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ABSTRACT
Electrocardiogram (ECG) signals are normally contaminated by various
physiological and nonphysiological artifacts. Among these artifacts baseline
wandering, electrode movement and muscle artifacts are particularly difficult to
remove. Independent component analysis (ICA) is a well-known technique of blind
source separation (BSS) and is extensively used in literature for ECG artifact
elimination. In this article, the independent vector analysis (IVA) is used for artifact
removal in the ECG data. This technique takes advantage of both the canonical
correlation analysis (CCA) and the ICA due to the utilization of second-order and
high order statistics for un-mixing of the recorded mixed data. The utilization of
recorded signals along with their delayed versions makes the IVA-based technique
more practical. The proposed technique is evaluated on real and simulated ECG
signals and it shows that the proposed technique outperforms the CCA and ICA
because it removes the artifacts while altering the ECG signals minimally.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning
Keywords Electrocardiogram, Artifacts removal, Blind source separation, Independent component
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INTRODUCTION
An electrocardiogram (ECG) is an important tool to measure the electrical activity
generated by the SA (sinoatrial) node that causes the upper heart chambers (atria) to
contract. ECG is an effective tool for investigating the heart related problems like
arrhythmia diagnosis and widely adopted in a number of practical applications. ECG
signals are utilized for automatic detection of myocardial infarction in Acharya et al.
(2017). Kumar, Pachori & Acharya (2017) investigated the ECG signals for detection and
characterization of coronary artery disease. Similarly in Acharya et al. (2017), the authors
presented the heart failure detection technique based on ECG signals and the extraction of
fetal ECG from maternal ECG is achieved in Su & Wu (2017). Qingxue & Zhou (2018)
developed person identification technique based on ECG signal processing. Moreover,
ECG based silent myocardial infarction as well as long term risk of heart failure is
diagnosed in Qureshi et al. (2018). Meanwhile, modern efficient ECG data recording and
analysis systems are also been designed even in wireless scenario (Tao et al., 2018; Elgendi
et al., 2018; Han et al., 2018; Tanguay et al., 2018; Orphanidou, 2018). However, the
recorded ECG signals are normally affected by different types of electro-physiological and
non electro-physiological artifacts. The artifacts affected ECG can not be adopted in the
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sensitive applications. Hence, efficient removal of artifacts is necessary for ECG signals
analysis for various applications. Removal of these artifacts before further processing make
the design of ECG instrument simpler and produce accurate results.

In literature it is well known that among ECG artifacts, baseline wandering (BW),
electrode movement (EM), and muscle artifacts (MAs) are more challenging to separate
from the recorded ECG signals (Hesar & Mohebbi, 2017; Varanini et al., 2016; Zarzoso &
Nandi, 2001). BW is normally generated through body movements, breathing, and lose
sensors contacts. EM is the result of variations of electrodes positions over the human body
surface, MA is caused by contraction of the muscles near the electrode (Limaye &
Deshmukh, 2016). The main challenges associated with the removal of these artifacts are
their unpredictable amplitudes and variable frequency range (Hegde, Deekshit &
Satyanarayana, 2012).

Related work
Numerous researches have contributed to artifacts removal from ECG signals, using
algorithms like, extended Kalman filter (Hesar &Mohebbi, 2017), least mean square (LMS)
(Rahman, Shaik & Reddy, 2009) andWeiner filter (Chang & Liu, 2011), etc. ECG signal de-
noising and classification schemes based on projected and dynamic features are presented
in Chen et al. (2017). High density muscle noise removal from the recorded ECG signal is
performed in Wang et al. (2020) using the independent vector analysis (IVA) technique.
Separation of the fetal and maternal ECG signals is carried out in Sugumar & Vanathi
(2016) through the IVA technique. Successive local filtering based denoising is discussed in
Mourad (2022). Deep learning based ECG de-noising technique is proposed in Rahhal et
al. (2016) and Rasti-Meymandi & Ghaffari (2022). The segmented beat classification and
de-noising method discussed in Agostinelli et al. (2016), proposed a filtering technique to
suppress the noise followed by the detection of QRS complex from the ECG signals using
the MIT-BIH Noise Stress Test Database. Time-series clustering techniques used for ECG
classification and artifacts removal in Rodrigues, Belo & Gamboa (2017), extract the best
characterize features of the signal over time and group its samples in individual clusters
through an agglomerative clustering approach. Moreover, the blind source separation
(BSS) technique called the independent component analysis (ICA) is also used for fetal
ECG extraction and artifacts removal in Varanini et al. (2016), Sameni et al. (2007), and
Jafari & Chambers (2005). ECG signal classification and de-noising are also performed in
Uddin & Alam (2009), Sameni, Jutten & Shamsollahi (2008), Vayá et al. (2007), and Rieta
et al. (2004) using ICA. In all these applications mixed data is first recorded through
electrodes and then processed using ICA algorithms for un-mixing and further
classifications. The IVA technique is already used for gradient noise removal from
electroencephalogram signals in Acharjee et al. (2015).

Adaptive filtering techniques and ICA are used for ECG artifacts removal; however, in
Zarzoso & Nandi (2001), it is shown that ICA outperforms the adaptive filtering
techniques for ECG artifacts removal. Moreover, ICA is recommended by various
researchers for artifacts removal but some inefficiency of ICA is also reported in
Urrestarazu et al. (2004) and Shackman et al. (2009). In literature, canonical correlation
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analysis (CCA) is used as an alternative to ICA (De Clercq et al., 2006), which is yet not
used for ECG artifacts removal. CCA utilizes the original signals as well as the delayed
versions of the signals. It is based on second-order statistics (SOS) and extracts maximally
auto-correlated and mutually un-correlated signals (De Clercq et al., 2006). From Mowla
et al. (2015), it is known that CCA is an efficient and practically useable technique as
compared to ICA. Moreover, ICA utilizes high order statistics (HOS) to explore statistical
independence while CCA is based on SOS to recover statistically un-correlated sources. It
is clear from the statistical theory that un-correlatedness is a weaker condition than
independence.

A recently developed technique of BSS called the independent vector analysis (IVA)
combines the advantages of both ICA and CCA in a single framework (Anderson et al.,
2014). IVA processes the original and time-delayed versions of the signals (just like CCA)
while utilizing the HOS (like ICA). IVA assumes that the source signals in one data set are
independent of each other and at least one source is dependent on one source of the other
data set. Moreover, from Anderson et al. (2014) it is known that IVA performs well as
compared to ICA and CCA.

Contribution
It is clear from the literature that the ICA algorithms perform well as compare to adaptive
filtering techniques like weiner filter, kalman filter etc. as shown inMohammed, Hassan &
Ferikoglu (2021), Maghrebi & Prouff (2018), Martinek et al. (2021), Maghrebi & Prouff
(2018), Uddin et al. (2020), and Villena et al. (2018). Mohammed, Hassan & Ferikoglu
(2021) in particular mentioned that the ICA algorithm gives more accurate results than the
extended kalman filter in reducing baseline wandering and electrode movement artifacts. It
is also important to mention that in case of low frequency applications ICA gives more
accurate results (Mohammed, Hassan & Ferikoglu, 2021; Villena et al., 2018).

Based on this discussion, an IVA based technique is proposed in this article for ECG
artifacts removal. This is the first article that proposes the IVA-based technique for ECG
artifacts removal. The IVA-based technique produces more clear and visible ECG signals
that might help medical specialists to observe some very low amplitude electro-
physiological effects of the heart. In this article, the performance of the three IVA
algorithms called the IVA-L, the IVA-G, and the IVA-GGD is investigated for ECG
artifacts removal. The IVA-L algorithm utilize the HOS and assumes Laplacian
distribution for the source component vectors (Kim et al., 2007). The IVA-G algorithm
exploits linear dependencies without taking into account the HOS. The IVA-G algorithm
assumes Gaussian distribution for the mixing sources (Anderson, Adali & Li, 2012). The
IVA-GGD algorithm utilizes both the SOS and HOS while assuming multivariate
generalized Gaussian distribution for the underlying sources (Anderson et al., 2014). It is
also important to mention that all the data is taken from the MIT-BIH Noise Stress Test
Database for ECG and artifacts signals (Moody, Muldrow & Mark, 1984). The MIT-BIH
Noise Stress Test Database is freely available for further research on ECG signal processing.
In addition, the main contributions of this research are as follows:
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� Recently developed BSS technique, the IVA is used to separate artifacts from ECG signal.

� The three most challenging ECG artifacts BW, MA and the EM are considered to
remove from the recorded ECG signals.

� Performance of the ICA, CCA and IVA are analyzed for artifacts removal utilizing real
simulated ECG signals.

� Three variants of IVA, the IVA-L, IVA-G, and IVA-GGD are investigated to study their
performance for ECG artifacts removal.

The rest of the article is organized such that Section 2 presents details of the ECG data.
Both the realistic simulated and real ECG signals along with ECG artifacts are discussed.
The system model is given in Section 3, while the proposed algorithm using IVA
algorithms is discussed in Section 4. A simulation study of the simulated and real signals is
carried out in Section 5 with the concluding remarks in Section 6.

Notations: Lowercase letters are used for scalars (e.g., x, y, z,…), lowercase boldface
letters for vectors (e.g., x, y, z,…), and uppercase boldface letters for matrices (e.g., X, Y, Z,
…). Transpose is denoted by uppercase superscript T (e.g., xT , XT).

ECG DATA AND ARTIFACTS
Realistic simulated and real ECG data are considered for simulations. Real data is taken
from the MIT-BIH database (Moody, Muldrow &Mark, 1984). The acquired signals in the
MIT-BIH Noise Stress Test Database are digitized using uni-polar ADCs with 11-bit
resolution. This database is open source for further research. The MIT-BIH database
contains the ECG signals and their artifacts. The artifacts considered in this work are as
follows:

� Muscle artifact: Muscle artifacts are the results of muscle contraction having low
amplitudes and a large frequency range from 0–10 kHz.

� Baseline wandering: Baseline wandering originates due to body movements, breathing,
and loose sensor contact. Body movements cause unpredictable large amplitude and
low-frequency artifacts. Breathing also causes low frequency drifting between 0.15 and
0.3 Hz.

� Electrode movement: Electrode movement is generated due to electrode position away
from the skin contact, changing the electrode and skin impedance causing potential
variations in the recorded ECG signal.

� Other artifacts: Other ECG artifacts include power line interference, device noise,
Electro-surgical noise, quantization noise, aliasing, etc.

The time-domain real ECG, BW, EM, and MA signals are demonstrated in Fig. 1 with
2,000 data samples of each signal as a first data set.

Frequency domain representation is shown in Fig. 2. It shows that most of the
frequencies of ECG and artifacts lie in the range of 50 Hz. From Fig. 2 it is observed that all
the frequencies of ECG signal and artifacts overlap with each other. Hence, to cleanly
extract these ECG signals, some efficient BSS techniques are required. As it is already
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discussed, IVA is the more efficient BSS technique as compared to ICA and CCA (Moody,
Muldrow & Mark, 1984). Based on the discussions, it is recommended to utilize IVA for
ECG signals de-noising. Moreover, the recorded mixed ECG data is shown in Fig. 3 for a
single data set with L = 2,000 samples. The measurement is taken in the presence of
additive white Gaussian noise (AWGN) with signal to noise ratio (SNR) of 20 dB. Figure 3
basically contains mixture signals of all the individual source signals. The source signals are
ECG, BW, EM and MA. The mixing process is performed in MATLAB such that the
source signals matrix S of size 4� 2;000 is multiplied with a randomly generated mixing
matrix A of size 4� 4. Mixed data is recorded in matrix X, where X is of size 4� 2;000. It
must be noted that in case of ICA a single data set as shown above is utilized while in case
of IVA multiple copies of the source signals are recorded and processed for un-mixing i.e.,
multiple mixing matrices are observed and un-mixing is performed at a time. This is the
main advantage of the IVA algorithm to un-mix the recorded signals and its delayed
versions at a time. The realistic simulated ECG signals are generated in MATLAB version
R2016a (MathWorks, Inc., Natick, MA, USA).

Figure 1 ECG and artifacts signals from MIT-BIH noise stress test database. The artifacts signals
contains baseline wondering (BW), muscle artifacts (MA), and the electrode movement (EM) artifacts. It
is also important to note that the x-axis represents the number of sample and the y-axis shows the
amplitude of the recorded signal. Full-size DOI: 10.7717/peerj-cs.1189/fig-1
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SYSTEM MODEL
This section presents the ECG signals and artifacts in the IVA data model. K number of
independent sources i.e., ECG and artifacts are considered and all sources contain L
number of samples for D data sets. The acquired data using ECG electrodes is expressed as:

Xd ¼ AdSd 1 � d � D; (1)

The matrices Sd contains the source data vectors sd1; sd2;…;sdK , where every vector
having length L. All vectors are real valued random vectors having zero mean. The mixing
matices Ad are also real with random values for D number of data sets. Hence, the the IVA
algorithm responsible to estimate these unknown matrices while utilizing the mixed data.
The source data is represented by ðS1ÞT ; ðS2ÞT ;…; ðSDÞT in D data sets. After the
estimation of Ad through the IVA algorithm, the resultant source signals as given in
Qamar et al. (2022) are expressed as:

Yd ¼ WdXd (2)
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Figure 2 Frequency domain ECG and artifacts signals. This figure will show clearly the overlapped
region of the ECG and artifacts signals. We demonstrate the low frequency part where most of the
frequencies overlapped with high amplitude. Full-size DOI: 10.7717/peerj-cs.1189/fig-2
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The Wd is inverse of Ad and is called the un-mixing matrix estimated for D data sets.
The estimated source data vectors are yd1 ; y

d
2;…; ydk :

PROPOSED IVA-BASED ECG ARTIFACTS SEPARATION
Multi-channel ECG signals are recorded in the presence of various artifacts i.e., BW, EM,
and MA as well as noise. The number of ECG and artifact signals are denoted by K, each
signal has data block length L with D number of data sets. The recorded mixed data
contains D number of data sets ðX1ÞT ; ðX2ÞT ;…; ðXDÞT as shown in Fig. 3 for SNR of
20 dB. Since, the artifact signals have overlapped frequencies with the original ECG signal
as illustrated in Fig. 2, the role of the BSS algorithms is to estimate the source signals from
the recorded mixed signals. The BSS algorithms know nothing except independence and
non-Gaussianity of the source signals.

The estimated sources of each BSS algorithm have scaling and order ambiguities. The
scaling issue can be easily resolved considering the source signals with unit variance and
also scaling the un-mixing vector to extract the unit variance sources. The arbitrary order
of the estimated signals in each data set can be corrected using the permutation matrix,
which is common in each data set (Anderson, Adali & Li, 2012).

The IVA algorithms separate the mixed recorded signals as a first data set and their
delayed versions as other data sets. This separation is performed using the minimization of

Figure 3 Recorded ECG signals in the presence of artifacts for a single data set at SNR of 20 dB. The
recorded mixed ECG signals are shown for a single data set with data block length L = 2,000 samples.

Full-size DOI: 10.7717/peerj-cs.1189/fig-3
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Figure 4 The CRMSE performance comparison of the Fast-ICA, GMCA and IVA-G algorithms for
ECG artifacts removal. Performance evaluation is carried out for different values of L ranging from 100
to 2,000 samples in a single data set. Full-size DOI: 10.7717/peerj-cs.1189/fig-4
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Figure 5 The ISIcom performance of all the three algorithms i.e., Fast-ICA, GMCA and IVA-G
algorithms for ECG artifacts removal. Performance evaluation is carried out for different values of L
ranging from 100 to 2,000 samples in a single data set at SNR of 20 dB.

Full-size DOI: 10.7717/peerj-cs.1189/fig-5
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the mutual information among the estimated source component vectors (SCVs). The cost
function of IVA is demonstrated in Anderson, Adali & Li (2012) and illustrated here as:

IIVA ¼
XK
k¼1

XD
d¼1

H½ydk � � I½yk�
 !

�
XD
d¼1

log jWdj � C (3)

The I½yk� represents mutual information within kth SCVs. H is the entropy, Wd is the
un-mixing matrix of dth data set and C is a constant factor which is equivalent to

H½X1;X2;…;XD� depending only on the recorded mixed data. The IVA algorithms
minimize the cost function of Acharya et al. (2017) and maximizes the mutual information
within each SCV.

Figure 6 Extracted and actual ECG signals of Fig. 4 for all the three algorithms (FastICA, GMCA,
IVA-G) to observe the effect of AWGN noise over these algorithms.

Full-size DOI: 10.7717/peerj-cs.1189/fig-6
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ICA is a well-known blind source separation technique used for linearly mixed signals
utilizing statistical independence of the source signals (Uddin et al., 2015). CCA considers
the mixed recorded signals as well as its delayed versions by exploiting the SOS. The IVA
combines the advantages of CCA and ICA by exploiting the SOS and HOS. Moreover,
numerous variants of IVA algorithms, such as IVA-GGD (Anderson et al., 2014), IVA-L
(Kim et al., 2007) and IVA-G (Anderson, Adali & Li, 2012) exist in literature and their
dominance is already proven. Motivated by this, this research implemented various
versions of IVA algorithms to verify their validity for ECG artifacts removal. All these
algorithms utilize the IVA cost function given in Acharya et al. (2017) to estimate the un-
mixing matrices. In the case of complex-valued data, the IVA-G algorithm includes the
pseudo-co-variance matrix in the cost function. This algorithm also ignores the HOS and
sample to sample dependency. The IVA-L utilizes the HOS for un-mixing while ignoring
the sample to sample dependency and SOS. The matrix gradient approach is used in the
implementation of the IVA-L algorithm. The IVA-GGD algorithm utilizes the HOS and
SOS for source signal estimation considering multivariate Gaussian prior. This algorithm
also avoids sample to sample dependency. Moreover, processing of the original as well as
the delayed versions makes the IVA algorithms more practical compared to the ICA
technique. Based on these advantages, various variants of IVA algorithms are implemented
in this article and their performance is tested for the ECG artifacts removal.

Figure 7 Mixtures of the simulated ECG and artifacts signals at SNR = 20 dB. Linearly mixed
instantaneous signals are generated using randomly generated mixing matrices in MATLAB.

Full-size DOI: 10.7717/peerj-cs.1189/fig-7
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Figure 8 ISIcom performance of the IVA-GGD, IVA-G and IVA-L algorithms at SNR of 20 dB.
Full-size DOI: 10.7717/peerj-cs.1189/fig-8
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Figure 9 Results of all the three IVA algorithms for different values of the input data block lengths in
different data sets. Full-size DOI: 10.7717/peerj-cs.1189/fig-9
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SIMULATION RESULTS
In this section, simulation results of the proposed IVA based technique for ECG artifacts
removal from the recorded mixed signals is presented. The IVA algorithms considered for
simulations are IVA-GGD, IVA-L and IVA-G. Performance of these algorithms is
evaluated for various SNRs ranging from 0 to 20 dB. Results are compiled using Monte
Carlo simulation. The ECG artifacts considered for simulation are baseline wandering
(BW), electrode movement (EM), and mascle artifacts (MA). Real and simulated ECG
signals are utilized in the simulations. The real ECG signals are downloaded from MIT-
BIH database and the simulated ECG signals are generated in MATLAB. The number of
source signals considered are K = 4, the number of data sets D = 4, and length L of the
processing data blocks in each data set ranges from 50 to 2,000 samples. Moreover, to
evaluate the effectiveness of the proposed IVA technique for ECG artifacts removal
different performance evaluation criterion are used that are given below:

� The corresponding root mean square error ðCRMSEÞ used in Chen et al. (2017) is
expressed below:

CRMSE ¼ RMSðsdECG � ydECGÞ
RMSðsdECGÞ

(4)

5 10 15 20 25 30 35 40 45 50
Iterations

0

5

10

15

U
W

d
A

d

IVA-G
IVA-L
IVA-GGD

Figure 10 Convergence behavior of the IVA-GGD, IVA-G and IVA-L algorithms at 20 dB SNR.
Full-size DOI: 10.7717/peerj-cs.1189/fig-10
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� The sdECG and ydECG represent the original simulated ECG and the reconstructed ECG
signals simultaneously at data set d.

� Common inter-symbol-interference (ISIcom) (Anderson, Adali & Li, 2012) is also utilized
as a performance measure that is presented as:

ISIcom ¼ 1
2KðK � 1Þ w

0 þ w00½ � (5)

� The w0 ¼PK
n¼1

PK
m¼1

g 0m;n

maxpg0n;p
� 1

� �
w00 ¼PK

m¼1

PK
n¼1

g 0m;n

maxpg 0p;m
� 1

� �
and Gd ¼ WdAd with gm;n ¼

PD
d¼1 jgdm;nj. The ISIcom is normalized so that its maximum

value is one and minimum vale is zero, where zero value corresponds to ideal separation
performance.

� The UWdAd is utilized as another evaluation criteria and is expressed as:

UWdAd ¼
XK
n¼1

XK
m¼1

g 0m;n � 1

 !
(6)

Figure 11 Extracted ECG signals of all the three IVA algorithm. The IVA algorithms considered are
IVA-L, IVA-G and IVA-GGD. Full-size DOI: 10.7717/peerj-cs.1189/fig-11
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Figure 12 Error signals of all the three IVA algorithms at SNR of 20 dB. The data block length utilized
is 1,000 samples in each data set, where error signal is the difference of the real and separated ECG
signals. The resultant very low amplitudes of the error signals shows effectiveness of the IVA algorithms.

Full-size DOI: 10.7717/peerj-cs.1189/fig-12

Table 1 The ISIcom performance of the real ECG for all the three IVA algorithms i.e., IVA-GGD,
IVA-L, and IVA-G at SNR of 20 dB. The algorithms performance is evaluated for different values of
the input data block lengths ranges from 50 to 2,000 samples in each data sets.

L IVA-L IVA-G IVA-GGD

50 0.10 0.058 0.0570

100 0.057 0.052 0.051

500 0.053 0.051 0.0507

1,000 0.05 0.05 0.05

2,000 0.05 0.05 0.05

Table 2 The ISIcom results of the real ECG for all the three IVA algorithms at input data block length
of 2,000 samples in each data set and different SNRs that ranges from 0 to 20 dB.

SNR in dB IVA-L IVA-G IVA-GGD

0 0.923 0.655 0.644

5 0.433 0.203 0.2007

10 0.157 0.141 0.140

20 0.0501 0.05 0.05
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The ideal separation corresponds to zero value of UWdAd .
First, the effectiveness of the IVA-based technique in comparison with ICA and CCA

techniques is demonstrated. The results of the three techniques are demonstrated while
utilizing the Fast-ICA algorithm (Uddin, Ahmad & Iqbal, 2017) of the ICA, the GMCA
algorithm (Li et al., 2009) of CCA and the IVA-G algorithm of the IVA. Simulations are
performed at an SNR of 20 dB. The performance evaluation criteria used is CRMSE. In the
case of the ICA algorithm, the value of the data set is one. Performance evaluation is
carried out for different values of L ranging between 100 to 2,000 samples in a single data
set. The results of ICA, CCA and IVA algorithms are demonstrated in Fig. 4. The
simulation results clearly show that the IVA outperforms ICA and CCA algorithms. These
results also verify that the IVA algorithm is less sensitive to the processing data block
lengths. The performance improvement at a block length of L ¼ 100 is around 85% for the
IVA technique and 15% for the CCA technique as compared with the ICA technique.
Similarly, we demonstrate the ISIcom performance of all these algorithms for the same
conditions as given in the above simulations. The results are demonstrated in Fig. 5. This
figure also shows the effective performance of the IVA algorithm. The extracted ECG
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Figure 13 Source signals of ECG, BW, MA, and EM, downloaded from the MIT-BIH database. Five
ECG signals are shown for further processing with data block lengths of 10,000 samples.

Full-size DOI: 10.7717/peerj-cs.1189/fig-13
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signals for these three algorithms are also demonstrated in Fig. 6. It shows that the IVA
algorithm outperforms other algorithms and is also less sensitive to AWGN noise.

Second, the quality of the separated ECG signals from various artifacts using the IVA
algorithms using (ISIcom) is evaluated. Here, the simulated ECG signal corrupted by
various artifacts i.e., BW, MA, and EM is considered. Linearly mixed instantaneous signals
are generated using randomly generated mixing matrices in MATLAB. The mixed
recorded signals are shown in Fig. 7 for a single data set. The mixing process of Figs. 3 and
7 is same, the difference in signals is such that Fig. 3 contains the simulated ECG signals
and Fig. 6 shows the realistic ECG signal. Three IVA algorithms are applied to the
simulated ECG signals for artifacts removal. The reliability of the ECG signals for all three
algorithms is evaluated for different values of SNRs. The simulations are performed over
four recorded data sets independently. In each run, the pure ECG signal is extracted and
artifacts are separated from the recorded mixed signals.

The ISIcom performance of the IVA algorithms for different number of iterations is
performed. Results are shown in Fig. 8 for 20 dB SNR and a block length of 1,000 samples.
It shows similar performance of all the algorithms at steady state condition. Furthermore,
performance of the IVA algorithms is also evaluated for different values of the input data
block lengths in different data sets. Simulation results are shown in Fig. 9 at 20 dB SNR.
These results show that the IVA-L algorithm is more sensitive to length of the processing
data blocks. At a block length of 100 samples in each data set the performance
improvements of the IVA-G and IVA-GGD are 18% and 19% as compared to the IVA-L.

Table 3 The ISIcom results of the IVA-G, GMCA, and FastICA algorithms are demonstrated for
different values of the input data block lengths ranges from 100 to 10,000 samples in different
data sets. All the five ECG signals are considered in these simulations while utilizing 20 dB SNR.

L 100 400 800 1,000 1,500 2,000 5,000 7,000 10,000

IVA-GECG1 0.056 0.054 0.051 0.0503 0.0490 0.0401 0.02 0.01 0.00504

IVA-GECG2 0.0554 0.0536 0.052 0.05026 0.0481 0.041 0.021 0.011 0.005

IVA-GECG3 0.0557 0.0541 0.0508 0.05029 0.04914 0.04012 0.0201 0.0102 0.0049

IVA-GECG4 0.055 0.054 0.0509 0.0502 0.0479 0.04010 0.0202 0.0102 0.0050

IVA-GECG5 0.0561 0.0639 0.052 0.05028 0.0490 0.0402 0.0203 0.0103 0.0051

GMCAECG1 0.55 0.37 0.26 0.21 0.12 0.06 0.04 0.02 0.01

GMCAECG2 0.551 0.3701 0.2602 0.209 0.1204 0.0612 0.0411 0.021 0.0109

GMCAECG3 0.5502 0.371 0.261 0.212 0.1201 0.0610 0.041 0.0206 0.0108

GMCAECG4 0.550 0.37 0.2601 0.2101 0.1202 0.0613 0.041 0.0208 0.0109

GMCAECG5 0.5502 0.371 0.261 0.212 0.1201 0.0612 0.0411 0.0209 0.0107

FastICAECG1 0.99 0.561 0.361 0.303 0.2 0.1202 0.08 0.06 0.041

FastICAECG2 0.998 0.56 0.36 0.3 0.201 0.1203 0.0802 0.061 0.0404

FastICAECG3 0.997 0.5601 0.362 0.31 0.21 0.12 0.081 0.0601 0.04

FastICAECG4 0.997 0.561 0.361 0.309 0.201 0.120 0.0811 0.0611 0.0401

FastICAECG5 0.9909 0.5603 0.3606 0.3108 0.210 0.1204 0.0810 0.06009 0.0402
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In order to further investigate the IVA algorithms, we evaluate the UWdAd performance
of the IVA algorithms at SNR of 20 dB for different number of iterations. Results are given
in Fig. 10. It shows that the IVA-L converges faster as compared to IVA-G and IVA-GGD
algorithms. The IVA-L converges at approximately 10 iterations, the other two converges
at 25 iterations approximately. Although the IVA-L converges fast with same steady state
results as achieved by other algorithms.

In the third part of simulations, we demonstrate the practical performance of the IVA
algorithms for real ECG artifacts removal. The ECG artifacts considered in this part are
BW, EM and MA. Removal of these artifacts is a challenging task due to their variable
amplitudes and frequencies. The IVA algorithms considered in this section are IVA-L,
IVA-G and IVA-GGD. The separated signals of the IVA algorithms are shown in Fig. 11
for 20 dB SNR. The results shows that three algorithms perform well for ECG artifacts
removal. Moreover, the error signals are also demonstrated in Fig. 12, where error signal is
the difference of the real and separated ECG signals. The resultant very low amplitudes of
the error signals shows the effectiveness of the IVA algorithms.
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Figure 14 Results of the IVA-G, GMCA, and FastICA algorithms for different values of the input
data block lengths range from 100 to 10,000 samples in different data sets. ECG2 is utilized in
these simulations. Full-size DOI: 10.7717/peerj-cs.1189/fig-14
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The algorithms performance is also investigated for different values of the input data
block lengths in each data sets. The ISIcom performance is evaluated and the results are
shown in Table 1. The data block lengths considered in each data set ranges from 50 to
2,000 samples with SNR of 20 dB. These results show that the IVA-GGD and IVA-G are
less sensitive to lengths of the processing data blocks as compared to IVA-L. Furthermore,
the algorithms performance is also evaluated for various SNR values with input data block
length of 2,000 samples in each data set. The results are demonstrated in Table 2 for SNR
ranges from 0 to 20 dB. Performance of the algorithms degrade for lower values of SNR.
The IVA-GGD and IVA-G provide a little better results as compared to IVA-L for lower
SNR values.

Finally, larger data blocks with more ECG signals are considered. ECG and interfering
source signals utilized in this part of simulations have data block lengths ranging from 100
to 10,000 samples. Five ECG signals i.e., ECG1, ECG2, ECG3, ECG4 and ECG5 are
considered from the MIT-BIH database for further analysis. The source signals are shown
in Fig. 13. This figure contains the BW, EM, MA and ECG signals. Larger samples are
considered to further investigate the behavior of the ICA, CCA, and IVA algorithms. The
mixing and un-mixing procedures are performed as discussed above. The ISIcom
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Figure 15 Extracted ECG signals are shown for the IVA-G, GMCA, and FastICA algorithms while
utilizing block length of 10,000 samples. ECG signal utilized is ECG2.
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performance of all three algorithms is evaluated while considering the 20 dB SNR. Results
of all the five ECG signals i.e., ECG1, ECG2, ECG3, ECG4 and ECG5 are demonstrated in
Table 3. This table shows approximately the same performance of a single algorithm for all
five ECG signals. The ISIcom performance of the ECG2 is also demonstrated in Fig. 14 to
observe the performance improvement for increased lengths of the processing data blocks.
Although, in addition to Table 3 the results of all the other ECG signals can also be
included as figures but restricted to ECG2 only to avoid the unnecessary length of the
article. Furthermore, the reconstructed ECG signal i.e., ECG2 in Fig. 15 is also
demonstrated for all three algorithms.

DISCUSSION AND CONCLUSION
The ECG artifacts removal problem is investigated in this article. Both realistic simulated
and real ECG signals are utilized for simulation. The artifacts considered are baseline
wandering, electrode movement and muscle artifacts. Removal of these artifacts is difficult
due to their variable amplitudes and frequencies. The IVA technique is compared in this
article shows that it outperforms the CCA and ICA techniques. We further investigated the
IVA technique for ECG artifacts removal. For comparison purpose, we consider three IVA
algorithms to get more clear ECG signals in the presence of various artifacts. In addition,
we utilized different evaluation criterion to confirm performance of the proposed
technique. The ISIcom performance of the IVA algorithms for different values of the input
data block lengths in different data sets. Simulation results are shown in Fig. 9 at 20 dB
SNR. These results show that the IVA-L algorithm is more sensitive to length of the
processing data blocks. At a block length of 100 samples in each data set the performance
improvements of the IVA-G and IVA-GGD are 18% and 19% as compared to the IVA-L.
As a concluding remarks, we can say that the IVA algorithms are less sensitive to input
data block lengths and input SNRs as compared to the ICA technique. Thus, IVA is proved
to be an efficient and more practical technique for ECG de-noising.
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