multipopulation evolution frame workfor multifactorial519

optimization, Proc. GECCO, 2018, pp. 215–216.520

[O. Martin et al.,1991] O. Martin, S. W. Otto, E. W. Felten, Large-step Markov Chains for the Traveling521

Salesman Problem, J. Complex Systems, 5 (3), 1991, pp. 299–326.522

[E. Osaba et al.,2020] E. Osaba, A.D. Martinez, A. Galvez, A. Iglesias, J. Del Ser, dMFEA-II: An Adaptive523

Multifactorial Evolutionary Algorithm for Permutation-based Discrete Optimization Problems, Proc.524

GECCO, pp. 1690–1696, 2020.525

[A. Otman et al.,2015] A. Otman, and A. Jaafar, A Comparative Study of Adaptive Crossove for Genetic526

Algorithms to Resolve the Traveling Salesman Problem, J. Computer Applications, 31 (11), pp.527

49-57, 2011.528

[N. Mladenovic et al.,1997] N. Mladenovic, P. Hansen, Variable Neighborhood Search, J. Operations Research,529

24 (11), 1997, pp.1097-1100.530

[R. F. Silva et al.,2010] R. F. Silva, S. Urrutia, A General VNS heuristic for the traveling salesman problem531

with time windows, J. Discrete Optimization, 7 (4), 2010, pp. 203-211.532

[D. S. Johnson et al.,1995] D. S. Johnson, and L. A. McGeoch, The traveling salesman problem: A case study533

in local optimization in Local Search in Combinatorial Optimization, E. Aarts and J. K. Lenstra, eds.,534

1995, pp. 215-310.535

[J. N. Tsitsiklis et al.,1992] J. N. Tsitsiklis, Special cases of Traveling Salesman and Repairman Problems with536

time windows, J. Networks, 22, 1992, pp. 263–283.537

[E. G. Talbi et al.,2009] E. G. Talbi, Metaheuristics: from design to implementation, NewJersey, Wiley, 2009.538

[T. Wei et al.,2009] T. Wei and J. Zhong, “A preliminary study of knowledge transfer inmulti-classification539

using gene expression programming,” J. Frontiers in Neuroscience, Vol. 13, p. 1-14, 2020.540

[T. Wei et al.,2009] T. Wei, S. Wang, J. Zhong, D. Liu, A Review on Evolutionary Multi-Task Optimiza-541

tion: Trends and Challenges, J. IEEE Transactions on Evolutionary Computation, pp 1-20, DOI:542

10.1109/TEVC.2021.3139437.543

[J. W. Ohlmann et al.,2007] J. W. Ohlmann and B. W. Thomas, A Compressed-annealing Heuristic for the544

24/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Traveling Salesman Problem with time windows, J. INFORMS, 19 (1), pp. 80-90, 2007.545

[M. W. Salvesbergh et al.,1985] M. W. Salvesbergh, Local search in routing problems with time windows, J.546

Annals of Operations Research, 4, 1985, pp. 285-305547

[C. R. Reeves et al.,1999] C. R. Reeves, Landscapes, operators and heuristic search, Annals of Operations548

Research 86(0), 1999, pp. 473-490.549

[Y. Yuan et al.,2016] Y. Yuan, Y.S. Ong, A. Gupta, P.S. Tan, H. Xu, Evolutionary multitasking in permutation-550

based combinatorial optimization problems: realization with tsp, qap, lop, and jsp, Proc. TENCON,551

2016, pp. 3157-3164.552

[Q. Xu et al.,2021] Q. Xu, N. Wang, L. Wang, W. Li, and Q. Sun, “Multi-Task Optimization and Multi-Task553

Evolutionary Computation in the Past Five Years: A Brief Review, J. Mathematics, 9 (864), 2021, pp.554

1-44.555

25/25PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 1
Figure 5

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 2
Figure 3

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 3
Figure 4

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 4
Figure 2

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

Figure 5
Figure 1

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

PeerJ Comput. Sci. reviewing PDF | (CS-2022:02:71351:1:1:NEW 20 Jun 2022)

Manuscript to be reviewedComputer Science

