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ABSTRACT
Background and Purpose: Chronic obstructive pulmonary disease (COPD), is a
primary public health issue globally and in our country, which continues to increase
due to poor awareness of the disease and lack of necessary preventive measures.
COPD is the result of a blockage of the air sacs known as alveoli within the lungs; it is
a persistent sickness that causes difficulty in breathing, cough, and shortness of
breath. COPD is characterized by breathing signs and symptoms and airflow
challenge because of anomalies in the airways and alveoli that occurs as the result of
significant exposure to harmful particles and gases. The spirometry test (breath
measurement test), used for diagnosing COPD, is creating difficulties in reaching
hospitals, especially in patients with disabilities or advanced disease and in children.
To facilitate the diagnostic treatment and prevent these problems, it is far evaluated
that using photoplethysmography (PPG) signal in the diagnosis of COPD disease
would be beneficial in order to simplify and speed up the diagnosis process and make
it more convenient for monitoring. A PPG signal includes numerous components,
including volumetric changes in arterial blood that are related to heart activity,
fluctuations in venous blood volume that modify the PPG signal, a direct current
(DC) component that shows the optical properties of the tissues, and modest energy
changes in the body. PPG has typically received the usage of a pulse oximeter, which
illuminates the pores and skin and measures adjustments in mild absorption. PPG
occurring with every heart rate is an easy signal to measure. PPG signal is modeled by
machine learning to predict COPD.
Methods: During the studies, the PPG signal was cleaned of noise, and a brand-new
PPG signal having three low-frequency bands of the PPG was obtained. Each of the
four signals extracted 25 features. An aggregate of 100 features have been extracted.
Additionally, weight, height, and age were also used as characteristics. In the feature
selection process, we employed the Fisher method. The intention of using this
method is to improve performance.
Results: This improved PPG prediction models have an accuracy rate of 0.95
performance value for all individuals. Classification algorithms used in feature
selection algorithm has contributed to a performance increase.
Conclusion: According to the findings, PPG-based COPD prediction models are
suitable for usage in practice.
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INTRODUCTION AND LITERATURE REVIEW
Chronic obstructive pulmonary disease (COPD) is characterized by breathing signs and
symptoms and airflow challenges because of anomalies in the airways and the alveoli that
occurs as a result of significant exposure to harmful particles and gases. COPD is a
widespread, preventable, and curable disease (Zubaydi et al., 2017; Melekoğlu et al., 2021;
Batum et al., 2015). COPD constitutes a significant portion of chronic respiratory diseases.
COPD is one of the maximum crucial reasons for mortality and morbidity, and with every
passing day, it keeps inflicting a growing sizable financial and social burden (Lopez, 2006;
Arslan & Ünsar, 2021). With the expected prolongation of life expectancy and increased
exposure worldwide, the burden of COPD is predicted to increase further (Arslan & Ünsar,
2021). According to an investigation carried out with the aid of using the WHO (López-
Campos, Tan & Soriano, 2016), COPD is the fourth leading reason for demise worldwide.
Every year, 2.9 million people worldwide die from COPD-related diseases.

COPD is a lung complaint that prevents comfortable and healthy breathing due to the
narrowing of the airways. The most common symptoms of COPD, as a progressive chronic
disease for which a definitive treatment has not been found yet, are cough with phlegm and
shortness of breath. In this disease, which manifests itself in the form of different
symptoms depending on its stages, shortness of breath, even with light effort, indicates that
the disease has progressed. One of the most important features of the symptoms is cigarette
smoke. Both active cigarette smokers and nonsmokers or passive smokers around them are
affected.

COPD is a progressive disease that develops due to non-microbial inflammation in the
airways caused by prolonged exposure to tobacco smoke, noxious gases, and particles. As a
result of this inflammation, while the airways are gradually narrowing, irreversible
enlargement and destruction of the air sacs (alveoli) occur in the lung tissue (Amaral et al.,
2015).

Because there is insufficient information, approximately COPD, analysis, diagnosis, and
treatment are delayed. The specialized doctor makes the diagnosis based on the
information collected from the spirometer gadget, which is the approach utilized to
diagnose the ailment. These methods are only applied in hospitals and performed by
technicians. It is important to monitor the patient’s illness after diagnosis and to monitor
the damage the disease has caused to the patient’s body. Early diagnosis and intervention
in COPD can stop or slow the progression of the disease. COPD, or chronic obstructive
pulmonary disease, is caused by the narrowing of the airways in the lungs that make
breathing difficult, and because the disease is often permanent and progressive, diagnosing
the disease in its early stages can leave less harm to the patient. Monitoring at regular
intervals is very important in terms of the course of the disease. This process can only be

Melekoglu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1188 2/28

http://dx.doi.org/10.7717/peerj-cs.1188
https://peerj.com/computer-science/


performed in hospitals. It is a complicated and time-consuming process (Zubaydi et al.,
2017).

The diagnosis of COPD is made by using the spirometer device. The spirometer should
measure forced vital capacity (FVC), and volume exhaled (FEV1) within 1 s of this
maneuver and calculated the FEV1/FVC ratio. A medical professional can make a
diagnosis by comparing spirometry measurements with reference values determined by
age, height, weight, and BMI. When we divide FEV1 by FVC, it is considered to be less
than 70% a COPD patient (Melekoğlu et al., 2021; Isik, Guven & Buyukoglan, 2015; Uçar
et al., 2018b). The difficulties of using the spirometer device can be experienced, especially
in small children, the disabled, and patients with advanced illnesses. This necessitates
shortening and facilitating the diagnosis time (Melekoğlu et al., 2021; Er & Temurtas, 2008;
Er et al., 2009). Because of these drawbacks, there is a need to design methods that are
simple to use and follow in order to diagnose COPD more effectively (Uçar et al., 2018b,
2018c). To overcome these problems, in order to make the COPD diagnoses process faster
and then patient monitoring easier, it is taken into consideration that the usage of the
photoplethysmography (PPG) signal can be beneficial withinside the diagnosis of COPD
(Melekoğlu et al., 2021; Moraes et al., 2018). The PPG is a biological signal that may be
measurable anywhere near the heart.

Heart signals convey vital information about the body and illness. Therefore, based on
the obtained results, it has been evaluated that it can be used in the diagnosis of COPD. A
PPG signal-based COPD diagnostic method is suggested in this study. It is expected that
the developed method will also create an infrastructure for the production of portable
devices for the diagnosis of the disease and be low in cost.

Studies in the literature show that artificial intelligence algorithms can be used in the
detection of asthma and COPD (Joumaa et al., 2022). In the related study, the use of open
source datasets is also recommended. In addition to machine learning algorithms, the use
of deep learning algorithms is increasing in the diagnosis of medical diseases. The
development of computer infrastructures increases deep learning applications. Deep
learning has higher performance compared to classical machine learning algorithms
(Ghorbanzadeh et al., 2019; Sahoo, Pradhan & Das, 2020; Zhang et al., 2017).

In recent years, in the diagnosis of diseases, various types of research areas have been
carried out on the usability of some new and helpful classifiers, decision-making software,
and tools (de Mesquita et al., 2022; Lazazzera et al., 2021). One of these areas is artificial
intelligence applications (Valente et al., 2016; Rodrigues et al., 2018). It is clear that these
systems will provide advantages such as assistance in making the diagnosis, shortening the
diagnosis time, efficiency, and increased productivity, which will benefit the medical field
(Filho et al., 2014). This study intends to diagnose COPD with the machine learning
algorithm only by using the PPG signal belonging to a patient.

One of the overall goals of this study is to facilitate the diagnosis of COPD through
machine learning, which helps to confirm the diagnosis of COPD. In addition, the
improvement of parameters such as diagnosis duration, efficiency, and time are among the
objectives (Isik, Guven & Buyukoglan, 2015). This study was carried out using the PPG
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signal in compliance with the principles of the GOLD (Global Initiative for Chronic
Obstructive Lung Disease).

The aim of this study is to diagnose COPD quickly and reliably with artificial
intelligence-based PPG signal. In this study, a different and improved model from the
literature is proposed. PPG records were collected from patients and healthy individuals
for model formation. PPG signals are noise-free and split into sub-frequency bands. Then,
features in the time domain are extracted from each frequency band. Feature selection
algorithm is used to improve performance and eliminate unnecessary features. With the
obtained feature sets, classification was made with the help of machine learning
algorithms. The results showed that the diagnosis can be made with a two-second PPG
signal.

METHOD AND MATERIAL
To explain the purpose of the study, the diagram in Fig. 1 was followed. Firstly, PPG is
separated into sub-frequency bands with the help of digital filters. It is then split into two-
second epochs. Time domain features were extracted from each epoch. In order to increase
performance, the best features are selected with the help of a feature selection algorithm.
Selected features are classified by the Ensemble Tree algorithms (ET), k-nearest neighbor
algorithm (kNN), support vector machines (SVMs), and hybrid methods.

Data collection
The data used in the study were obtained from the Sleep Laboratory of Sakarya Hendek
State Hospital. The data in question; has been examined and diagnosed by a medical
professional according to the criteria for COPD and is classified as either diseased or
healthy. In order to carry out the research, permissions were obtained from the ethics
committee report numbered 1614662/050.01.04/70 from the Dean of the Faculty of
Medicine University from Sakarya and R.T Ministry of Health Republic of Turkey, Turkey
Public Hospitals Institution Sakarya Province Public Hospitals Association General Data
Secretary, and usage permission numbered 94556916/904/151.5815. A consent form was
obtained from all participants. The data used in the study were collected in 2015–2016.

Within the scope of the study, the studies have been made on identified patients, six
healthy and eight patient, 12 of them male and two female, fourteen people in total.
Personal demographic records and COPD registry records are given withinside Table 1.

Signal pre-processing
A digital filter is applied to the PPG signal, and a new PPG signal is obtained, which has a
sub-frequency band PPG signal. In an attempt to eliminate noise from the PPG signal, a
Chebyshev type II bandpass filter with frequencies ranging from 0.1 to 20 Hz was used,
followed by a “Moving Average” filter, and the PPG signal was received without noise
(Şahan et al., 2007). During the study, three sub-frequency bands for the PPG signal were
acquired throughout the investigation. These are sub-frequency (LF) band range of 0.04 to
0.15 Hz, (MF) mid-frequence (MF) band range of 0.09 to 0.15 Hz, and high-frequency
(HF) band range of 0.15 to 6 Hz (Uçar et al., 2018a). At the end of the filtering operations,
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the obtained signals (PPG, PPGLF , PPGMF , PPGHF) were split into T ¼ 2 s epochs, and 25
features were obtained from the time domain of each epoch. Obtained epoch information
is shown in Table 2.

Figure 2 shows the PPG record of the COPD and Control groups and the periodogram
with a Fast Fourier Transform graphic. As can be visible withinside the figure, there are
variations among the sign amplitudes. Graph is a performance indicator used to show
visual difference.

Figure 1 Diagram flow. Full-size DOI: 10.7717/peerj-cs.1188/fig-1

Table 1 Distribution of demographic information and records about individuals.

Female Male All individuals

n1 = 2 n2 = 12 n = n1 + n2 = 14

Mean SD Mean SD Mean SD

Age (year) 55.50 � 4.95 53.17 � 9.43 53.50 � 8.82

Weight (kg) 105.50 � 6.36 101.92 � 8.08 102.43 � 7.75

Height (cm) 170.00 � 7.07 173.42 � 6.52 172.93 � 6.43

BMI (kg/m2) 36.70 � 5.23 33.75 � 2.54 34.17 � 2.96

Photoplethysmography time distribution record (Sec)

Mean SD Mean SD Mean SD

COPD group – � – 28,643.50 � 11,082.52 2,8643.50 � 11,082.52

Control group 2,6041.00 � 4,963.89 32,611.00 � 5,351.56 3,0421.00 � 5,798.47

Note:
BMI, Body Mass Index.
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Feature extraction
Four signals were obtained in the preceding process. Each of the four signals has 25
features extracted. Many features have been used for PPG signals in the literature (Uçar
et al., 2021; Uçar et al., 2017). In our study, we retrieved 25 characteristics from the PPG
signal. The 25 extracted features are shown in Table 3. The first three columns contain the
properties number, property name, and formula information. The x shown in formulas
represents the signal. These operations are computed using the MATLAB library (Uçar
et al., 2021; Wallisch et al., 2009). An aggregate of 100 features have been extracted.

After 25 features were extracted from each signal as indicated in the diagram flow, by
using kNN, SVMs, and Ensemble Tree classification algorithm, the operations were

Table 2 Epoch distribution.

No Gender Epoch count

COPD 1 F 14,323

2 F 22,213

3 M 2,248

4 M 16,228

5 M 13,978

6 M 15,673

7 M 14,428

8 M 13,093

Total 112,184

Healthy 9 M 17,263

10 M 19,393

11 M 15,463

12 M 15,463

13 M 15,463

14 M 14,773

Total 97,818

Figure 2 Periodogram graph of the photoplethysmography signal.
Full-size DOI: 10.7717/peerj-cs.1188/fig-2
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Table 3 Photoplethysmography properties.

No Features name The formula [b]

1 Kurtosis

xkur ¼
Pn
i¼1

ðxðiÞ � �xÞ4

ðn� 1ÞS4
2 Skewness

xske ¼
Pn
i¼1

ðxi � �xÞ3

ðn� 1ÞS3
3 *Interquartile width IQR ¼ iqrðxÞ
4 Coefficient of variation DK ¼ ðS=�xÞ100
5 Geometric average G ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1 � � � � � xnn
p

6 Harmonic average
H ¼ n=

�
1
x1

þ � � � þ 1
xn

�
7 Hjort activity coefficient A ¼ S2

8 Hjort mobility coefficient M ¼ S21=S
2

9 Hjort complexity coefficient
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS22=S21Þ2 � ðS21=S2Þ2

q
10 *Maximum xmax ¼ maxðxiÞ
11 Median

�x ¼

xnþ 1
2

: x tek

1
2

�
xn
2

þ xn
2
þ 1

�
: x ift

8>>><
>>>:

12 *Median absolute deviation MAD ¼ madðxÞ
13 *Minimum xmin ¼ minðxiÞ
14 *Moment, central moment CM ¼ momentðx; 10Þ
15 Average

�x ¼ 1
n

Xn
i¼1

¼ 1
n
ðx1 þ � � � þ xnÞ

16 Average curve length
CL ¼ 1

n

Xn
i¼2

jxi � xi�1j

17 Average energy
E ¼ 1

n

Xn
i¼1

x2i

18 Average square root RMS value
Xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

jxij2
s

19 Standard error S�x ¼ S=
ffiffiffi
n

p

20 Standard deviation
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1
ðxi � �xÞ2

r
21 Shape factor

SF ¼ Xrms=

�
1
n

Xn

i¼1

ffiffiffiffiffiffiffi
jxij

p �
22 *Singular value decomposition SVD ¼ svdðxÞ
23 *25% Trimmed mean value T25 ¼ trimmeanðx; 25Þ
24 *50% Trimmed mean value T50 ¼ trimmeanðx; 50Þ
25 Average teager energy

TE ¼ 1
n

Xn
i¼3

ðx2i�1 � xixi�2Þ

Notes:
* The property was computed using MATLAB.
IQR, Interquartile Range; CV, Coefficient of Variation.
S2, variance of the signal x. S2
S21, Variance of the 1st derivative of the signal x.
S22, Variance of the 2nd derivative of the signal x.
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performed on MATLAB. Additionally, by combining the algorithm, a hybrid machine
learning algorithm was created.

Statistical features help to describe samples better. While a single feature does not make
sense, more than one feature can become meaningful with artificial intelligence methods.
Here, it is aimed to use more than one statistical parameter with artificial intelligence that
has been tried before. These features have been preferred because they have been used in
different studies in the literature and are efficient.

Feature selection
The number of features in a feature selection method has an impact on machine learning
performance in both positive and negative ways (Uçar et al., 2020). Negative impacts are
isolated through feature selection. According to the tag prediction of any feature, the
feature selection procedure ranks from relevant to irrelevant. The researcher can add as
many features to the dataset as he wants, ranking them from most relevant to least
relevant. As a consequence, he may receive more detailed findings and run faster program
cycles without unnecessary data usage. Object selection methods are often used to select a
smaller subset of more distinct objects, and in this way, the goal is to improve classification
performance (Kohavi & John, 1997; Isabelle & Elisseeff, 2000; Eskidere, 2012). In this
research, Fisher’s feature selection algorithm was used due to its high performance (Uçar
et al., 2020). The features selected in the study are summarized in Table 4. The table shows
the features’ correlation level (R), and F displays feature numbers. R indicates the level of
association of attributes with the tag. F represents the feature number. The features in the
table are ranked with the features with the best correlation at the top.

Correlation coefficients range from 0 to 1.1 indicates the highest correlation. The
correlation ranges are expressed as: These are 0 < R < 0:19—the relationship is negligible,
0:2 < R < 0:39 weak relationship, 0:4 < R < 0:69 moderate relationship, 0:7 < R < 0:89
strong relationship, and 0:9 < R < 1 is a very strong relationship.

Machine learning
Machine learning is the modeling of systems with computers that make predictions by
making inferences from operations on data by using mathematics and statistics
(Arslankaya & Toprak, 2021). One of the problems that can be solved by machine learning
is the classification of problems with a wide range area of uses. Today many problems can
be somehow considered and solved as a classification problems. kNN, SVMs, and ET
models were employed in this work. The reasons for choosing these methods are the short
training duration, and the high accuracy rates (Rasool et al., 2019; Uçar et al., 2017).

During the analysis performed in order to avoid errors, a hybrid machine learning
algorithm structure was created (Aydilek & Arslan, 2013, 2012; Tosunoğlu et al., 2021). Due
to the fact that these methods have attained successful results in the literature, they are the
most frequently used machine learning algorithms. In addition, these algorithms are
suitable for transferring to embedded systems (Roscher et al., 2020; Santos, Moreno &
Estombelo-Montesco, 2019; Saguil & Azim, 2019). From the data used for the training of
the models, 50% was used during training and 50% during the testing phase.
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Hyperparameter optimization has been made for all machine learning algorithms used.
Parameters were not changed manually. All parameters are made automatically by Matlab
to reduce 5-fold cross-validation loss.

Support vector machines algorithm (SVMs)
SVMs are among the best-supervised learning algorithms. Proposed by Cortes & Vapnik
(1995) and Uçar (2017). It is predominantly based on the principle of establishing the
maximum distance between the examples defined as support vectors of the decision
surface of two linearly separable classes and determining the class boundaries. The
maximization of the distance is written as a quadratically constrained optimization
problem and converted to a dual form. Developed for linear problems, this approach can
be generalized for nonlinear parsing problems using kernel transformations (Akben,
Subasi & Kiymik, 2010; Fernandes de Mello & Antonelli Ponti, 2018).

Table 4 Feature selection from signals for the entire data set.

S PPG PPG LF PPG MF PPG HF

No F R F R F R F R

1 17 0.082 2 0.027 2 0.029 8 0.081

2 8 0.062 1 0.021 1 0.022 1 0.060

3 25 0.041 11 0.021 6 0.022 25 0.042

4 11 0.039 4 0.021 11 0.022 14 0.042

5 14 0.039 8 0.019 8 0.020 7 0.042

6 22 0.039 16 0.019 25 0.020 3 0.041

7 2 0.039 6 0.018 18 0.019 24 0.040

8 9 0.038 25 0.018 20 0.018 9 0.039

9 3 0.033 22 0.018 14 0.018 18 0.039

10 19 0.032 17 0.003 17 0.007 19 0.037

11 1 0.017 13 0.003 13 0.007 11 0.021

12 21 0.007 15 0.002 15 0.002 4 0.005

13 16 0.005 14 0.002 4 0.002 13 0.005

14 6 0.003 20 0.001 3 0.001 21 0.003

15 4 0.003 3 0.000 16 0.000 6 0.002

16 7 0.001 12 0.000 7 0.000 20 0.002

17 12 0.001 7 0.000 22 0.000 17 0.002

18 13 0.001 21 0.000 12 0.000 12 0.001

19 15 0.001 19 0.000 21 0.000 15 0.001

20 10 0.000 5 0.000 5 0.000 5 0.001

21 20 0.000 18 0.000 19 0.000 16 0.001

22 23 0.000 10 0.000 10 0.000 2 0.000

23 5 0.000 23 0.000 23 0.000 10 0.000

24 18 0.000 24 0.000 24 0.000 22 0.000

25 24 0.000 9 0.000 9 0.000 23 0.000

Note:
S, Signal; F, Feature; R, Correlation coefficient.
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In the selection of the machine learning algorithm developed for the solution of
classification problems, one of the essential criteria to be considered is the generalization
performance of the algorithm (Ayhan & Erdoğmuş, 2014). In order to separate points
placed on the plane, a line is drawn (Fig. 3). It intends to have this line at the maximum
distance for the points of both classes. To draw the border, two lines close and parallel to
each other are drawn, and these lines are brought closer together to produce a boundary
line. The SVMs method is based on estimating the most appropriate function to separate
the data from each other. SVMs have a simple structure and high performance in terms of
practical applications, and it is pretty user-friendly. The number of samples to be used in
SVMs is not essential. During training, SVMs also classify unseen data without problems.
This demonstrates the generalization ability of the SVMs. The generalization feature
makes the SVMs a good alternative compared to the other techniques (Kecman, 2002).

During the studies, for all classification processors, the features were divided into 10
different feature sets (5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%). While
applying the SVMs, the parameter optimization method was used. Using this method
improves performance.

k-nearest neighborhood algorithm (KNN)
kNN is a basic machine-learning method that uses the supervised learning approach
(Şahan et al., 2007; Uçar, 2017). Although it is used in solving both classification and
regression problems, it is mostly used in solving classification problems in the industry.

kNN algorithms were proposed in 1967 by Cover & Hart (1967). The algorithm is used
by utilizing the data in a sample set with certain classes. The new data that will be added to
the sample data set, in accordance with the available data, the distance is calculated, and k
number of close neighbors are checked. Three types of distance functions are generally
used for distance calculations/these are (1) “Euclidean” Distance, (2) “Manhattan”
Distance, (3) “Minkowski” Distance.

Figure 3 SVMs algorithm general flow diagram. Full-size DOI: 10.7717/peerj-cs.1188/fig-3
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The kNN algorithm may be used for both regression and classification; however, it is
more commonly utilized for classification tasks (Şahan et al., 2007). By calculating the
similarity of the data to be classified to the standard behavior data in the learning set;
classes are assigned to the classes according to the threshold value determined by the mean
of the k data, which is thought to be the closest (Fig. 4) (Duman et al., 2021). The
important thing is that the characteristics of each class are clearly defined in advance. The
performance of the method criteria is affected by the number of neighbors closest to k, the
threshold value, the similarity measurement, and the sufficient number of expected
behaviors in the learning set. Initially, for classification with kNN, the k value is selected. A
large selection of k may result in the grouping of dissimilar data sets. In studies, the k value
is generally preferred as 3, 5, or 7 (Uçar, 2017; Khan, Ding & Perrizo, 2002).

Ensemble Tree (ET)
An ensemble of trees makes predictions by gathering the results from individual decision
trees (DT) (Huang, Zhao & Huang, 2021). ET is a machine learning approach that is
commonly utilized in regression and classification issues (Breiman, 2001, 1996). The
basic working principle of Ensemble is based on the principle of performing a simple
decision-making process by making any classification problem multi-stepped state
(Çölkesen & Kavzoğlu, 2017). With classification algorithms, we try to predict which class
an object will be included in. Many classification methods select one suitable problem
makes the necessary optimizations, and tries to achieve high accuracy rates.

Ensemble methods; It combines the prediction results of multiple base models to
produce more robust and generalizable results compared to a single model. The success of
these methods is based on two criteria; the learning success of the base learner and their
differences from each other. Performance can sometimes drop on models.

The Ensemble Tree classifier is a system that was constructed by merging many
classification methods to give more consistent and dependable predictions. The system is

Figure 4 kNN algorithm general flow diagram. Full-size DOI: 10.7717/peerj-cs.1188/fig-4
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built with N odd or even classifiers. During classification, the output values produced by
each classifier are counted. The decision of the ensemble classifier is determined by the
principle of majority vote.

In this study, three classifiers were used; ensemble classifier SVMs, kNN, and Ensemble
Tree, and the study were prepared in the MATLAB environment.

Hybrid artificial intelligence method (HAI)
Today, it is seen that organizations are increasingly positioning artificial intelligence
instead of operational solutions and rapidly integrating it into their business processes
(Deliloğlu & Çakmak Pehlivanlı, 2021). Hybrid Artificial Intelligence combines the
received classification processes to produce the answer given by the majority (Fig. 5).
Bringing together the weak classification to reveal the robust classification. As the number
of classifiers increases, the model stability increases.

Performance assessment criteria
Various performance assessment criteria were utilized to examine the accuracy rates of the
suggested systems. Specificity, sensitivity, kappa coefficient, accuracy rates, receiver
operating characteristic (ROC), area under the ROC curve (area under a ROC—AUC), and
k-fold cross-validation accuracy rate are among them (Uçar et al., 2020).

During the classification of the feature sets, they are divided into (50%) Training and
(50%) Test data sets (Table 5). In the received data, 2-second epoching processes were
carried out for the data obtained from 14 patients, including Healthy and Control.

From the training and test results received, the total number of sick patients is 112,184,
and healthy ones are 106,815. The best performance results were acquired by using
classification algorithms in the processes and combining the hybrid artificial intelligence
method with classification algorithms.

For the calculation of the performance values, the confusion matrix was created, and the
performance parameters were calculated (Table 6).

While interpreting the Kappa value, the ranges in Table 7 are taken into account.
According to these values, R values above 0.81 are very good for the system.

Figure 5 Hybrid artificial intelligence model algorithm general flow diagram.
Full-size DOI: 10.7717/peerj-cs.1188/fig-5
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RESULTS
The results acquired within the scope of the study are presented in this section. The goal of
this study is to use artificial intelligence with PPG signals to diagnose chronic obstructive
pulmonary disease (COPD). For this purpose, the study was organized as follows: Initially,
the PPG signals received from individuals (“Data collection”) are divided into three
sub-frequency bands (“Signal pre-processing”). Then, 25 features are extracted to the
photoplethysmography signal and in the three sub-frequency bands (“Feature extraction”).
In the next step, the diagnosis of individual COPD values was estimated with the help of
the feature groups feature selection algorithm (“Feature selection”). Finally, performance
assessment criteria were used to evaluate the performances of the proposed models
(“Performance assessment criteria”).

Within the scope of the study, COPD was estimated by using all the features of PPG and
three sub-frequency bands, both separately and together in Table 8. By using PPG and all
the features of the three sub-frequency bands, the estimation was made using the
performance evaluation criteria in the prepared models (Table 8). It has been determined
that the calculated performance evaluation criteria are very close to 1. The accuracy rate in
the model created with the PPG signal is approximately 95%. It is seen that the success

Table 5 Training and test.

Percent COPD Healthy Total

Training 50% 56,092 53,408 109,500

Test 50% 56,092 53,407 109,499

Total 100% 112,184 106,815 218,999

Table 6 Confusion matrix.

Predicted

P N

Actual situation P TP FN

N FP TN

Table 7 Kappa coefficients boundary ranges.

Kappa coefficients Explanation

0.81–1.00 Very good compatibility

0.61–0.80 Good compatibility

0.41–0.60 Moderate compliance

0.21–0.40 Low level of compliance

0.00–0.20 Poor fit

<0.00 Very poor fit
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rates of the models belonging to the sub-frequencies of PPG are over 80%. The sensitivity
and specificity values of the models are balanced and above 0.85.

The COPD prediction model was reconstructed by reducing all feature groups with the
help of the Fisher feature selection algorithm (Tables 9–13).

The results obtained according to the Performance evaluation criteria used for the
Feature selection algorithm in PPG signals are shown in Table 10. PPG Feature selection is
performed at ten levels. At each level, the model was created by taking 5% of the best
features. The amount of features selected for level 1 is 5%, for level 2 is 10%, and for level 5
by increasing, for level 10 is 50%. By using kNN, SVMs, and Ensemble Tree classification
algorithms for PPG feature selection and by combining the hybrid artificial intelligence
method and classification algorithms, we tried to obtain the best possible results. In the
results obtained, the best results were taken at the 8th level, 40%, according to the
performance evaluation criteria. An accuracy rate of 0.98 is shown as the closest value to 1.
In the tables, the performance value of the model with the best success rate at each level is
shown in bold (Tables 9–13).

The results obtained according to the Performance evaluation criteria used for the PPG
LF feature selection algorithm are shown in Table 10. The PPG LF feature selection process
we performed at ten levels. For each level, kNN, SVMs, and Ensemble Tree classification

Table 8 Results by all features for all records. Bold numbers in the table show the best results.

Signal Model Performance evalutaion criteria

Sensitivity Specificity Accuracy Kappa F-measure AUC

PPG kNN 0.858 0.887 87.24 0.745 0.872 0.872

SVMs 0.922 0.950 93.59 0.872 0.936 0.936

ET 0.939 0.967 95.31 0.906 0.953 0.954

Hybrid 0.940 0.961 95.10 0.902 0.951 0.952

PPG LF kNN 0.746 0.823 78.37 0.568 0.782 0.784

SVMs 0.790 0.835 81.24 0.625 0.812 0.813

ET 0.877 0.929 90.30 0.806 0.903 0.904

Hybrid 0.837 0.892 86.46 0.729 0.864 0.865

PPG MF kNN 0.768 0.846 80.64 0.613 0.805 0.807

SVMs 0.648 0.596 62.26 0.244 0.620 0.622

ET 0.853 0.916 88.46 0.769 0.885 0.886

Hybrid 0.813 0.877 84.44 0.689 0.844 0.854

PPG HF kNN 0.826 0.918 87.17 0.743 0.870 0.872

SVMs 0.619 0.731 67.41 0.350 0.670 0.675

ET 0.894 0.915 90.43 0.808 0.904 0.905

Hybrid 0.836 0.925 87.95 0.759 0.878 0.880

All kNN 0.773 0.922 84.60 0.693 0.841 0.847

SVMs 0.641 0.839 73.79 0.478 0.727 0.740

ET 0.928 0.951 93.96 0.879 0.939 0.940

Hybrid 0.828 0.955 89.03 0.781 0.887 0.891
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Table 9 List of PPG signals by feature selection results. Bold numbers in the table show the best results.

Model Performance Evalutaion Criteria

Sensitivity Specificity Accuracy Kappa F-measure AUC

Level 1 5% kNN 0.663 0.533 60.04 0.198 0.591 0.598

SVMs 0.639 0.575 60.80 0.214 0.605 0.607

ET 0.611 0.608 60.99 0.219 0.609 0.609

Hybrid 0.626 0.589 60.81 0.215 0.607 0.607

Level 2 10% kNN 0.853 0.955 90.29 0.806 0.901 0.904

SVMs 0.854 0.907 88.03 0.760 0.880 0.881

ET 0.841 0.901 87.01 0.741 0.869 0.870

Hybrid 0.853 0.928 89.02 0.781 0.889 0.891

Level 3 15% kNN 0.816 0.964 88.83 0.777 0.884 0.890

SVMs 0.882 0.938 90.97 0.819 0.909 0.910

ET 0.880 0.902 89.14 0.782 0.891 0.892

Hybrid 0.871 0.953 91.11 0.822 0.910 0.912

Level 4 20% kNN 0.850 0.963 90.57 0.811 0.903 0.907

SVMs 0.879 0.940 90.95 0.819 0.909 0.910

ET 0.880 0.917 89.84 0.797 0.898 0.899

Hybrid 0.879 0.959 91.82 0.837 0.917 0.919

Level 5 25% kNN 0.927 0.987 95.68 0.913 0.956 0.957

SVMs 0.950 0.966 95.82 0.916 0.958 0.958

ET 0.917 0.960 93.80 0.876 0.938 0.939

Hybrid 0.945 0.986 96.55 0.931 0.965 0.966

Level 6 30% kNN 0.927 0.986 95.60 0.912 0.956 0.957

SVMs 0.941 0.968 95.43 0.908 0.954 0.955

ET 0.932 0.969 95.06 0.901 0.950 0.951

Hybrid 0.951 0.987 96.90 0.938 0.969 0.969

Level 7 35% kNN 0.919 0.986 95.13 0.902 0.951 0.952

SVMs 0.620 0.882 74.81 0.499 0.728 0.751

ET 0.918 0.963 94.05 0.881 0.940 0.941

Hybrid 0.901 0.981 94.01 0.880 0.939 0.941

Level 8 40% kNN 0.911 0.983 94.66 0.893 0.946 0.947

SVMs 0.974 0.981 97.77 0.955 0.977 0.977

ET 0.903 0.953 92.81 0.856 0.928 0.929

Hybrid 0.947 0.987 96.71 0.934 0.967 0.968

Level 9 45% kNN 0.919 0.983 95.03 0.901 0.950 0.951

SVMs 0.893 0.944 91.81 0.836 0.918 0.919

ET 0.907 0.956 93.07 0.861 0.931 0.931

Hybrid 0.927 0.979 95.25 0.905 0.952 0.953

Level 10 50% kNN 0.881 0.966 92.28 0.846 0.922 0.923

SVMs 0.922 0.935 92.87 0.857 0.929 0.929

ET 0.890 0.942 91.55 0.831 0.915 0.916

Hybrid 0.922 0.970 94.60 0.892 0.946 0.947
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Table 10 PPG LF signals list by feature selection results. Bold numbers in the table show the best
results.

Model Performance evalutaion criteria

Sensitivity Specificity Accuracy Kappa F-measure AUC

Level 1 5% kNN 0.829 0.291 56.65 0.121 0.431 0.559

SVMs 0.936 0.184 56.98 0.123 0.308 0.561

ET 0.948 0.170 56.89 0.121 0.288 0.559

Hybrid 0.943 0.176 56.94 0.122 0.297 0.560

Level 2 10% kNN 0.823 0.878 85.03 0.700 0.850 0.851

SVMs 0.790 0.802 79.61 0.592 0.796 0.796

ET 0.792 0.793 79.27 0.585 0.793 0.793

Hybrid 0.815 0.832 82.36 0.647 0.824 0.824

Level 3 15% kNN 0.925 0.965 94.50 0.890 0.945 0.945

SVMs 0.822 0.852 83.69 0.674 0.837 0.837

ET 0.898 0.937 91.76 0.835 0.917 0.918

Hybrid 0.914 0.959 93.65 0.873 0.936 0.937

Level 4 20% kNN 0.899 0.951 92.47 0.849 0.924 0.925

SVMs 0.946 0.959 95.26 0.905 0.953 0.953

ET 0.892 0.934 91.31 0.826 0.913 0.913

Hybrid 0.935 0.969 95.19 0.904 0.952 0.952

Level 5 25% kNN 0.915 0.960 93.73 0.874 0.937 0.938

SVMs 0.608 0.680 64.34 0.288 0.642 0.644

ET 0.898 0.941 91.96 0.839 0.919 0.920

Hybrid 0.890 0.958 92.36 0.847 0.923 0.924

Level 6 30% kNN 0.895 0.947 92.07 0.841 0.920 0.921

SVMs 0.953 0.961 95.74 0.914 0.957 0.957

ET 0.896 0.940 91.80 0.836 0.918 0.918

Hybrid 0.937 0.967 95.19 0.903 0.952 0.952

Level 7 35% kNN 0.884 0.947 91.52 0.830 0.915 0.916

SVMs 0.949 0.959 95.42 0.908 0.954 0.954

ET 0.895 0.941 91.75 0.835 0.917 0.918

Hybrid 0.935 0.968 95.17 0.903 0.951 0.952

Level 8 40% kNN 0.864 0.938 90.06 0.801 0.900 0.901

SVMs 0.412 0.846 62.40 0.255 0.554 0.629

ET 0.894 0.937 91.51 0.830 0.915 0.915

Hybrid 0.843 0.954 89.75 0.795 0.895 0.899

Level 9 45% kNN 0.879 0.942 91.04 0.821 0.910 0.911

SVMs 0.933 0.950 94.14 0.883 0.941 0.941

ET 0.893 0.937 91.48 0.829 0.914 0.915

Hybrid 0.928 0.965 94.61 0.892 0.946 0.946

Level 10 50% kNN 0.885 0.952 91.80 0.836 0.917 0.918

SVMs 0.392 0.895 63.77 0.284 0.545 0.643

ET 0.884 0.932 90.81 0.816 0.908 0.908

Hybrid 0.848 0.966 90.60 0.812 0.903 0.907
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Table 11 PPG MF signals list by feature selection results. Bold numbers in the table show the best
results.

Model Performance evalutaion criteria

Sensitivity Specificity Accuracy Kappa F-measure AUC

Level 1 5% kNN 0.822 0.304 56.93 0.127 0.444 0.563

SVMs 0.860 0.264 56.97 0.126 0.404 0.562

ET 0.938 0.182 56.97 0.123 0.306 0.560

Hybrid 0.887 0.237 57.05 0.127 0.374 0.562

Level 2 10% kNN 0.916 0.965 94.04 0.881 0.940 0.941

SVMs 0.917 0.961 93.92 0.878 0.939 0.939

ET 0.887 0.931 90.89 0.818 0.909 0.909

Hybrid 0.921 0.969 94.47 0.889 0.944 0.945

Level 3 15% kNN 0.916 0.965 94.07 0.881 0.941 0.941

SVMs 0.918 0.962 94.01 0.880 0.940 0.941

ET 0.888 0.929 90.85 0.817 0.908 0.909

Hybrid 0.921 0.969 94.46 0.889 0.944 0.945

Level 4 20% kNN 0.889 0.944 91.65 0.833 0.916 0.917

SVMs 0.957 0.975 96.58 0.931 0.966 0.966

ET 0.901 0.937 91.92 0.838 0.919 0.919

Hybrid 0.935 0.969 95.17 0.903 0.951 0.952

Level 5 25% kNN 0.910 0.962 93.56 0.871 0.935 0.936

SVMs 0.952 0.975 96.38 0.927 0.964 0.964

ET 0.890 0.932 91.06 0.821 0.910 0.911

Hybrid 0.934 0.973 95.34 0.906 0.953 0.953

Level 6 30% kNN 0.911 0.964 93.67 0.873 0.936 0.937

SVMs 0.957 0.961 95.91 0.918 0.959 0.959

ET 0.896 0.936 91.60 0.832 0.916 0.916

Hybrid 0.942 0.974 95.82 0.916 0.958 0.959

Level 7 35% kNN 0.889 0.946 91.72 0.834 0.917 0.918

SVMs 0.956 0.963 95.98 0.919 0.960 0.960

ET 0.912 0.947 92.97 0.859 0.929 0.930

Hybrid 0.949 0.973 96.12 0.922 0.961 0.962

Level 8 40% kNN 0.863 0.926 89.37 0.787 0.893 0.894

SVMs 0.942 0.952 94.73 0.894 0.947 0.947

ET 0.911 0.946 92.85 0.857 0.928 0.929

Hybrid 0.937 0.962 94.96 0.899 0.949 0.949

Level 9 45% kNN 0.880 0.939 90.94 0.819 0.909 0.910

SVMs 0.937 0.950 94.38 0.887 0.943 0.944

ET 0.912 0.946 92.86 0.857 0.928 0.929

Hybrid 0.943 0.970 95.68 0.913 0.957 0.957

Level 10 50% kNN 0.881 0.939 90.96 0.819 0.909 0.910

SVMs 0.939 0.950 94.48 0.889 0.945 0.945

ET 0.868 0.925 89.62 0.792 0.896 0.896

Hybrid 0.922 0.963 94.24 0.884 0.942 0.943
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Table 12 PPG HF signals List by feature selection results. Bold numbers in the table show the best
results.

Model Performance Evalutaion Criteria

Sensitivity Specificity Accuracy Kappa F-measure AUC

Level 1 5% kNN 0.643 0.584 61.47 0.228 0.612 0.614

SVMs 0.647 0.577 61.36 0.225 0.610 0.612

ET 0.665 0.561 61.46 0.227 0.608 0.613

Hybrid 0.658 0.568 61.48 0.229 0.610 0.614

Level 2 10% kNN 0.819 0.952 88.41 0.768 0.880 0.885

SVMs 0.447 0.923 67.94 0.366 0.602 0.685

ET 0.823 0.868 84.51 0.690 0.845 0.845

Hybrid 0.785 0.954 86.75 0.736 0.861 0.869

Level 3 15% kNN 0.893 0.968 93.02 0.860 0.929 0.931

SVMs 0.848 0.930 88.84 0.777 0.887 0.889

ET 0.856 0.888 87.24 0.744 0.872 0.872

Hybrid 0.874 0.948 91.03 0.821 0.909 0.911

Level 4 20% kNN 0.840 0.957 89.76 0.795 0.895 0.899

SVMs 0.847 0.930 88.82 0.776 0.887 0.889

ET 0.857 0.892 87.43 0.748 0.874 0.875

Hybrid 0.854 0.945 89.85 0.797 0.897 0.899

Level 5 25% kNN 0.842 0.846 84.47 0.689 0.844 0.844

SVMs 0.881 0.937 90.89 0.818 0.908 0.909

ET 0.868 0.898 88.30 0.766 0.883 0.883

Hybrid 0.887 0.918 90.24 0.805 0.903 0.903

Level 6 30% kNN 0.880 0.966 92.25 0.845 0.921 0.923

SVMs 0.940 0.965 95.24 0.904 0.952 0.952

ET 0.887 0.941 91.36 0.827 0.913 0.914

Hybrid 0.921 0.973 94.65 0.893 0.946 0.947

Level 7 35% kNN 0.911 0.978 94.42 0.888 0.943 0.945

SVMs 0.564 0.886 72.17 0.447 0.690 0.725

ET 0.902 0.945 92.34 0.846 0.923 0.924

Hybrid 0.874 0.977 92.49 0.850 0.923 0.926

Level 8 40% kNN 0.906 0.975 94.00 0.880 0.939 0.940

SVMs 0.959 0.975 96.69 0.933 0.967 0.967

ET 0.898 0.940 91.85 0.837 0.918 0.919

Hybrid 0.942 0.980 96.08 0.922 0.961 0.961

Level 9 45% kNN 0.891 0.893 89.25 0.785 0.892 0.892

SVMs 0.867 0.922 89.40 0.788 0.893 0.894

ET 0.889 0.941 91.48 0.829 0.914 0.915

Hybrid 0.913 0.955 93.35 0.867 0.933 0.934

Level 10 50% kNN 0.883 0.963 92.25 0.845 0.921 0.923

SVMs 0.863 0.915 88.84 0.777 0.888 0.889

ET 0.884 0.940 91.17 0.823 0.911 0.912

Hybrid 0.901 0.962 93.08 0.862 0.931 0.932
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Table 13 PPG all signals list by feature selection results. Bold numbers in the table show the best
results.

Model Performance evalutaion criteria

Sensitivity Specificity Accuracy Kappa F-measure AUC

Level 1 5% kNN 0.865 0.965 91.39 0.828 0.912 0.915

SVMs 0.868 0.922 89.45 0.789 0.894 0.895

ET 0.860 0.888 87.40 0.748 0.874 0.874

Hybrid 0.874 0.941 90.66 0.813 0.906 0.907

Level 2 10% kNN 0.902 0.977 93.93 0.879 0.938 0.940

SVMs 0.932 0.963 97.72 0.894 0.947 0.947

ET 0.887 0.915 90.12 0.802 0.901 0.901

Hybrid 0.925 0.973 94.87 0.897 0.948 0.949

Level 3 15% kNN 0.912 0.978 94.42 0.888 0.943 0.945

SVMs 0.963 0.977 96.99 0.939 0.970 0.970

ET 0.893 0.940 91.61 0.832 0.916 0.916

Hybrid 0.944 0.982 96.24 0.924 0.962 0.962

Level 4 20% kNN 0.916 0.964 93.98 0.879 0.939 0.940

SVMs 0.958 0.968 96.31 0.926 0.963 0.963

ET 0.893 0.943 91.77 0.835 0.917 0.918

Hybrid 0.945 0.977 96.15 0.923 0.961 0.961

Level 5 25% kNN 0.862 0.958 90.96 0.819 0.908 0.911

SVMs 0.912 0.953 93.24 0.864 0.932 0.933

ET 0.889 0.943 91.58 0.832 0.915 0.916

Hybrid 0.910 0.971 94.04 0.881 0.940 0.941

Level 6 30% kNN 0.850 0.952 90.03 0.801 0.898 0.902

SVMs 0.922 0.942 93.18 0.864 0.932 0.932

ET 0.889 0.943 91.56 0.831 0.915 0.916

Hybrid 0.908 0.963 93.55 0.871 0.935 0.936

Level 7 35% kNN 0.832 0.945 88.72 0.775 0.885 0.888

SVMs 0.903 0.943 92.32 0.846 0.923 0.924

ET 0.890 0.944 91.66 0.833 0.916 0.917

Hybrid 0.900 0.965 93.18 0.863 0.931 0.932

Level 8 40% kNN 0.817 0.933 87.38 0.748 0.871 0.875

SVMs 0.905 0.945 92.50 0.850 0.925 0.925

ET 0.895 0.944 91.90 0.838 0.919 0.919

Hybrid 0.901 0.963 93.16 0.863 0.931 0.932

Level 9 45% kNN 0.818 0.939 87.78 0.756 0.875 0.879

SVMs 0.917 0.948 93.25 0.865 0.932 0.932

ET 0.885 0.916 90.04 0.801 0.901 901

Hybrid 0.907 0.959 93.27 0.865 0.932 0.933

Level 10 50% kNN 0.826 0.937 88.07 0.762 0.878 0.882

SVMs 0.914 0.948 93.12 0.862 0.931 0.931

ET 0.882 0.915 89.84 0.797 0.898 0.898

Hybrid 0.907 0.958 93.20 0.864 0.932 0.932
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algorithms were used. By using these algorithms’ optimization methods, it aimed to obtain
the best results. By combining the classification algorithms, the best results with the hybrid
method were obtained according to the performance evaluation criteria. The best results
from these ten levels were obtained at the 7th level; the result was 35%. The accuracy rate
displayed is 0.96, with the closest value to 1.

The results obtained according to the performance evaluation criteria used for the PPG
MF feature selection algorithm are shown in Table 11. The PPG MF feature selection
process we performed at ten levels. For each level, kNN, SVMs, and ensemble tree
classification algorithms were used. Using these algorithms and optimization methods was
aimed at obtaining the best results. By combining the classification algorithms, the best
results with the hybrid method were obtained according to the performance evaluation
criteria. The best results from these ten levels were obtained at the 7th level, and the result
was 35%. The accuracy rate displayed is 0.97, with the closest value to 1.

The results obtained according to the performance assessment criteria used for the PPG
HF feature selection algorithm are shown in Table 12. The PPG HF feature selection
process we performed at ten levels. For each level, kNN, SVMs, and Ensemble Tree
classification algorithms were used. By using these algorithms’ optimization methods, it
aimed to obtain the best results. By combining the classification algorithms, the best results
with the hybrid method were obtained according to the performance evaluation criteria.
The best results from these ten levels were obtained at the 8th level, the result was 40%. The
accuracy rate displayed is 0.98, with the closest value to 1.

The results obtained according to the performance assessment criteria used for the PPG
All feature selection algorithm are shown in Table 13. The PPG All feature selection
process we performed at ten levels. For each level, kNN, SVMs, and Ensemble Tree
classification algorithms were used. By using these algorithms’ optimization methods, it
aimed to obtain the best results. By combining the classification algorithms, the best results
with the hybrid method were obtained according to the performance evaluation criteria.
The best results from these ten levels were obtained at the 3rd level, and the result was 15%.
The accuracy rate displayed is 0.98, as the closest value to 1.

Using kNN, SVMs, and Ensemble Tree classification algorithms at each level, the
operations are carried out by using optimization at each level. We tried to find the best
results using the best performance evaluation criteria. We tried to get the best result for
these models by combining the models with the hybrid method.

Twenty-five features were chosen when the produced models were analyzed in terms of
signal processing effort before utilizing the feature selection technique. To put it another
way, the feature selection method has decreased the feature extraction burden by 70%. The
findings acquired based on the signal are shown visually in order to assess the outcomes
gained in the research in various ways. The training times of the models are about 30 min,
excluding the hybrid model, due to the large data set.

For the reliability of the study, the leave one out method was applied. The obtained
training results are summarized in the Table 14.
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The hybrid method is a stable classifier formed by weak classifiers. Although its
performance is lower in some cases than singular classifiers, it may be preferred more
because it is stable and the variance of the answers is low.

DISCUSSION
The aim of the study is to make the artificial intelligence-based COPD diagnosis quickly
and reliably. For this purpose, a different and advanced signal processing and machine
learning process from the literature has been developed. More than one model was
developed in the study and the comparison of the models is summarized in the results
section.

With rapidly polluted air, increased pollution, harsh urban life, and consumption of
tobacco products such as tobacco, lung disease is one of today’s most significant health
problems (Melekoğlu et al., 2021; Er et al., 2009; Er, Yumusak & Temurtas, 2012). It has
been observed that COPD is the most rapidly increasing but least known chest diseases.
COPD is a progressive disease that develops due to non-microbial inflammation in the
airways due to exposure to cigarette smoke, harmful gases, and particles. As the airways
narrow gradually due to this inflammation in the lung tissue, irreversible expansion and
destruction occur in the air sacs (alveoli). The changes in chronic obstructive pulmonary
disease are irreversible and progressive if the diagnosis is delayed. Therefore, recognition
and early diagnosis of this disease are of great importance (Şen et al., 2019). COPD is the
third cause of death in the world, and it causes three million deaths annually. With the
prevalence of smoking in society, the incidence of COPD and the losses due to this disease
are increasing day by day. Therefore, early diagnosis and treatment of this disease are of
great importance (Şen et al., 2019).

In a disease where early diagnosis is so important, it has become inevitable to carry out
studies for early diagnosis. When we look at the literature, it is seen that the studies on the
diagnosis of COPD are generally performed with a stethoscope, demographic information
of patients, and spirometers (Şen et al., 2019; Pinto & Marques, 2017; Johari, Balaiyah &
Ahmad, 2014). In the literature, the biological signals used for COPD diagnosis are limited
to spirometry, stethoscope, and recordings (Şen et al., 2019; Pinto &Marques, 2017; Johari,

Table 14 Leave-one-out training performance results.

Group Training
Performance evaluation criteria

Sensitivity Specificity Accuracy rate Kappa F-measure AUC

1 0.98 0.98 99.18 0.97 0.98 0.98

2 0.97 0.97 99.09 0.97 0.98 0.97

3 0.96 0.96 97.29 0.91 0.96 0.96

4 0.97 0.96 98.78 0.98 0.95 0.96

5 0.96 0.95 95.33 0.94 0.93 0.94

6 0.98 0.97 98.2 0.96 0.95 0.97

Average 0.97 0.965 97.98 0.955 0.958 0.963
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Balaiyah & Ahmad, 2014). For example, the time required to diagnose COPD with the
spirometry device seems to be long and costly. In addition, patients were exposed to many
psychological and physiological problems while involved in a long diagnosis process. It has
been reported that the level of anxiety in patients increases, and it causes depression in
patients (Anar et al., 2012; Akkuş, Karabulutlu & Yağcı, 2016). As diagnosing COPD by
spirometry is laborious, complicated, and time-consuming, a minimal number of patients
can be included in the process in one day. It has been observed that this causes the
prolongation of the diagnosis process of the patients and a decrease in the quality of life of
the patient. In addition, as it is an irreversible disease, delayed treatment causes permanent
effects on patients.

The use of artificial intelligence algorithms as a decision support system in disease
diagnosis is increasing day by day (Joumaa et al., 2022; Char, Abràmoff & Feudtner, 2020;
Shailaja, Seetharamulu & Jabbar, 2018). Classical machine learning algorithms are often
preferred by researchers because they have low computer capabilities (Ghorbanzadeh et al.,
2019; Sahoo, Pradhan & Das, 2020; Zhang et al., 2017). Deep learning approaches work
better than classical machine learning algorithms. However, high-capacity computers are
required. In this study, a hybrid model is proposed with the help of classical machine
learning algorithms close to deep learning performance. In this way, it is aimed to run
algorithms on normal computers as well. This approach is quite innovative compared to
the literature.

Generally, in the literature, it has been seen that in the studies, more than one single
classifier such as DT, SVMs, kNN, multilayer feedforward neural network (MLFFNN),
Probabilistic neural network (PNN), and artificial boundary networks are preferred during
classification processes (Isik, Guven & Buyukoglan, 2015; Orenc et al., 2017; Örenç, 2019).
Ensemble classifier selection is quite rare. In this study, unlike other studies, the Ensemble
classifier was used to increase the power of single classifiers, and it was determined that the
performance increased significantly. In the literature review, it is thought that using ECG
signals of COPD patients will help the diagnosis process of COPD disease to be made
quickly and reliably (Uçar et al., 2018b).

In another study for the diagnosis of COPD, with the empirical wavelet transform
(EWT) method, kNN, naive Bayes, BayesNet, multilayer perceptron, SVMs, AdaBoost,
random subspace, random forest, and J48 algorithm in total nine different types were used
and the best performance value for COPD diagnosis was obtained from the classification
algorithms in a short time as 5 s (Demir, 2020). In another study, a classification algorithm
was used for the diagnosis of COPD. Classification performances are obtained for random
forest and J48 decision tree, SVMs, and AdaBoost, respectively, with the ratios of 90.41%,
95.28%, 90.56%, and 85.78%, respectively. It has been demonstrated that the study’s
contribution decreases diagnostic time to 5 s while increasing accuracy (Gökçen, 2021).
Whereas, in this study, the time has been reduced to 2 s. In this respect, our work is ahead
in terms of time. In addition, the performance of the recommended models is 96.96%,
better than in the literature. This may be due to the preference for the use of biomedical
signals for a reliable signal in the proposed models. Moreover, the detection of sub-
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frequency bands in signal processing processes is another factor that directly affects model
performances.

Studies have shown that PPG signals can help identify COPD. Diagnosis of COPD using
PPG signals is said to be achieved in real-time in just 15 s (Ucar et al., 2017). Another
research suggests that by utilizing the PPG signal, it may be feasible to diagnose COPD
illness in as short as 2 s (Melekoğlu et al., 2021).

All these studies carried out to date contain advantages and disadvantages from each
other in terms of different features. This study is an early diagnosis of COPD; in this way, if
the treatment process of the patient is started quickly, psychological and physiological
difficulties will be minimized.

When the model proposed in this study is compared with the literature, the signal
processing process includes innovations in terms of machine learning approach. The use of
sub-frequency bands in the signal processing process and the hybrid use of artificial
intelligence algorithms are the biggest innovations in the study. Differences in these
processes directly affected the performance positively.

CONCLUSION
According to the findings of this study, COPD diagnosis might be established by utilizing
machine learning with PPG and biological signal processing techniques. It becomes
additionally decided that the PPG recording time becomes necessary. With a recording of
just 2 s, by using PPG and three sub-frequency signals, three different classification
algorithms, combining these models, and using a combined artificial intelligence approach,
the exact obtained ratio is 95.31%. These results indicate that the diagnosis of COPD has
practical diagnostic methods. The diagnosis of COPD is usually made with a spirometer.
However, due to the difficulties of using these devices, different alternatives are needed.
The market value of the device is approximately $1,500–$2,500. The proposed model’s
rapid diagnosis, reliability, and high accuracy have many advantages because of its
technological infrastructure and low cost. The proposed version may be introduced to
accessible oxygen saturation gadgets with the usage of easy software. Even with this
economic aspect alone, it brings excellent innovation. Therefore, in order to summarize
the critical points of the research, it is a system that is (1) easy to use, (2) based on artificial
intelligence, (3) has a low economic cost, and (4) makes decisions based on reliable data
from biomedical signal measurements. We hope that this research will open new horizons
for the diagnosis of COPD.
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