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ABSTRACT

In this article, we study efficient techniques to tackle the news background linking
problem, in which an online reader seeks background knowledge about a given
article to better understand its context. Recently, this problem attracted many
researchers, especially in the Text Retrieval Conference (TREC) community.
Surprisingly, the most effective method to date uses the entire input news article as a
search query in an ad-hoc retrieval approach to retrieve the background links. In a
scenario where the lookup for background links is performed online, this method
becomes inefficient, especially if the search scope is big such as the Web, due to the
relatively long generated query, which results in a long response time. In this work,
we evaluate different unsupervised approaches for reducing the input news article to
a much shorter, hence efficient, search query, while maintaining the retrieval
effectiveness. We conducted several experiments using the Washington Post dataset,
released specifically for the news background linking problem. Our results show that
a simple statistical analysis of the article using a recent keyword extraction technique
reaches an average of 6.2x speedup in query response time over the full article
approach, with no significant difference in effectiveness. Moreover, we found that
further reduction of the search terms can be achieved by eliminating relatively low
TF-IDF values from the search queries, yielding even more efficient retrieval of 13.3x
speedup, while still maintaining the retrieval effectiveness. This makes our approach
more suitable for practical online scenarios. Our study is the first to address the
efficiency of news background linking systems. We, therefore, release our source code
to promote research in that direction.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Natural
Language and Speech, Text Mining

Keywords News linking, News recommendation, Keyword extraction, Ad-hoc retrieval, Query
reduction, Efficiency analysis

INTRODUCTION

In today’s digital era, many people follow online news portals or digital media to learn
about different subjects, events, or topics. Being at almost no cost, with 24/7 updates on the
latest news around the globe, online news articles have become one of the most vital
sources of knowledge. However, as opposed to other long-text knowledge sources, such as
books or research articles, news articles are often limited in length. As a result, a single
news article is rarely self-contained with all the information about the topic it discusses. In
many times, a reader of a news article finds himself or herself in need of some in-depth
background information to understand or conceptualize the article he or she is reading.
In fact, a qualitative analysis of online news readers engagement in news websites
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(O’Brien, 2011) showed that readers of news articles often need more depth in the articles
to situate the news stories in their proper temporal context. Another recent study Lehmann
et al. (2017) showed that many readers, engage in a story-focused session, searching for
information related to a news story, and if this information is not entirely found in one
article, as expected, they tend to use search engines to find other resources related to the
same story.

To automate the knowledge acquisition process for readers, links to other resources that
provide the required background knowledge on a news article may be added to the article’s
content (O’Brien, 2011). While news articles in almost all online news providers have
already links to other articles, they do not always link to useful background or related
context; instead, they often link to other articles written by the same author, articles that
are most-viewed by the readers, or top headlines of the day. Background links, if they exist,
are added manually by the news author to other articles that he or she thinks might be
related to the article’s topic or story. Aside from the need to automate this process, readers
may require information that is not found in the articles linked by the author, such as
different viewpoints on the article’s subject, or an expanded scope on a specific subtopic.
Furthermore, due to competition and to keep readers as long as possible on their websites,
news providers rarely link articles to external sources. However, external resources to the
news provider (e.g., Wikipedia pages, articles from other news providers, etc.) might also be
useful to the reader.

In 2018, the Text REtrieval Conference (TREC) initiated a news background linking
task to address the news background linking problem, for which systems are built to take an
input article and return a list of links to other resources that provide background and
contextual knowledge on the given article (Soboroff, Huang ¢ Harman, 2018). For this
task, TREC released a dataset of about 600k news articles, from the Washington Post
newspaper, to be the source collection. While many research teams participated in the task,
surprisingly the most effective method reported to date adopted a simple ad-hoc search
approach, where the full content of the input article was used as a search query to retrieve
the background links from an indexed collection. This method, however, is inefficient,
specifically for relatively long articles. This is because, regardless of the model used for
scoring the candidate articles, inverted lists of all terms of this article are typically
processed to determine the ranking of the retrieved articles (Moffat et al., 2007). As
expected, with the large number of terms in the input article, the pool of candidate articles
increases, even with pruning strategies (Macdonald, Tonellotto & Ounis, 2012).
Furthermore, if we consider the online scenario when a reader of a news article requests
background links from the Web, this method will be even more costly due to the size of the
Web, the nature of its growth, and the collection of documents that makes it up.

To overcome the above limitation when addressing the problem, in this article, we aim
to study unsupervised approaches that can efficiently retrieve the background links
required for an input article, while maintaining the same (or comparable) effectiveness
reported so far by using the full input article as a search query. To our knowledge, this is
the first study that addresses the efficiency issue in the domain of news background linking
problem; all other related studies focused on the effective retrieval of the background links,
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regardless of the time taken to obtain those links. To achieve our goal, we hypothesize that
selecting a much fewer number of terms from the input article, instead of its full content,
might be enough to create an effective search query for our task. In other words, we aim to
reduce the long query article to a much shorter search query while maintaining its
effectiveness.

While query reduction was studied before in literature (Kumaran ¢ Carvalho, 2009;
Balasubramanian, Kumaran ¢ Carvalho, 2010), most of that work assumed that the long
queries are a description of the user’s information need in Web search, which is maximum
of 30 terms in length. Therefore, previous work considered techniques for assessing short
sub-queries (2 to 6 terms), which in many cases typically involve post-retrieval features.
This is, indeed, infeasible to apply for the lengthy news articles that have hundreds of
terms, as the number of sub-queries to be assessed will pose even more time for retrieval
compared to the full article, which contradicts our aim from the reduction.

To achieve our goal, in this article, we aim to address the following research questions:

1. RQI: Can we effectively retrieve the background links by just using the lead paragraphs
of the input article to construct the search query?

2. RQ2: How effective and efficient are typical keyword extractions techniques for this task?

3. RQ3: Which query reduction technique is more effective if we allow further reranking of
the candidate links?

We designed a number of experiments to answer the above questions. We first explored
the idea of using only the lead paragraphs of the news article as the reduced search query.
The results show that it considerably reduces the retrieval effectiveness, and that most of
the article’s content has be considered to achieve a relatively good retrieval effectiveness.
We next experimented with the state of the art unsupervised keyword extraction
techniques for constructing a weighted search query out of the input news article. Our
results show that using Yake (Campos et al., 2020), a recently introduced statistical
keyword extraction technique, yields an effectiveness that is not significantly different from
the state-of-the-art background linking technique (which uses the full input article as a
query), while being significantly more efficient in retrieval. Moreover, we found that we
can adopt the simple traditional TF-IDF weighting mechanism to further omit
“unimportant” search terms from the search queries generated by Yake for a further
speedup while maintaining the effectiveness. We further evaluated the ability of the
keyword extraction techniques to construct search queries that are able to retrieve as many
as possible of relevant background links (i.e., promising for further reranking). Our results
show that graph-based keyword extraction methods, such as k-Core (Rousseau ¢
Vazirgiannis, 2015) and k-Truss (Tixier, Malliaros ¢» Vazirgiannis, 2016), have the
potential for achieving the highest effectiveness after the reranking of the initially-retrieved
articles.

Our contribution in this article is four-fold:

e While many researchers addressed the background linking problem, mainly within the
scope of TREC news track, our study is the first to highlight the efficiency aspect of this
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problem, aiming to build an efficient background linking system that maintains the far
most obtained effectiveness, besides being the first to extensively review the literature for
this problem, considering as well other resources for background linking than news
articles.

e We present a new comparative study between several state-of-the-art unsupervised
keyword extraction techniques for a new downstream task (news background linking) in
which they were never evaluated, in terms of both effectiveness and efficiency.

e We show that we can quite efficiently reduce the query response time needed for the
retrieval of the background links, while maintaining the retrieval effectiveness of the full
article approach, using simple unsupervised statistical keyword extraction techniques.

e We make our source code for running the different methods and experiments publicly
available.

The rest of the article is organized as follows. An extensive literature review of linking
news articles to external sources of information for contextualization purposes is presented
first, followed by a definition of our research problem and how we distinguish it from other
related problems. Subsequently, we detail our proposed query reduction approach,
including a summarized description of the keyword extraction techniques that we
experimented with. Finally, results of our experiments are discussed and conclusions are
presented.

RELATED WORK

In this section, we review the work done for news articles contextualization; i.e., to allow
readers to contextualize and understand better the content of news articles. We start by
reviewing the work done mostly in TREC for news background linking, which considers
other news articles than the query article as sources of knowledge. We then review the
work that was conducted earlier and considered other sources of background knowledge
(such as Wikipedia pages and scientific articles among others).

News articles as sources of background knowledge

A news background linking task was recently introduced as a new challenge in the news
track in TREC 2018 (Soboroff, Huang ¢» Harman, 2018), and as a follow-up task in TREC
2019 (Soboroff, Huang ¢ Harman, 2019), and TREC 2020 (Soboroff, Huang ¢ Harman,
2020). A number of teams participated in this challenge proposing different methods that
are surveyed below. It is important to highlight that all the methods surveyed in this
section did not achieve an effectiveness higher or even equal to the method that uses
simply the whole query article as a search query to retrieve the background links.
Accordingly, we focused in our experiments on the comparison with solely this later
method, as we will discuss later in the Experimental Evaluation Section.

Ad-hoc based retrieval of background links

Some proposed methods addressed the task using an ad-hoc search approach, in which an
input query article is analyzed to construct a search query. Yang ¢ Lin (2018) introduced a
number of methods that were all implemented in Anserini (Yang, Fang ¢ Lin, 2017). The
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proposed methods selected the query terms as the 1,000 article terms having the highest
TF-IDF values, or as the first 1,000 terms that appeared in either the article or some
selected paragraphs. Since the average length of the articles in the Washington Post
collection was around 400 terms (after removing stop words), we can say that this method,
for many of the articles, used the full article as a search query. Lopez-Ubeda et al. (2018)
constructed different queries using the article’s title, the full body text, and both the title
and the body, to generate initial results. Candidate articles were then selected based on a
k-means clustering to diversify the results to the news reader.

In an attempt to find the most influential terms to be used in the search query,
Bimantara et al. (2018) selected the key phrases extracted using TextRank (Mihalcea ¢
Tarau, 2004) (a basic graph-based text analysis algorithm), and used these keyphrases as
the search query along with a list of named entities extracted also from the query article.
Documents were also re-ranked considering their publication dates to allow articles that
were published close to the input article to appear at the top of the retrieved list. Essam ¢
Elsayed (2019) also used graph-based keyword extraction mechanisms to determine the
most influential terms from the query article, and used up to 20% of the extracted terms
from the query article as a search query.

Forming multiple search queries from the input article, Lua ¢» Fang (2018) suggested
splitting an article into paragraphs and extracting query terms from each paragraph to
form the search queries using a probabilistic model. Before indexing, the entities in the text
were identified using DBpedia Spotlight (Daiber et al., 2013), and they were subsequently
replaced by their canonical forms (Lu ¢ Fang, 2019). In 2019, the authors suggested,
additionally, to assign different weights to the spotted DBpedia entities in the input
document based on its surrounding context. To do so, they combine the words before and
after each occurrence of each entity, and generate a language model based on the words.
They then compute the KL-divergence between this context language model and the
document language model to find the entity weight. The probabilistic weight distribution
of the regular words and of the entities of the query article is then used in the retrieval
process of background links.

Exploring relevance feedback and query expansion, Missaoui et al. (2019) initiated a
search first using the named entities extracted from the query article’s title. They then used
the top 10 retrieved articles in expansion to update the search query. Ding et al. (2019) also
adopted similar approach. They did not use only named entities though for their initial
query; instead, they used the title and body of the input article with weights equal to 0.3
and 0.7 respectively. They also assumed that the top 10 retrieved articles are relevant and
the lower 10 retrieved documents from a 100 set are non-relevant. For retrieval, they
experimented with BM25 and Query Likelihood models, and for expansion, they studied
Rocchio and RM3.

Supervised retrieval of background links

To learn a model that estimates the usefulness of a background article to a query article,
Foley, Montoly ¢» Pena (2019) constructed different linear learning to rank retrieval models
trained on the 2018 collection. To select the best set of features for the model, the
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Coordinate Ascent model (Metzler & Croft, 2007) was adopted. Similarly, Qu ¢ Wang
(2019) trained a multi-class classifier to re-rank background documents using logistic
regression. The classifier classifies the candidate articles from 0 to 4 according to how
much knowledge they provide to the query article. To produce the background documents,
the top 80 frequent words (using TF-IDF scores) were used as a query to retrieve an initial
set of 1,000 candidate background documents. This set is then re-ranked by the classifier.
Khloponin & Kosseim (2019) suggested representing all documents in the collection as
vectors using Doc2Vec distributed representation (Le ¢ Mikolov, 2014). Based on the
assumption that documents that have some background knowledge to the query document
are closer in the vector space, they then computed the cosine similarity between the query
document and all other documents in the collection. Similar to this work, Day, Worley ¢
Allison (2020) computed embeddings for the documents using Sentence-BERT. Precisely,
an initial set of background links were first retireved using the highest in TF-IDF terms as a
search query, then for each document in this set, an embedding is generated by pooling the
embedding vectors of the leading three paragraphs generated by Sentence-BERT. Finally,
the cosine similarity between the embeddings of both the query and each of the candidate
articles was used to generate the final rank of background links. Khloponin ¢» Kosseim
(2021) turther explored a number of document embedding representations, with different
proximity measures, and found that GPT2 and XLNet embeddings generally lead to higher
performance in the semantic representation of articles for this task.

Computing their own embedding vectors for the dataset, Gautam ¢ Mandar Mitra
(2020) trained a word2vec model on all articles, where each word in the corpus was
represented as a 300 dimensional vector, and an article was represented as the sum of the
vectors corresponding to the top 25 words contained in the article. To retrieve the
background links, the authors initially retrieved a set of articles using a search query
composed of the 80 highest terms in TF-IDF values. Documents were then reranked given
thier retrieval score and the cosine similarity between its embeddings and the query article
embeddings. Deshmukh & Sethi (2020) also computed their own embedding
representation of the query and candidate documents, by first extracting important
keywords from the text, then treating the concatenation of these keywords as a sentence
that is fed to Sentence-BERT to obtain the required embeddings.

Ak et al. (2020) suggested further two supervised based methods for background linking.
The first used BERT-based extractive summarization methods to generate a summary of
180 words for the news article, then used this summary as a search query. The second
fine-tuned next sentence prediction task in BERT for background linking. Since BERT
input is limited to 512 tokens, both the query article and the candidate background article
were cropped to half of 512. In an attempt to analyze the different topics discussed in the
news articles and how much the common topics between articles affect relevance in this
problem, Ajnadkar et al. (2021) used a trained LDA model to analyze the news articles in
the Washington Post dataset and obtain its topic distributions, then find the most similar
articles to a given query article based on the maximum cosine similarity with its topics.
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Other sources of background knowledge

Aside from the work that was proposed for the background linking task in TREC, there has
been some research in contextualizing the news articles using external sources (i.e., other
than articles from the same source). Ravenscroft, Clare ¢» Liakata (2018) built a system that
links a news article that reports or discusses a specific scientific research article to this
mentioned article. The content of each news article was processed to extract names of
authors and scientific organizations. Pairs of author names and organizations were then
used as search queries, using Microsoft Academic Knowledge, Scopus, and Springer APIs,
to retrieve an initial set of candidate scientific articles. Candidate articles were then scored
using a mechanism that is based on the Levenshtein Ratio between the entity mentions in
the news article and the author names and affiliations in the scientific work.

To enrich news articles with data visualizations that are available on the Web (e.g.,
maps, line graphs, and bar charts), Lin et al. (2018) proposed a system that uses a learning
to rank classifier to link news articles to visualization images that exist in Wikipedia. The
candidate images were extracted from the Web pages of named entities that were
mentioned in the articles. To train the classifier, features such as the semantic relatedness
between the article’s title and content and the image caption or its contained page were
used.

Linking the named entities that are mentioned, generally in any text and specifically in
news articles, to entities in knowledge sources, has been an active research area in text
contextualization. In fact, there is a research problem, denoted as Wikification, in which
entities are supposed to be spotted in a text then linked back to Wikipedia pages. Recently,
a number of systems were proposed for both entity recognition and entity linking,

e.g., Spotlight (Daiber et al., 2013), Conerel (Phan ¢ Sun, 2018) and Recognyze
(Weichselbraun, Kuntschik ¢» Brasoveanu, 2018). To provide mappings between news
articles and Wikidata events, Rudnik et al. (2019) proposed to check if an article’s
publishing date is the same as one of the Wikidata events, if the article mentions the event
location in its lead paragraphs, and if the lead paragraphs of the article have high similarity
with the Wikidata event’s type and title. For annotating possible events within the articles,
the authors used a predefined vocabulary of news events. Linking the news articles content
to entities in knowledge sources allows readers to gain more knowledge on the article’s
content, and accordingly help the readers contextualize it. Nonetheless, as some articles
may not have named entities, additional techniques for contextualization are required.
Moreover, the Wikipedia pages or the linked knowledge sources may not contain the up to
date information that the reader seeks. Furthermore, we need a general method that allows
the retrieval of the required background and context knowledge from any text document
regardless of its type or structure. That clearly makes the news background linking
problem different from the Wikification problem.

BACKGROUND LINKING PROBLEM

In this section, we first formally define the news background linking problem, then we
highlight the differences between this problem and other problems that were addressed in
literature and aimed generally to find related articles.
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Figure 1 Retrieving a set of background links for a query article.
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Figure 2 Example 1 of news background linking drawn from the dataset in TREC news track.
Full-size K&l DOT: 10.7717/peerj-cs.1191/fig-2

Definition

We define the problem of news background linking as follows: Assuming an input query
article A, that a reader does not fully comprehend, and given a collection of documents D,
suggest a ranked list of documents R C D that a reader of A can read next to provide him
or her with the context and background knowledge required to comprehend the content of
the query article A (see Fig. 1).

Figure 2 shows an example of news background linking, where the query article
discusses the effects of the death of a young lady, who took pills to die after being
diagnosed with cancer, on the right-to-die debate in the United States. The background
articles give the reader more context on the the query article. One article for example
discusses a lawsuit in California to approve the right-to-die law. Another discusses the
young lady’s campaign before dying, and the third discusses an economical view on
approving the right-to-die law in president Trump’s budget. Another example is shown in
Fig. 3, where the query article is discussing a recent report on the worldwide increase in the
number of tigers. The first background article discusses the case in India and how the
government took measures to insure the safety of the tigers, and the other one discusses the
contrary effect of having tigers farms in China on their numbers.
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Figure 3 Example 2 of news background linking drawn from the dataset in TREC news track.
Full-size K&l DOTI: 10.7717/peerj-cs.1191/fig-3

Relation to other problems

A whole body of work has been proposed to deal with finding related articles in general.
Some research for instance aimed at recommending articles to the reader that might be of
interest to her (Chakraborty et al., 2019). Most often, in this line of research, the proposed
system assumed somehow an access to the reader’s information such as her profile, her
past online interactions, browsing session or her location, and this information helped in
recommending news to her (Chakraborty et al., 2022; Hu et al., 2020). In news background
linking, however, the focus is solely on the query article with no access to any user
information, i.e., the recommended background links are not personalized. Furthermore,
in news recommendation, the recommended articles are not required for contextualization
purposes of the current article. For example, for the query article in Fig. 3, some
recommended articles might be about saving rhinos. While they are somehow related and
might be of interest to the reader, they are not background and they do not help the reader
contextualize the problem of decreasing tiger numbers.

Another close problem is to find clusters of related news articles such that a cluster has a
high internal coherence (i.e., having articles from the same topic or word distribution), but
different from other clusters (Bisandu, Prasad & Liman, 2018; Salih & Jacksi, 2020; Khan
et al., 2018). While articles within the cluster might be candidate background to each other,
the cluster size is big, and selecting specific articles from the cluster to present to the reader
of a specific query article is again a challenging problem. Furthermore, articles that have
the same exact information will end up in the same cluster, making them not background
to each other.

Finally, there has been some work recently on detecting events within new articles that
discuss incidents or stories, and following those story lines along the published articles
(Nicholls & Bright, 2019; Naskar et al., 2019; Qian et al., 2019; Ors, Yeniterzi ¢ Yeniterzi,
2020; Conrad ¢ Bender, 2016). While articles published by the same news provider for a
specific event may be useful as background to a query article published after them, in some
cases, the query article itself might not at all discuss or be triggered by the occurrence of a
specific event. It may be a feature article discussing a general topic, e.g., an article
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discussing the increase of college fees and its effects on the education process in the
country. For such articles, event or story detection will not help (Essam ¢ Elsayed, 2020).
Furthermore, in some cases, an article that does not mention the event of the query article
might be a strong background article that helps the reader contextualize the event.
Consider, for example, the case for the query in Fig. 2, which shows two very important
background articles that do not mention the specific event of the young lady’s death in the
query. Furthermore, if an article discusses the exact same event but provides no more
added information about that event to the reader (e.g., discussing the same event published
by another news provider), then this article should not be qualified as background.

METHODOLOGY

As illustrated in the literature, the most common approach to date to address the news
linking problem follows an ad-hoc retrieval approach. In this approach, the query article A
is analyzed to produce a search query Q, which is issued against the collection index to
retrieve the required background links. The simplest and most effective reported method
to date constructs Q as a concatenation of the article’s title and its full content. This
method is clearly inefficient, though, as we outlined earlier, since the retrieval query
includes all the terms of the article, even if they are noisy or uninformative. Therefore, in
this work, we assume that a search query that captures only the informative terms can be
(at least) as effective as the full article query, yet much more efficient. Moreover, since
terms in the article can have different impact in representing the different background
aspects of the input article, we assume that constructing a weighted search query, where
each unique search term has a real-valued weight, that can be different from other terms,
will be helpful in improving the retrieval effectiveness. In fact, adding weighted terms to
queries has been shown previously to increase the retrieval effectiveness, specially with the
increase in the number of search terms (Qiu ¢ Frei, 1993). In this section, we first describe
how we formulate a weighted search query and show how we score the background articles
given that query. We then briefly describe the different keyword extraction methods that
we chose to adopt in extracting and weighting the search query terms from the input
article. Finally, we present a complexity analysis for the adopted methods to contrast their
efficiency in extracting the search terms.

Query formulation and document scoring

Given a query article A, we formulate a search query Q as follows. Let 1,4 be the set of
unique terms in A. We apply a keyword extraction algorithm to assign a weight w;,  for
each term t € n,. We then choose terms k < |n4| with the highest weights to construct the
search query Q as follows:

Q == {(tla thQ)y (t27 Wt27Q)7 LKD) (tk7 WtkaQ)} (1)

Given Q, a document can be scored as follows:

score(d, Q) = f({(t, weo.wea | t €QNd)}) (2)

where w; 4 is the weight of term ¢ in d according to the retrieval model f (e.g., the term
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frequency of ¢ in d). Finally, the documents with the highest scores can be retrieved as
background links for the article A.

Unsupervised keyword extraction techniques

The most significant choice to make when applying our proposed methodology is the
keyword extraction technique. We reviewed recent studies that addressed the problem of
keyword extraction, focusing on those that compared the performance of state of the art
techniques on the gold-standard keyword extraction datasets (Sarwar, Noor ¢ Miah, 2022;
Piskorski et al., 2021; Miah et al., 2021; Papagiannopoulou & Tsoumakas, 2020). We also
checked the methods that were reported by the recent techniques as effective baselines.
Accordingly, we made our selection of the techniques based on the following criteria:

e Unsupervised methods: Since the problem we address is very recent, and there is no
labeled data for supervised learning, (i.e., there is no golden set of keywords extracted
from the query articles that can be used to retrieve the best set of background links), we
focus only on selecting keyword extraction techniques that are mainly unsupervised.

o Effective number of keywords: Our goal from extracting the keywords is to use them to
form search queries to retrieve candidate background documents from a big news
articles collection. Hence, we prefer the keyword extraction technique that can provide a
large number of good representative keywords. In our preliminary experiments, using
few search keywords in a retrieval query, even of good quality or representation of the
query topic, considerably lowered the retrieval effectiveness. Accordingly, techniques
that failed to provide large number of good keywords (30 in our preliminary
experiments) were excluded, such as Teket (Rabby et al., 2020).

o Effectiveness on news articles: When reporting its effectiveness, many keyword
extraction studies conduct the experiments on scientific article datasets or even books;
however, news articles have special features. They are shorter, less cohesive, and they
may discuss multiple subtopics. Hence, we selected the recent techniques that worked
best when tested on English news articles datasets.

Given the above criteria, we experimented with the techniques listed in Table 1 along
with their types. We note that most of the methods are graph-based (i.e., they construct a
graph of terms from the input document, then analyze it to extract the required keywords).
We further experimented with two simple and standard keyword extraction methods,
which are Term Frequency (TF) and Term Frequency-Inverse Document Frequency
(TF-IDF), as additional baselines to compare against.

A brief description of the evaluated methods and how they weigh the terms is given
below. Since we need boosting weights for individual terms to construct search queries, we
further show how, for some methods, we computed those boosts given the weights
assigned for the extracted keyphrases.

k- Core

k-Core (Rousseau & Vazirgiannis, 2015) is a graph-based keyword extraction method that
depends on the construction of a graph-of-words for the document being processed, and
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Table 1 The keyword extraction methods we studied in this work.

Method Type

TF Statistical
TF-IDF Statistical
k-Core (Rousseau ¢ Vazirgiannis, 2015) Graph-based
k-Truss (Tixier, Malliaros & Vazirgiannis, 2016) Graph-based
PositionRank (Florescu & Caragea, 2017) Graph-based
TopicRank (Bougouin, Boudin ¢ Daille, 2013) Graph-based
MPR (Boudin, 2018) Graph-based
sCake (Duari ¢ Bhatnagar, 2019) Graph-based
Yake (Campos et al., 2020) Statistical

analyzing this graph to extract the required keywords. Nodes in the graph-of-words are
simply the unique words in the text after pre-processing (e.g., stop words removal), and
edges are added by sliding a window over the text, creating an edge between words that
co-occur within this sliding window. In general, the underlying assumption of creating
graphs from text and analyzing it is that terms co-occurring within a relatively small
window of text have some kind of semantic relatedness regardless of their roles in a
sentence, and that this relationship influences the importance of each single term within
the text document, leading to better document analysis. To analyze the constructed graph
of words, k-Core decomposes the graph into a hierarchy of nested subgraphs using graph
degeneracy methods, and goes down this hierarchy to identify nodes that are at the core of
the graph. This is based on the assumption that nodes in the core are reachable through the
graph by many other nodes, making them influential. k-Core decomposition relies on
peeling away weakly connected nodes to gradually get the core of the graph. The k-Core of
a graph is the maximal subgraph such that every node has a degree at least k, where the
degree of a node is the sum of the weights on its connecting edges. Starting with the initial
graph and with k = 1, the subgraphs are iteratively created with increasing k and pruning
nodes, and the algorithm stops when reaching k-max which is the maximum subgraph that
can be created (i.e., the subgraph after which it becomes empty).

Assuming that the graph was decomposed into cores, each node is then assigned the
core number of the maximum subgraph at which it resides. For keywords extraction, nodes
in the k-max subgraph or nodes in the lower level of the hierarchy of subgraphs can be
marked as the most influential, and used as keywords (Rousseau ¢» Vazirgiannis, 2015).
However, in this article, we adopt the work done by Tixier, Malliaros ¢ Vazirgiannis
(2016), which assigns a final score to a node #; as the sum of the core numbers of its
neighbors in the original graph. This scoring aims at decreasing the granularity in nodes
selection. As suggested, for keyword extraction, if a score is assigned based only on the
node’s own core/truss number, then many nodes will end up having the same weight,
increasing the number of selected nodes (Bae ¢ Kim, 2014).
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k- Truss

k-Truss is another graph decomposition method (Tixier, Malliaros ¢ Vazirgiannis, 2016)
that is triangle-based, and is based on a cohesive social and communication pattern in
graphs introduced by Cohen (2008). A triangle in a graph G is the set of three nodes a, b
and c that are pairwise-connected. Instead of pruning weak nodes in the decomposition
process as in k-Core, k-Truss peels weak edges first, then removes nodes with no more
connecting edges in the resulting subgraph. Precisely, k-Truss prunes an edge from the k-1
subgraph if it is not supported by at least k—2 other edges that form triangles with that
edge. Similar to k-Core, we follow the same scoring method to compute the node scores
given their truss numbers.

PositionRank

PositionRank is a also a graph-based keyword extraction algorithm (Florescu ¢ Caragea,
2017) that uses the graph-of-words structure. However, after constructing the graph,
PositionRank adapts the PageRank algorithm (Page et al., 1999), a well known iterative
random walk-based algorithm for ranking web pages, to assign scores to nodes (words) in
the graph that indicate its importance. Aside from PageRank that assigns equal initial
scores/weights to all nodes in the graph, PositionRank assigns initial scores to nodes
(words in this case) based on their positions in the text being analyzed. Precisely, it favors
more nodes that occur at the lead of the text, based on the assumption that keywords occur
frequently very close to the beginning of a document. In constructing the graph of words,
PositionRank selects only nouns and adjectives to be added as nodes to the graph. After the
graph analysis, PositionRank considers noun phrases that match the regular expression
(adjective)*(noun) + of length up to three to create unigrams, bigrams, and trigrams. It
assigns bigrams and trigrams the sum of the scores of its individual unigrams. To create the
news background linking search queries using PositionRank, and since we only care about
weighting single terms, we skip this process of creating bigrams and trigrams, and use the
weights assigned by PositionRank to the unigrams as is.

TopicRank

TopicRank is another graph-based keyword extraction algorithm (Bougouin, Boudin ¢
Daille, 2013) that is also based, as PositionRank, on the idea of the PageRank algorithm.
However, in TopicRank, the graph nodes are not only single words; instead, a document is
represented as a complete graph of topics and the relations between those topics. A topic is
defined as a cluster of similar single and multi-word phrases. To define these phrases,
TopicRank uses a part-of-speech (POS) tagger and extracts the longest sequences of nouns
and adjectives from the document as keyphrase candidates. Keyphrase candidates are then
split into clusters using a Hierarchical Agglomerative Clustering (HAC) algorithm. After
creating the different topics and representing them as nodes, a complete graph is created,
where edges are added between topics given their closeness to each other. The weight on
the edge between topics is calculated using the reciprocal distances between the offset
positions of their keyphrases. The basic PageRank on this graph is then applied to weigh
the different topics. Finally, TopicRank selects the keyphrase from each topic that appears
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first in the document, and assigns it the topic’s weight. For constructing the search query,
we split the extracted keyphrases into unigrams, then we compute the score or boost value
of a unigram term u as follows: score(u) = sum*_ TR(i), where k is the number of the
extracted keyphrases that contain the unigram u, and TR(i) is the weight assigned by
TopicRank to an n-gram keyphrase i.

Multipartite Rank

Based on the idea of creating better representation of keyphrases within the different topics
in the a text, Boudin (2018) proposed Multipartite Rank (MPR). MPR uses a more dense
graph structure than with TopicRank, called multipartite graph to model the topics with
their key phrases. In that graph, the nodes are candidate keyphrases that are connected
only if they belong to different topics. Accordingly, the document is represented in this
graph as tightly connected sets of topic-related candidates/keyphrases. MPR also adds an
adjustment on the weights of the keyphrases that occur first on each topic. This is based on
the assumption that candidates keyphrases that occur at the beginning of the document are
better representatives of the topics. We follow the same method as with TopicRank to select
the required terms and weights.

sCAKE

Following the line of graph-based keyword extraction methods, sCake (Duari ¢
Bhatnagar, 2019) was motivated by the need to design a paramterless graph construction
method. Instead of a sliding window parameter as in k-Core or k-Truss, in sCake, the
window slides over two consecutive sentences and the terms co-occurring in these
sentences are linked (i.e., the edge between a node n; and node n; holds how many times
the terms ¢; and t; occurred in two consecutive sentences). Similar to PositionRank, sCake
only considers nouns and adjectives as candidate terms for constructing the graph of
words. To score nodes in the graph for keyword extraction, sCake initially applies the k-
Truss method explained above, then uses the created truss-hierarchy of subgraphs to
assign different features to the nodes, and aggregates those features for each node to
compute its final score. These features are the maximum truss number at which an edge
between the node and any of its neighbors resides, the sum of truss levels of the node’s
neighbors, a positional feature that attempts to favor nodes at the beginning of a document
as in PositionRank, and a semantic connectivity score that measures the number of distinct
concepts that a node links to, assuming that the more the node’s neighbors belong to
different concepts, the more important it is. Since sCake creates only unigrams, for
constructing our search queries, we use the score assigned by sCake to each output term as
is.

Yake

Unlike graph-based methods, Yake is a completely statistical method that was introduced
recently for keyword extraction (Campos et al., 2020). It depends on capturing five
statistical features of terms in a document, and integrating those feature scores in a final
score for keyphrase determination. The first feature captures how frequent a term was
mentioned starting with a capital letter excluding the beginning of a sentence, or marked as
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Table 2 Symbols used for representing time complexity.

Symbol Meaning

N Length of the article in words after preprocessing

n Number of unique terms in the article

s Number of sentences in the article

w Width of the sliding window used for constructing the graph of words
c Number of candidate keyphrases determined through POS tagging

m Number of edges in the constructed graph

Table 3 Time complexity of keyword extraction algorithms.

Method Time complexity Pre-requirements

Yake ON+snw) Segtok sentence segmenter
PositionRank O(N w? + ¢+ m) POS tagging

TopicRank 0 +m) POS tagging

MPR 0 + m) POS tagging

k-Core O(N w* +m) -

k-Truss O(N w? + n+ m'?) -

sCake O(N +s & +m'?) POS tagging

an acronym. This is based on the assumption that uppercase terms are usually more
relevant as keywords than lowercase ones. The second feature is term position, which
captures, as in PositionRank, the position of terms in the document, favoring terms that
occur at the beginning of the document. Unlike PositionRank though that captures the
position of terms itself, Yake captures the position of the sentences in which the terms
occur. The next feature is a normalized version of the term frequency in a document. The
fourth captures the context around the term, based on the assumption that the higher the
number of different terms that co-occur with the candidate term on both sides, the less
significant term ¢ will be. Finally, the last feature captures the percentage of different
sentences in which a term occurs, assuming that terms which occur in different sentences
are more important. In Yake, the smaller the value of a term, the more significant it is.
Since in our work we assign boost weights to extracted terms, we assign a score to the term
t as follows: score(t) = 1/Yake(t).

Time complexity of keyword extraction techniques

Although we assume an offline extraction of keywords from the query article to construct
the search query for background links retrieval, it is worth comparing the time complexity
of the aforementioned keyword extraction techniques in case it is performed online, or
there is a large number of query articles to be processed by the news provider. Table 2
shows the terminology we used for this analysis, and Table 3 shows the time complexity for
each method, along with any specific requirements before the keyword extraction process.
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Most of the graph-based keyword extraction methods are quadratic in time. For
instance, constructing a graph of words for PositionRank, k-Core, or k-Truss is of time
complexity O((N — w+ 1) (w(w — 1)/2)). Since w is relatively small with respect to the
length of the article, the complexity is /(Nw?). After constructing this graph and assuming
m edges in the constructed graph, applying PositionRank on the constructed graph
additionally requires ()(c + m) (Vega-Oliveros et al., 2019), as it is a variation of the well
known Pagerank algorithm with only favoring nodes that appear at the beginning of the
article. As for k-Core, there is a number of implementations proposed in the literature to
decompose the graph of words into cores. The most efficient applies the decomposition in
(O(m) time (Batagelj & Zaversnik, 2003). While k-Truss is relatively more complex than
k-Core when computed on large graphs, an in memory-based complexity of (/(m'*) can
be considered (Wang ¢ Cheng, 2012), which suits the relatively small graph of words for
news articles.

As for TopicRank and MPR, both need POS tagging before constructing the text graph.
Although the number of candidate keyphrases ¢, obtained after POS tagging, is less than
the number of unique terms #, both algorithms apply agglomerative clustering to the
candidate keyphrases, which is of worst time complexity (/(¢*). The construction of the
topic graph then requires (/(N.c) for computing the candidate keyphrase offset positions,
and ()(c*) for computing the positional distance between pairs of candidate keyphrases.
Both algorithms additionally require ¢(c + m) for applying PageRank.

For sCake, aside also from the need to apply POS tagging, it requires (/(N) to calculate
term frequencies, ((c* * s) to construct the graph, ((m'~) for k-Truss, and for computing
the positional weights.

Finally, Yake depends (as mentioned in Campos et al. (2020)) on the rule-based segtok
algorithm (https://pypi.org/project/segtok/) that segments a text into sentences based on
orthographic features, and tokenizes the text into terms with delimiter tags (e.g.,
Acronyms, Uppercase, Digits, etc.). After identifying the sentences, Yake takes (/(N) for
computing the term frequencies and casing features. It additionally requires (/(s.n.w) for
context feature calculations. We omit here the complexity to generate n-gram keyphrases
as our goal is to obtain unigram terms. Hence, compared to the methods mentioned above,
it is considered the most efficient method for extracting unigram terms.

As for TF, the time complexity is (/(N) with no additional requirements, making it the
most efficient method among the others. For TF-IDF, assuming a constant time (¢/(1)) to
get the document frequency of each term from the index, the complexity remians (/(N),
making it similarly efficient as TF.

EXPERIMENTAL EVALUVATION

In this section, we present our experimental evaluation. We first describe our experimental
setup, followed by a discussion on the experimental results that address our research
questions.

Essam and Elsayed (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1191 16/30


https://pypi.org/project/segtok/
http://dx.doi.org/10.7717/peerj-cs.1191
https://peerj.com/computer-science/

PeerJ Computer Science

Experimental setup

Our experimental setup covers the dataset description, the pre-processing and indexing
phase, the baseline method, some implementation issues, the retrieval method, and the
evaluation measures.

Dataset

We conducted our experiments on version 3 of the Washington Post news test collection
released by TREC for the background linking task in the news track (https://trec.nist.gov/
data/wapost/). The collection covers 7 years of articles (2012-2019) with about 672 k
documents comprising news articles, columns, and blogs. It also contains 50, 57, and 49
query articles released in 2018, 2019, and 2020 respectively. Each of those query articles is
associated with a set of background articles manually-judged on a 0-4 relevance scale
indicating how much context and background knowledge they provide to the query article
(Soboroff, Huang ¢ Harman, 2018, 2019, 2020).

Preprocessing and indexing

Each article in the dataset is formatted as a JSON object, which is broken into a title and
multiple content paragraphs. For each article, we extracted the metadata (title, author
URL, and publishing date) and concatenated the text content (marked by a
“sanitized_html” type). We used JSOUP library (https://jsoup.org/) to extract the raw text
from the HTML text. Afterwards, we lower-cased the text and removed stop words.
Finally, the pre-processed text was indexed, along with the article’s meta-data, using
Lucene v8 (http://lucene.apache.org/). We did not perform stemming as, per preliminary
experiments with the full-article baseline, the performance was degraded compared to
non-stemming.

Baseline

Since the news background linking problem was mainly and extensively addressed within
the scope of TREC conference, we elected to choose the baseline as the most (to date)
effective method as reported by TREC (Soboroff, Huang ¢» Harman, 2018, 2019, 2020). It
uses the concatenated text of the query article’s title and its body content (after stop words
removal) as a search query to retrieve the background links. While there were few attempts
outside TREC to address this problem, none were able to achieve a better performance
than this simple baseline method, constituting the state of the art on that problem.
Accordingly, we focus our comparison with only this baseline, aiming at achieving the
same effectiveness, but with much shorter, hence efficient, search queries.

Implementation issues

Due to lack of open source implementation, we implemented our k-Core and k-Truss
keyword extraction methods in Java. For PositionRank (https://github.com/ymym3412/
position-rank), Yake (https://github.com/LIAAD/yake), and sCake (https://github.com/
SDuari/sCAKE-and-LAKE), we used the authors’-provided implementation developed in
Python for the first two methods and R for the third. For TopicRank and MPR, we used the
PKE Python library (https://github.com/boudinfl/pke). We set the sliding window to three

Essam and Elsayed (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1191 17/30


https://trec.nist.gov/data/wapost/
https://trec.nist.gov/data/wapost/
https://jsoup.org/
http://lucene.apache.org/
https://github.com/ymym3412/position-rank
https://github.com/ymym3412/position-rank
https://github.com/LIAAD/yake
https://github.com/SDuari/sCAKE-and-LAKE
https://github.com/SDuari/sCAKE-and-LAKE
https://github.com/boudinfl/pke
http://dx.doi.org/10.7717/peerj-cs.1191
https://peerj.com/computer-science/

PeerJ Computer Science

We experimented with other retrieval
models implemented within Lucene,
however, the default one achieved the
best results for the baseline method,
therefore, we adopted it for all other
methods.

for methods that required it (i.e., PositionRank, k-Core, and k-Truss). For Yake, we set the
maximum n-gram size to one to get only unigram keywords, and the window size to 1, as
recommended in Campos et al. (2020). For the other methods, we used the default
parameters settings as suggested by their given libraries. For instance, for MPR, we set
alpha to 1.1, and the threshold to 0.74. For PositionRank, we set alpha to 0.85.

Retrieval

After keyword extraction, i.e., generating the search query, the constructed index was used
to retrieve the set of candidate background articles. We used the default Lucene scoring

function, which is an implementation of the BM25 retrieval model, to score the articles in
all of our experiments'. Upon retrieval of the candidate articles, we filtered the results to
exclude articles that are “Opinions”, “Letters to the Editor”, or “The Post’s View” as they
were declared by TREC to be non-relevant. We also excluded articles that were published
after the query article.

Evaluation measures
We used nDCG@5 as our primary evaluation measure for effectiveness, since it was used as
the primary measure by TREC. The gain value for each retrieved background article was
calculated as 2", where r indicates the relevance level between 0 (non relevant) and 4 (the
most relevant). For reliable evaluation, we evaluated the studied methods using 3-fold
cross validation over the TREC query articles. For easier future comparisons, the folds were
chosen to be the query sets released by TREC in each year for the background linking task
(2018, 2019 and 2020), i.e., two TREC query sets of two years were used for parameter
tuning, and the third was used for testing. The only parameter we tuned in our
experiments was the number of extracted terms that are used to construct the search query.
To report efficiency, we use the query response time in milliseconds. We ran all our
experiments on a MacBook Pro machine with a 2.5 GHz Quad-Core Intel Core i7
processor, and 16 GB 1600 MHz DDR3 memory. The reported time per query is the
average time of three runs of the same experiment.

Experimental results

In this section, we discuss in detail the different experiments that we conducted to address
our research questions. We first test the effectiveness of the simple lead-paragraphs
extraction method. Then, we discuss the effectiveness and efficiency of the queries
generated by the different keyword extraction methods for our task. Finally, we show the
potential of each of the keyword extraction methods with post hoc reranking of the
retrieved articles to reach better retrieval effectiveness.

Leading paragraphs as search queries (RQ1)

When authors write news articles, they often adopt the inverted pyramid style (DeAngelo
¢ Yegiyan, 2019; Pottker, 2003), in which the essential and most attention-grabbing
elements are introduced first in the article. Accordingly, in this section we address RQ1,
that is to test if the lead paragraphs of the articles can simply and sufficiently be used as a
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2 Only one very long query article (141
paragraphs) was omitted from the
histogram for clarity.
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Figure 4 (A) Histogram of the length of the query articles. (B) Performance using leading
paragraphs as search query. Full-size K&] DOT: 10.7717/peerj-cs.1191/fig-4

search query instead of the whole article for the retrieval of the background links. In other
words, we wanted to check if applying keyword extraction is at all required.

To answer this question, we experimented with constructing search queries simply
using the top paragraphs of the query article, after stop words removal. Figure 4A shows
the histogram of the length of the query articles in paragraphs’. The figure indicates that
most articles have less than 20 paragraphs, with an average of about 18 paragraphs.
Figure 4B illustrates the performance when we vary the number of top paragraphs from 1
(just the first paragraph of the article) up to 30 (almost the full article). We observe that
increasing the number of paragraphs used for constructing the search query improves the
performance. We also note that the peak nDCG@5 occurred at using 16 paragraphs, which
is very close to the average number of paragraphs. This indicates that using only a few lead
paragraphs is not sufficient for an effective background links retrieval.
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® There were two outlier queries that took
more time compared to others for pro-
cessing. However, removing both did not
noticeably affect the average processing
time.
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Figure 5 Average query response time for retrieving background links using lead paragraphs as a
search query. Full-size k] DOT: 10.7717/peerj-cs.1191/fig-5

As for the efficiency of the retrieval process, Fig. 5 shows the average query response
time using the lead paragraphs as search queries. As illustrated, there is a high growth in
response time while increasing the number of paragraphs, which increases the number of
terms in the search query’. This experiment confirms the need for a keyword extraction
mechanism that can select few terms to construct the search query while maintaining the
effectiveness of using the full article.

While we might expect that the baseline method should always exhibit the highest
response time, the figure shows it is not the case when using 25 to 30 paragraphs. This is
due to the optimization of query processing performed by the Lucene platform, which
adopts BlockMax WAND approach that skips scoring some documents in the posting lists
of terms when their score contribution is expected to be not competitive (hence not
affecting the document ranking), resulting in a faster retrieval process (Grand et al., 2020).
This indeed is more evident in long queries, as in the baseline case.

Keyword extraction for search query reduction (RQ2)

The next experiment aims at addressing RQ2, which is concerned with measuring the
effectiveness of the keyword extraction techniques in search query reduction for
background linking. To conduct this experiment, we applied each keyword extraction
method explained earlier to analyze the query articles and construct search queries.
Figure 6 shows the cross-validation results varying the number of extracted keywords from
30 (since our preliminary experiments in this regard showed that the effectiveness
degrades noticeably if the number of search terms are less than 30) to 100 (for efficiency
purposes). It also reports the performance of the Baseline method. The range of the
optimal (after tuning) values of the number of extracted keywords (over the three folds) for
each method is reported on top of the respective bar. Surprisingly, all methods, except
sCake, exhibit very similar performance with small differences in effectiveness.
Accordingly, we applied the paired two-sample t-test with 5% significance level between
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Figure 6 Effectiveness of keyword extraction techniques varying the number of extracted keywords
from 30 to 100. Full-size K&l DOT: 10.7717/peerj-cs.1191/fig-6

the baseline and each of the other methods; we found that the differences in performance
between the baseline and each of Yake, k-Truss, k-Core, PositionRank, and MPR methods
are not statistically significant, which means that those five methods essentially exhibit the
same effectiveness of the baseline despite using much shorter queries. This, in turn,
achieves our goal of having no sacrifice in the retrieval effectiveness as a result of the query
reduction process.

Being effectively similar, using any of the methods that exhibit no statistical significant
difference with the baseline is expected to be more efficient than the baseline while
maintaining the retrieval effectiveness. This is due to the much shorter search queries.
Recall that the average length of the query articles is 400 terms vs maximum of 100 terms in
the above experiment, i.e., 75% reduction in the query length. However the selection of the
query terms might impact the speedup. To check that, we computed the average query
response time for each of the keyword extraction methods for 100-term queries, as shown
in Fig. 7. In this experiment, we did not tune the number of terms, as we choose to test the
worst case scenario, which is using our ceiling number of terms (i.e., 100). It is then
intuitive that the time taken for processing a subset of those terms will be lower. Among
the five methods above that exhibit the indifferent performance with the baseline, Yake is
the fastest with about 6.2x speedup over the baseline (which takes 1,645 ms, but omitted
from the figure due to scale). Recall that Yake is also the closest in nDCG@5 performance
to the baseline, among all other methods (as illustrated in Fig. 6), and also the fastest (after
the two TF-based methods) in the keyword extraction process (as shown in the time
complexity analysis earlier). It indeed yields a perfect solution for the practical scenarios.
We also notice that the queries generated by the TF-IDF method are the most efficient
ones. This is expected as the method prioritizes terms of high IDF, i.e., short postings lists.
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Figure 7 Average query response time for 100-term search queries generated by the keyword
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Therefore, if we need even higher speedup (12.4x over the baseline in this case) while
tolerating some degradation in effectiveness, TF-IDF is then the choice.

The results above inspired us to check if the terms in the queries generated by Yake are
different than the ones generated by the TF-IDF method (hence the difference in the
processing time), and if those different terms actually influence the retrieval effectiveness.
To answer this question, we computed the average cosine similarity between the search
query vectors generated by both methods over queries of different lengths. The resulted
average similarity was 0.8, indicating that TF-IDF yields somewhat different queries. That
motivated us to conduct another exploratory followup experiment, where we only keep the
terms that are commonly extracted by TF-IDF and Yake. Figure 8A shows the average
length of the queries after this filtering for different number of originally extracted
keywords. The figure shows considerable reduction; for example, 27 terms were filtered out
on average when the original queries have 100 terms, keeping only 63 terms in common.
As for the effectiveness past the reduction of the queries, it can be seen in Fig. 8B that when
the originally-extracted terms exceeds 80, the reduced queries yield very close effectiveness,
in terms of nDCG@?5, to the original queries generated by Yake. In fact, the difference in
performance between the baseline and the query reduced from 100 extracted terms is not
statistically significant, indicating that the removed terms were quite ineffective, yielding a
more efficient retrieval. This can be clearly noticed in Fig. 8C, which shows that the
reduced queries are much more efficient than the queries generated by Yake, and a bit
more efficient than the queries generated by TF-IDF, yielding about 13.3x average speedup
over the baseline.

In conclusion, several keyword extraction methods exhibit similar effectiveness (with no
statistical significance difference) to the baseline while being much more efficient. Among
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Figure 8 Further reduction of search query terms. (A) The average query length after keeping only the
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those, the queries generated by Yake, in particular, yield 6.2x speedup over the baseline.
Moreover, Yake’s queries can be further reduced by filtering out terms that were not
selected by TF-IDF method, yielding even better average of 13.3x speedup in response time
over the baseline, with a little cost of running both (already fast) methods of keyword
extraction. Again, the difference in effectiveness in that case is not statistically significant. It
is important to note here that while the reported reduction in the response time is in terms
of milliseconds in this in-lab experiment, such speedup is highly and typically needed
during Web search tasks (such as searching for background sources over the Web) in
real-time online scenarios.

How far can we reach with reranking? (RQ3)

We observe that the most effective method reported for background linking, including the
baseline method, is still far from being optimal (maximum reached effectiveness is
nDCG@5 = 0.53). But what if a method retrieves relevant background links at lower ranks
than top 5? Those links will not be considered when computing the nDCG@5 score (i.e.,
will not be shown to the user). However, this initial set of retrieved links can be re-ranked
by another downstream method (e.g., by fine-tuning pre-trained models) to further
improve the effectiveness. To measure how far any of the keyword extraction methods can
potentially reach in terms of nDCG®@5 with post hoc reranking, we retrieve, using each
method, a set of N candidate articles, then we optimally rerank those articles using the
judgement scores assigned by TREC annotators. Not-annotated articles are considered
non-relevant, and thus are assigned a 0 score. Doing so, we obtain oracle runs for the
different methods. We then compute nDCG@5 for those runs.
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Figure 9 illustrates the performance of the oracle runs, changing N from 10 to 100, for all
keyword extraction methods, besides the baseline method. We first notice that the
performance can reach 0.84 at N = 100, indicating the great potential for reranking the top
100 retrieved articles. Moreover, we can notice that the k-Truss and k-Core methods
exhibit the best performance (i.e. obtaining the most promising lists), followed by TF and
TF-IDF. That suggests another criterion of selecting a keyword extraction technique for
our task, which is the potential for better effectiveness with postdoc reranking. We also
note that the baseline method has the lowest reranking potential, indicating that keyword
extraction is not only needed for efficiency purposes, but also needed for increasing the
potential of having more relevant background articles at the top of the retrieved list.

CONCLUSION AND FUTURE WORK

News background linking is still an open research problem that was introduced recently to
the research community. The most effective method proposed to date addresses this
problem as an ad-hoc retrieval one, where the entire input news article is used as a search
query to retrieve the background links from an indexed collection. In a scenario where the
lookup for background links is performed online, this method becomes inefficient,
especially if the search scope is big, such as the Web. In this article, we proposed to reduce
the news article to much fewer terms to efficiently retrieve the background links, while
maintaining the same effectiveness of the state-of-the-art method. For search query
reduction, we studied several unsupervised keyword extraction techniques, along with
standard baseline ones. Our results showed that we reach large speedup in query response
time using simple statistical keyword extraction techniques, such as Yake, with a difference
in effectiveness that is not statistically significant from the state-of-the-art method. We
further showed that by adopting TF-IDF traditional keyword extraction method to filter
non-informative terms from the queries generated by Yake, one may further achieve even
higher speedup, still with similar effectiveness. We also showed there is a huge potential in
further reranking the candidate background links to reach higher effectiveness using
graph-based keyword extraction techniques, such as k-Truss and k-Core, for forming the
initial search query that exhibit similar effectiveness with the full-article search approach,
yet they are much more efficient. Since the most reported effectiveness for the news
background linking problem is still far from being optimal, our future work will focus on
investigating how to link articles through methods that go beyond lexical similarity. More
specifically, we plan to experiment with transfer learning techniques to build a system that
can rerank an initial retrieved set of background links. Transformer-based pretrained
models that leverage semantic similarity of short or long documents are clear candidate
learning-to-rank models for that task.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was made possible by the NPRP grant NPRP 11S-1204-170060 from the Qatar
National Research Fund (a member of Qatar Foundation). The statements made herein are

Essam and Elsayed (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1191 25/30


http://dx.doi.org/10.7717/peerj-cs.1191
https://peerj.com/computer-science/

PeerJ Computer Science

solely the responsibility of the authors. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Qatar National Research Fund: NPRP 11S-1204-170060.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Marwa Essam conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Tamer Elsayed conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data is available at Zenodo: Marwa-Essam81. (2022). Marwa-Essam81/
EfficientNewsBL: @newsbackroundLinking (@newsbackgroundlinking). Zenodo.
https://doi.org/10.5281/zenodo.7329399.

REFERENCES
Ajnadkar O, Jaiswal A, Gourav Sharma P, Shekhar C, Soren AK. 2021. News background linking

using document similarity techniques. In: Mandal JK, Mukherjee I, Bakshi S, Chatterji S, Sa PK,
eds. Computational Intelligence and Machine Learning. Singapore: Springer, 87-95.

Ak AF, Koksal C, Fayoumi K, Yeniterzi R. 2020. SU-NLP at TREC news 2020. In: Proceedings of
the Twenty-Ninth Text REtrieval Conference (TREC).

Bae J, Kim S. 2014. Identifying and ranking influential spreaders in complex networks by
neighborhood coreness. Physica A: Statistical Mechanics and its Applications 395(11):549-559
DOI 10.1016/j.physa.2013.10.047.

Balasubramanian N, Kumaran G, Carvalho VR. 2010. Exploring reductions for long web queries.
In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval. 571-578.

Batagelj V, Zaversnik M. 2003. An O(m) algorithm for cores decomposition of networks. CoRR
DOI 10.48550/arXiv.cs/0310049.

Bimantara A, Blau M, Engelhardt K, Gerwert J, Gottschalk T, Lukosz P, Piri S, Shaft NS,
Berberich K. 2018. htw saar @ TREC 2018 news track. In: Proceedings of the Twenty-Seventh
Text REtrieval Conference (TREC).

Bisandu DB, Prasad R, Liman MM. 2018. Clustering news articles using efficient similarity
measure and N-grams. International Journal of Knowledge Engineering and Data Mining
5(4):333-348 DOI 10.1504/IJKEDM.2018.095525.

Boudin F. 2018. Unsupervised keyphrase extraction with multipartite graphs. In: Walker MA, Ji H,
Stent A, eds. Proceedings of the 2018 Conference of the North American Chapter of the

Essam and Elsayed (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1191 26/30


https://doi.org/10.5281/zenodo.7329399
http://dx.doi.org/10.1016/j.physa.2013.10.047
http://dx.doi.org/10.48550/arXiv.cs/0310049
http://dx.doi.org/10.1504/IJKEDM.2018.095525
http://dx.doi.org/10.7717/peerj-cs.1191
https://peerj.com/computer-science/

PeerJ Computer Science

Association for Computational Linguistics: Human Language Technologies. Stroudsburg:
Association for Computational Linguistics, 667-672.

Bougouin A, Boudin F, Daille B. 2013. TopicRank: graph-based topic ranking for keyphrase
extraction. In: International Joint Conference on Natural Language Processing (IJCNLP). 543-551.

Campos R, Mangaravite V, Pasquali A, Jorge A, Nunes C, Jatowt A. 2020. Yake! Keyword
extraction from single documents using multiple local features. Information Sciences
509(2):257-289 DOI 10.1016/j.ins.2019.09.013.

Chakraborty A, Ganguly D, Caputo A, Jones GJ. 2022. Kernel density estimation based factored
relevance model for multi-contextual point-of-interest recommendation. Information Retrieval
Journal 25(1):1-47 DOI 10.1007/s10791-021-09400-9.

Chakraborty A, Ghosh S, Ganguly N, Gummadi KP. 2019. Optimizing the recency-relevance-
diversity trade-offs in non-personalized news recommendations. Information Retrieval Journal
22(5):447-475 DOI 10.1007/s10791-019-09351-2.

Cohen J. 2008. Trusses: cohesive subgraphs for social network analysis. National Security Agency
Technical Report, 16(3.1).

Conrad JG, Bender M. 2016. Semi-supervised events clustering in news retrieval. In: European
Conference on Information Retrieval (ECIR 2016)-First International Workshop on Recent
Trends in News Information Retrieval (NewsIR’16). Padua, Italy, 21-26.

Daiber J, Jakob M, Hokamp C, Mendes PN. 2013. Improving efficiency and accuracy in
multilingual entity extraction. In: Proceedings of the 9th International Conference on Semantic
Systems. 121-124.

Day N, Worley D, Allison T. 2020. OSC at TREC 2020-news track’s background linking task. In:
Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC).

DeAngelo TI, Yegiyan NS. 2019. Looking for efficiency: how online news structure and emotional
tone influence processing time and memory. Journalism & Mass Communication Quarterly
96(2):385-405.

Deshmukh AA, Sethi U. 2020. IR-BERT: leveraging BERT for semantic search in background
linking for news articles. ArXiv preprint. DOI 10.48550/arXiv.2007.12603.

Ding Y, Lian X, Zhou H, Liu Z, Ding H, Hou Z. 2019. ICTNET at TREC 2019 news track. In:
Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC).

Duari S, Bhatnagar V. 2019. sCAKE: semantic connectivity aware keyword extraction.
Information Sciences 477(1):100-117 DOI 10.1016/j.ins.2018.10.034.

Essam M, Elsayed T. 2019. bigIR at TREC 2019: graph-based analysis for news background
linking. In: Proceedings of the Twenty-Eighth Text REtrieval Conference (TREC).

Essam M, Elsayed T. 2020. Why is that a background article: a qualitative analysis of relevance for
news background linking. In: Proceedings of the 29th ACM International Conference on
Information and Knowledge Management. 2009-2012.

Florescu C, Caragea C. 2017. PositionRank: an unsupervised approach to keyphrase extraction
from scholarly documents. In: Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 1105-1115.

Foley J, Montoly A, Pena M. 2019. Smith at TREC 2019: learning to rank background articles with
poetry categories and keyphrase extraction. In: Proceedings of the Twenty-Eighth Text REtrieval
Conference (TREC).

Gautam R, Mandar Mitra DR. 2020. TREC 2020 news track background linking task. In:
Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC).

Essam and Elsayed (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1191 27/30


http://dx.doi.org/10.1016/j.ins.2019.09.013
http://dx.doi.org/10.1007/s10791-021-09400-9
http://dx.doi.org/10.1007/s10791-019-09351-2
http://dx.doi.org/10.48550/arXiv.2007.12603
http://dx.doi.org/10.1016/j.ins.2018.10.034
http://dx.doi.org/10.7717/peerj-cs.1191
https://peerj.com/computer-science/

PeerJ Computer Science

Grand A, Muir R, Ferenczi J, Lin J. 2020. From MaxScore to block-max wand: the story of how
lucene significantly improved query evaluation performance. In: European Conference on
Information Retrieval. Cham: Springer, 20-27.

Hu L, Li C, Shi C, Yang C, Shao C. 2020. Graph neural news recommendation with long-term and
short-term interest modeling. Information Processing & Management 57(2):102142
DOI 10.1016/j.ipm.2019.102142.

Khan M, Rahman AU, Ullah M, Naseem R. 2018. The role of named entities in linking news
articles during preservation. In: International Conference on the Sciences of Electronics,
Technologies of Information and Telecommunications. Cham: Springer, 50-58.

Khloponin P, Kosseim L. 2019. The CLaC system at the TREC 2019 news track. In: Proceedings of
the Twenty-Eighth Text REtrieval Conference (TREC).

Khloponin P, Kosseim L. 2021. Using document embeddings for background linking of news
articles. In: International Conference on Applications of Natural Language to Information
Systems. Cham: Springer, 317-329.

Kumaran G, Carvalho VR. 2009. Reducing long queries using query quality predictors. In:
Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 564-571.

Le Q, Mikolov T. 2014. Distributed representations of sentences and documents. In: ICML’14:
Proceedings of the 31st International Conference on International Conference on Machine
Learning. 1188-1196.

Lehmann J, Castillo C, Lalmas M, Baeza-Yates R. 2017. Story-focused reading in online news and
its potential for user engagement. Journal of the Association for Information Science and
Technology 68(4):869-883 DOI 10.1002/asi.23707.

Lin AY, Ford J, Adar E, Hecht B. 2018. VizByWiki: mining data visualizations from the web to
enrich news articles. In: WWW ’18: Proceedings of the 2018 World Wide Web Conference. 873-882.

Lopez-Ubeda P, Diaz-Galiano MC, Valdivia MTM, Urena-Lopez LA. 2018. Using clustering to
filter results of an information retrieval system. In: Proceedings of the Twenty-Seventh Text
REtrieval Conference (TREC).

Lu K, Fang H. 2019. Leveraging entities in background document retrieval for news articles. In:
Proceedings of the Twenty Eighth Text REtrieval Conference (TREC).

Lua K, Fang H. 2018. Paragraph as lead—finding background documents for news articles. In:
Proceedings of the Twenty-Seventh Text REtrieval Conference (TREC).

Macdonald C, Tonellotto N, Ounis I. 2012. Learning to predict response times for online query
scheduling. In: Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval.

Metzler D, Croft WB. 2007. Linear feature-based models for information retrieval. Information
Retrieval Journal 10(3):257-274 DOI 10.1007/s10791-006-9019-z.

Miah M, Sulaiman J, Sarwar TB, Zamli KZ, Jose R. 2021. Study of keyword extraction techniques
for electric double-layer capacitor domain using text similarity indexes: an experimental
analysis. Complexity 2021(4):1-12 DOI 10.1155/2021/8192320.

Mihalcea R, Tarau P. 2004. TextRank: Bringing order into text. In: Proceedings of the 2004
Conference on Empirical Methods in Natural Language Processing.

Missaoui S, MacFarlane A, Makri S, Gutierrez-Lopez M. 2019. DMINR at TREC news track. In:
Proceedings of the Twenty Eighth Text REtrieval Conference (TREC).

Essam and Elsayed (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1191 28/30


http://dx.doi.org/10.1016/j.ipm.2019.102142
http://dx.doi.org/10.1002/asi.23707
http://dx.doi.org/10.1007/s10791-006-9019-z
http://dx.doi.org/10.1155/2021/8192320
http://dx.doi.org/10.7717/peerj-cs.1191
https://peerj.com/computer-science/

PeerJ Computer Science

Moffat A, Webber W, Zobel J, Baeza-Yates R. 2007. A pipelined architecture for distributed text
query evaluation. Information Retrieval Journal 10(3):205-231
DOI 10.1007/s10791-006-9014-4.

Naskar A, Saha R, Dasgupta T, Dey L. 2019. Ontology guided purposive news retrieval and
presentation. In: CEUR Workshop Proceedings.

Nicholls T, Bright J. 2019. Understanding news story chains using information retrieval and
network clustering techniques. Communication Methods and Measures 13(1):43-59
DOI 10.1080/19312458.2018.1536972.

O’Brien HL. 2011. Exploring user engagement in online news interactions. Proceedings of the
American Society for Information Science and Technology 48(1):1-10
DOI 10.1002/meet.2011.14504801088.

Ors FK, Yeniterzi S, Yeniterzi R. 2020. Event clustering within news articles. In: Proceedings of the
Workshop on Automated Extraction of Socio-political Events from News 2020. 63-68.

Page L, Brin S, Motwani R, Winograd T. 1999. The pagerank citation ranking: bringing order to
the web. Technical Report 1999-66, Stanford InfoLab.

Papagiannopoulou E, Tsoumakas G. 2020. A review of keyphrase extraction. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 10(2):e1339
DOI 10.1002/widm.1339.

Phan MC, Sun A. 2018. CoNEREL: collective information extraction in news articles. In: The 41st
International ACM SIGIR Conference on Research ¢ Development in Information Retrieval.
1273-1276.

Piskorski J, Stefanovitch N, Jacquet G, Podavini A. 2021. Exploring linguistically-lightweight
keyword extraction techniques for indexing news articles in a multilingual set-up. In:
Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report
Generation. 35-44.

Pottker H. 2003. News and its communicative quality: the inverted pyramid—when and why did it
appear? Journalism Studies 4(4):501-511 DOI 10.1080/1461670032000136596.

Qian Y, Deng X, Ye Q, Ma B, Yuan H. 2019. On detecting business event from the headlines and
leads of massive online news articles. Information Processing & Management 56(6):102086
DOI 10.1016/j.ipm.2019.102086.

Qiu Y, Frei H-P. 1993. Concept based query expansion. In: Proceedings of the 16th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval.
160-169.

Qu J, Wang Y. 2019. UNC SILS at TREC 2019 news track. In: Proceedings of the Twenty-Eighth
Text REtrieval Conference (TREC).

Rabby G, Azad S, Mahmud M, Zamli KZ, Rahman MM. 2020. TeKET: a tree-based unsupervised
keyphrase extraction technique. Cognitive Computation 12(4):811-833
DOI 10.1007/s12559-019-09706-3.

Ravenscroft J, Clare A, Liakata M. 2018. HarriGT: linking news articles to scientific literature. In:
Proceedings of ACL 2018, System Demonstrations. 19.

Rousseau F, Vazirgiannis M. 2015. Main core retention on graph-of-words for single-document
keyword extraction. In: European Conference on Information Retrieval. Cham: Springer, 382-393.

Rudnik C, Ehrhart T, Ferret O, Teyssou D, Troncy R, Tannier X. 2019. Searching news articles
using an event knowledge graph leveraged by wikidata. In: WWW °19: Companion Proceedings
of the 2019 World Wide Web Conference. 1232-1239.

Essam and Elsayed (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1191 29/30


http://dx.doi.org/10.1007/s10791-006-9014-4
http://dx.doi.org/10.1080/19312458.2018.1536972
http://dx.doi.org/10.1002/meet.2011.14504801088
http://dx.doi.org/10.1002/widm.1339
http://dx.doi.org/10.1080/1461670032000136596
http://dx.doi.org/10.1016/j.ipm.2019.102086
http://dx.doi.org/10.1007/s12559-019-09706-3
http://dx.doi.org/10.7717/peerj-cs.1191
https://peerj.com/computer-science/

PeerJ Computer Science

Salih NM, Jacksi K. 2020. State of the art document clustering algorithms based on semantic
similarity. Jurnal Informatika 14(2):58-75 DOI 10.26555/jifo.v14i2.a17513.

Sarwar TB, Noor NM, Miah MSU. 2022. Evaluating keyphrase extraction algorithms for finding
similar news articles using lexical similarity calculation and semantic relatedness measurement
by word embedding. Peer] Computer Science 8(2):e1024 DOI 10.7717/peerj-cs.1024.

Soboroff I, Huang S, Harman D. 2018. TREC 2018 news track overview. In: Proceedings of the
Twenty-Seventh Text REtrieval Conference (TREC).

Soboroff I, Huang S, Harman D. 2019. TREC 2019 news track overview. In: Proceedings of the
Twenty Eighth Text REtrieval Conference TREC.

Soboroff I, Huang S, Harman D. 2020. TREC 2020 news track overview. In: Proceedings of the
Twenty-Ninth Text REtrieval Conference (TREC).

Tixier A, Malliaros F, Vazirgiannis M. 2016. A graph degeneracy-based approach to keyword
extraction. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing. 1860-1870.

Vega-Oliveros DA, Gomes PS, Milios EE, Berton L. 2019. A multi-centrality index for
graph-based keyword extraction. Information Processing ¢» Management 56(6):102063
DOI 10.1016/j.ipm.2019.102063.

Wang J, Cheng J. 2012. Truss decomposition in massive networks. Proceedings of the VLDB
Endowment 5(9):812-823 DOI 10.14778/2311906.2311909.

Weichselbraun A, Kuntschik P, Brasoveanu AM. 2018. Mining and leveraging background
knowledge for improving named entity linking. In: Proceedings of the 8th International
Conference on Web Intelligence, Mining and Semantics. 1-11.

Yang P, Fang H, Lin J. 2017. Anserini: enabling the use of lucene for information retrieval
research. In: SIGIR ’17: Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval. New York: ACM, 1253-1256.

Yang P, Lin J. 2018. Anserini at TREC 2018: centre, common core, and news tracks. In: Proceedings
of the Twenty-Seventh Text REtrieval Conference (TREC).

Essam and Elsayed (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1191 30/30


http://dx.doi.org/10.26555/jifo.v14i2.a17513
http://dx.doi.org/10.7717/peerj-cs.1024
http://dx.doi.org/10.1016/j.ipm.2019.102063
http://dx.doi.org/10.14778/2311906.2311909
http://dx.doi.org/10.7717/peerj-cs.1191
https://peerj.com/computer-science/

	Unsupervised query reduction for efficient yet effective news background linking
	Introduction
	Related work
	Background linking problem
	Methodology
	Experimental evaluvation
	Conclusion and future work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


