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ABSTRACT
A sketch is a black-and-white, 2-D graphical representation of an object and contains
fewer visual details as compared to a colored image. Despite fewer details, humans
can recognize a sketch and its context very efficiently and consistently across
languages, cultures, and age groups, but it is a difficult task for computers to
recognize such low-detail sketches and get context out of them. With the tremendous
increase in popularity of IoT devices such as smartphones and smart cameras, etc., it
has become more critical to recognize free hand-drawn sketches in computer vision
and human-computer interaction in order to build a successful artificial intelligence
of things (AIoT) system that can first recognize the sketches and then understand the
context of multiple drawings. Earlier models which addressed this problem are scale-
invariant feature transform (SIFT) and bag-of-words (BoW). Both SIFT and BoW
used hand-crafted features and scale-invariant algorithms to address this issue. But
these models are complex and time-consuming due to the manual process of features
setup. The deep neural networks (DNNs) performed well with object recognition on
many large-scale datasets such as ImageNet and CIFAR-10. However, the DDN
approach cannot be carried out for hand-drawn sketches problems. The reason is
that the data source is images, and all sketches in the images are, for example, ‘birds’
instead of their specific category (e.g., ‘sparrow’). Some deep learning approaches for
sketch recognition problems exist in the literature, but the results are not promising
because there is still room for improvement. This article proposed a convolutional
neural network (CNN) architecture called Sketch-DeepNet for the sketch recognition
task. The proposed Sketch-DeepNet architecture used the TU-Berlin dataset for
classification. The experimental results show that the proposed method beats the
performance of the state-of-the-art sketch classification methods. The proposed
model achieved 95.05% accuracy as compared to existing models DeformNet
(62.6%), Sketch-DNN (72.2%), Sketch-a-Net (77.95%), SketchNet (80.42%),
Thinning-DNN (74.3%), CNN-PCA-SVM (72.5%), Hybrid-CNN (84.42%), and
human recognition accuracy of 73% on the TU-Berlin dataset.
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INTRODUCTION
Nowadays, we find sketches in many aspects of daily life, and they play a significant role in
human-computer interaction, education, recording, and suspect identification. AIoT-
based systems can be built in order to obtain maximum benefits from hand-drawn
sketches which allow the user to first draw the sketch on any touch-screen device, and then
the drawn sketch can be used to search for the object over the internet or understand the
context in the case of multiple sketches in AIoT based systems. The first challenge in
implementing such systems is to develop an accurate and useful sketch classification
model.

The main purpose of sketch classification is to properly identify the class or label of the
drawn object over a pre-determined set of classes. For this, it is important to find
distinctive and powerful features of the given sketch image. Previous work on sketch
classification generally utilized the image classification approach by extracting hand-
crafted features from sketch images and then feeding them to a classifier. Existing
approaches which is based on the handcrafted feature extraction methodology are HOG
(Dalal & Triggs, 2005), SIFT (Lowe, 2004), SSIM (Shechtman & Irani, 2007), fisher vector
(Schneider & Tuytelaars, 2014), and GF-HOG (Hu et al., 2013). These feature descriptors
are often combined with a bag of visual words (BoW) (McCallum & Nigam, 1998;
Joachims, 1998) to yield final features for the classification purpose. However, these
features are sensitive concerning the user point of view. Additionally, the ability of
algorithms to train the classification models is also affected by the hand-crafted features.
Also, it is nearly impossible to manually identify the number of edges and corners
representing good features for a dataset that consists of 250 categories of sketches.
Therefore, there is still significant room to improve the classification accuracy of hand-
drawn sketches because the accuracy of the existing techniques is not attractive.

Recently, CNN, a specific type of DNN architecture, has been proposed in many
computer vision, artificial intelligence, and machine learning fields. CNN architectures,
which in essence is a multi-layered neural network model, appear as a powerful framework
for features representation and classification in many image processing domains. The
CNN features used for classification give a great performance on image datasets
(Krizhevsky & Hinton, 2009; Krizhevsky, Sutskever & Hinton, 2012). These features are
from CNN layers. CNN architectures consist of multiple layers depending on the domain
targeted. These well-known layers are the convolutional, pooling, normalization, and fully
connected layers. In CNN architectures, various layers provide different representations of
input data. For the classification of large image datasets such as CIFAR-10/100 (Krizhevsky
& Hinton, 2009), ImageNet (Deng et al., 2009), and MNIST (LeCun et al., 1998), CNN has
been used. The domain of sketches classification via CNN required more attention. With
the arrival of large-scale datasets such as Sketchy (Sangkloy et al., 2016) and TUBerlin
(Eitz, Hays & Alexa, 2012), CNN received more attention in sketch classification (Dai
et al., 2017; Yang & Hospedales, 2015; Yu et al., 2015, 2017; Sarvadevabhatla & Babu,
2015).
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It is a challenging task for computer systems to recognize hand-drawn sketches
automatically or without human intervention. There are two fundamental reasons behind
this. First, sketches are abstract and contain little details about the object’s shape and
appearance, and second, variation in sketching style, e.g., everyone draws the same object
differently. So, it is difficult for state-of-the-art algorithms to classify the hand-drawn
sketches effectively and with acceptable accuracy.

This article presents a deep convolutional neural network (DCNN) based sketch
classification architecture named Sketch-DeepNet across numerous object categories such
as cat, car, apple, etc. The proposed architecture consists of seven layers. CNN chooses
features in two ways, either manually or automatically. This article made it automatically
by designing an automatic CNN-based network to extract discriminative features from
training data to perform classification. Particularly, the proposed method included
random neural node drop-out and utilized fewer convolutional layers. The fewer use of
convolutional layers decreases the number of parameters in the CNN model to avoid the
over-fitting problem. The proposed CNN model achieves 95.05% accuracy on the TU-
Berlin sketch dataset which is much better as compared to DeformNet (62.6%) (Dai et al.,
2017), Sketch-DNN (72.2%) (Yang & Hospedales, 2015), Sketch-a-Net (77.95%) (Yu et al.,
2017), SketchNet (80.42%) (Zhang et al., 2016), Thinning-DNN (74.3%) (Ahn, Shin &
Kim, 2016), CNN-PCA-SVM (72.5%) (Sert & Boyacı, 2019), Hybrid-CNN (84.42%)
(Zhang et al., 2020), and human recognition accuracy 73% (Eitz, Hays & Alexa, 2012). The
effectiveness of the proposed Sketch-DeepNet architecture makes it an ideal candidate for
sketch classification-related problems such as sketch recognition (Eitz, Hays & Alexa,
2012), sketch-based image retrieval (Eitz et al., 2010), and forensic sketch analysis (Klare,
Li & Jain, 2010).

The remainder of the article is organized as follows. The “Related Work” section
discusses the related work. The “Proposed Sketch-DeepNet Methodology” section presents
the proposed CNN methodology for Sketch-DeepNet. In the section “Experiments”, the
investigations are performed to validate the proposed model. In the section “Results and
Evaluations”, the comparative analysis of the proposed model with the existing state-of-
the-art models is carried out. Finally, in the section “Conclusion”, the proposed work is
concluded, followed by the future work.

RELATED WORKS
In Sarvadevabhatla & Babu (2015), the authors implemented CNNs based architecture to
classify hand-drawn sketches and object categories. The two famous CNN’s based models
presented for hand-drawn sketches are—AlexNet CNN (Krizhevsky, Sutskever & Hinton,
2012) and the revised version of LeNet (LeCun et al., 1998). AlexNet and LeNet performed
well as compared to the state-of-the-art approaches (Dalal & Triggs, 2005; Li et al., 2015).
The first significant attempt on using (DCNNs) for free-hand-drawn sketch classification
is Sketch-a-Net, which is first introduced in Yu et al. (2015) and then later on improved in
Yu et al. (2017). The researchers made many changes in the latest network as compared to
the earlier version of Sketch-a-Net. In an enhanced version (Yu et al., 2017), the authors
used stroke timing and geometry information for data augmentation strategy. The dataset

Ali et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1186 3/23

http://dx.doi.org/10.7717/peerj-cs.1186
https://peerj.com/computer-science/


was deformed to increase the training set’s size and remove the problem of over-fitting.
The classification accuracy achieved was 77.95% on the TU-Berlin sketch dataset. In
another work (Zhang et al., 2016), DCNN based sketch classification called SketchNet was
presented, but the main objective of SketchNet was to learn the shared structures which
present between sketch and real images. SketchNet consists of three subnets: R-Net
extracted features from the actual images, S-Net was used on the sketch images, and C-Net
was used to discover the common structures between real images and sketches. For
example, a sketch image of an object is used as an input and performed its initial category
predictions on the pre-trained sketch model. Then the test pairs are constructed based on
their visual similarity to achieve the prediction scores of each test image pair. SketchNet
achieved the classification accuracy of 80.42% on the TU-Berlin sketch benchmark. A
context-based self-learning algorithm that can learn sketches from a few samples of sketch
images was presented in Yesilbek & Sezgin (2017). The experiments were carried out with
the execution pipeline, consisting of four stages, i.e., candidate extraction, conservative
rejection, self-learning, and performance measurement. The performance was not accurate
enough to be used in a real-world environment. A multi-stage training methodology using
SketchANet and AlexNet is presented in Bui et al. (2018). The strategy combines
contrastive and triple regression loss functions to improve the algorithm’s performance.
The primary aim was to develop a training strategy for partial sharing networks. The
methodology was complex and challenging to implement in a real-world scenario. In Yang
& Hospedales (2015), a new (DCNN) based architecture for sketch classification is
presented. The architecture consists of six convolutional layers and two fully connected
layers. After the first, second, and fifth convolutional layers, a top pooling layer of 3 × 3 was
placed. The image size of 200 × 200 pixels was selected. The classification accuracy
achieved was 72.2% on the TU-Berlin dataset. Another study on sketch classification is
DeformSketchNet (Dai et al., 2017) which used deformable convolutions to augment
spatial sampling locations in convolutions to learn robustness to geometric
transformations. DeformSketchNet resized the images into 128 × 128-pixel files and
applied random horizontal flips to augment the data for training. DeformSketchNet
achieved 62.6% accuracy on the TUBerlin dataset. In another work (Ahn, Shin & Kim,
2016), the authors designed a deeper network to improve the performance and achieved
74.3% on the TU-Berlin dataset. Other models proposed for hand-drawn sketches
recognitions are (LR), (SVMs), CNN, and transfer learning (Phu, Xiao & Muindi, 2018).
After implementing these algorithms and analyzing their results, they concluded that a
simplified CNN could balance accuracy and training time. The CNN-based models
achieved 89.02%, 87.22%, and 77.46% accuracy on 3, 10, and 50 classes of QuickDraw
(Google, 2017) dataset. The main drawback of their approach is the reduction in the
accuracy when the number of classes is increasing.

In Zhou & Jia (2020), a sketch recognition learning methodology that focussed on visual
geometry group 16 convolutional neural network (VGG16 CNN) is presented. The
method is divided into two parts. The first part represents the pre-trained CNN-based
feature extraction pipeline, and the other party extracts the contextual features. Initially, a
graph is constructed and then traverses this graph according to the critical points of sketch
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strokes or the fixed numbers of steps. A contextual feature was obtained while spanning
the length of the selected number of relationships. In the end, the joint Bayesian model was
used to measure the relationship between multiple feature vectors. The final experimental
result represents that VGG16 CNN achieved the classification accuracy of approx. 78% on
the TU-Berlin dataset. The VGG16 CNN approach leads to some deficiencies in the
training phase. It consumed more time in execution during extracting contextual features.

A transfer learning-based approach for sketch recognition is presented in Sert & Boyacı
(2019). The method used a pre-trained model for feature extraction and fine-tuned it on
the TU-Berlin dataset. The pre-trained model considered ResNet-50 (Singh & Kisku, 2018)
which was trained on the MNIST dataset (LeCun et al., 1998). After choosing the pre-
trained ResNet-50 model, a flatten layer was added, one drop-out layer to reduce over-
fitting, and one fully connected layer for classification. After this, the model passed training
data of 10,000 images through the network to fine-tune the model. A stochastic gradient
optimizer, softmax activation, and cross-entropy were used to minimize the loss function.
The model achieved a validation accuracy of 72.94%. A sketch recognition model based on
(CNN) is presented in Kabakus (2020). The model was responsible for learning the stroke
patterns of sketches and predicting the classes of given sketches. The model consisted of 21
layers, out of which four were convolutional layers, five batch normalization layers, two
max-pooling layers, one flatten layer, five drop-out layers, and four fully connected layers.
The rectified linear units (ReLU) was used as the activation function for all the activations
except for the output layer. The categorical cross-entropy (Softmax Loss) was utilized as a
loss function for the previous layer. The adaptive moment estimation (Adam) algorithm
(Kingma & Ba, 2014), which is an extension of stochastic gradient descent (SGD), was
exploited as the optimization algorithm of the model. The model achieved a classification
accuracy of 89.53% on the QuickDraw dataset.

A graph neural network (GNN) based architecture is also applied on the free-hand
sketch recognition (Xu, Joshi & Bresson, 2021). The author’s designed a multigraph
transformer based on (GNN) for learning representations of sketches of multiple graphs.
The GNN based model concurrently capture global and local geometric stroke structures
as well as temporal information and achieved 89.45% classification accuracy on the Google
QuickDraw dataset. In this connection, an end-to-end single branch network architecture
RNN-Rasterization-CNN (Sketch-R2CNN) is presented to entirely leverage the vector
format of sketches (Li et al., 2020). Sketch-R2CNN only takes a vector sketch as input and
uses an RNN for feature extraction for each sketch point. A neural line rasterization (NLR)
module was developed, which converts the vector sketch with the per-point features to
multi-channel point feature maps differently. Afterward, an off-the-shelf CNN takes the
resulting point feature maps and predicts the final object category as output. The
performance of Sketch-R2CNN was evaluated using two sketch datasets. The first one was
the TU-Berlin dataset (Eitz, Hays & Alexa, 2012) which contains 250 object categories, and
the other one was the QuickDraw dataset which includes 345 categories of sketch objects.
The Sketch-R2CNN achieved 85.4% of classification accuracy on the TU-Berlin dataset
and 85.3% accuracy on the QuickDraw dataset.
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PROPOSED SKETCH-DEEPNET METHODOLOGY
CNN is very popular in the field of computer vision because of its proven success in solving
image classification problems (Krizhevsky, Sutskever & Hinton, 2012; Liu & Deng, 2015;
Glorot, Bordes & Bengio, 2011). In literature, CNN is found immensely fine at learning
local and global features from image data. The recognition performance of many image
databases such as ImageNet, NORB, MNIST and CIFAR10 is improved by using CNN-
based methodologies. Image objects such as human faces or handwritten digits are formed
by combining local and global features, hence, the combination of simple local features like
curves and edges builds more complex features such as corners and shapes. Recently, CNN
has also been used in free-hand sketch classification (Dai et al., 2017; Yang & Hospedales,
2015; Yu et al., 2015, 2017; Zhang et al., 2016; Ahn, Shin & Kim, 2016; Sert & Boyacı, 2019;
Zhang et al., 2020; Zhou & Jia, 2020; Li et al., 2020) and the accuracy was improved as
compared to the classical machine learning algorithms (Dalal & Triggs, 2005, Li et al.,
2015), but there is still room for improvement. Therefore, we design a new deep CNN
architecture named Sketch-DeepNet for this purpose. The proposed deep CNN is
described in Fig. 1.

CNN architecture
The overall design of the proposed Sketch-DeepNet architecture is illustrated in Fig. 1. It is
a seven-layer CNN architecture. The network input is a normalized sketch image with zero
mean and unit variance. There are four convolutional layers in the proposed architecture.
Batch normalization and max-pooling are applied after each convolutional layer. Then
three linear (fully connected) layers are added. Drop-out regularisation of value 0.5 is
applied after the second linear layer. The rectified linear unit (ReLU) 1 (Eq. (1)) (Dahl,

Figure 1 Illustration of our CNN model. Full-size DOI: 10.7717/peerj-cs.1186/fig-1
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Sainath & Hinton, 2013) activation function is used after each convolutional and linear
layer except the final layer. The final layer has 250 output features representing 250
categories (number of classes in the TU-Berlin dataset). The detailed parameter setting of
the proposed CNN architecture is shown in Table 1.

Rectified linear unit equation:

f ðxÞ ¼ maxð0; xÞ (1)

Convolution for feature extraction
Small image pixels are directly used as input to the networks to address the image
classification problem. However, it is noted that even small image patches contain many
pixels, resulting in a massive amount of weight parameters to be trained (Liu & Deng,
2015). According to the Vapnik–Chervonenkis (VC) dimension theory (Vapnik &
Chervonenkis, 2015), the significant number of weight parameters ends in more complex
systems that require numerous training samples to prevent the over-fitting problem. CNN
models significantly simplify the learning process by integrating weights into a
substantially smaller kernel size. Compared to conventional fully connected neural
networks, CNN is more powerful and accelerated in extracting the features.

Table 1 The architecture of Sketch-DeepNet

Layers Kernel In-channels Out-channels

Conv1 5 × 5 3 64

Relu – – –

Maxpool 2 × 2 – –

Conv2 3 × 3 64 128

Relu – – –

Maxpool 2 × 2 – –

Conv3 3 × 3 128 255

Relu – – –

Maxpool 2 × 2 – –

Conv4 3 × 3 255 512

Relu – – –

Maxpool 2 × 2 – –

FC1 – 512 × 2 × 2 1,024

Relu – – –

FC2 – 1,024 1,024

Relu – – –

Dropout (0.25) – – –

Output – 1,024 1,024
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Convolutional layers
In CNN, convolutional neuron layers are the main building blocks. Three two-dimensional
channels are input to the first convolutional layer. Various two-dimensional channels are
input to the second convolutional layer. The number of input channels can differ from the
number of output channels (Li et al., 2014). A single output channel is calculated by using
the equation given below:

Ay ¼ f
XN
x¼1

Ix � Kx;y þ By

 !
(2)

Ix = input matrix
Kx;y = kernel matrix

By = bias value

f = non-linear function
Ay = output matrix

Each particular set of kernel matrices indicates a feature extractor that extracts features
from input channels. The learning procedure aims to determine kernel matrices that
extract reliable and robust features to classify sketch images. The connection of neurons in
a neural network is optimized by the back-propagation process, where connection weights
train the kernel matrices.

Pooling layers
In CNN, the pooling layer plays a vital role in the reduction of feature dimension. A
pooling algorithm can be used to merge the adjacent elements in the output channels of
convolution. Pooling algorithms include min-pooling, average-pooling, and max-pooling.
The proposed network uses the max-pooling with kernel size 2 × 2, which takes the
maximum value from the four adjacent elements of the input channel to create a single
component in the output channel. In the error back-propagation process, the gradient
indication is passed back to the neurons, contributing to the pooling output. The model
achieves validation accuracy of 95.05% by using max-pooling which is 4% higher than
using average-pooling. The performance of using max-pooling and average-pooling is also
shown in Fig. 2.

Activation function
Non-linear functions are used as the activation function for neurons in artificial neural
networks e.g., the hyperbolic tangent function (Eq. (3)) (Glorot, Bordes & Bengio, 2011),
and the sigmoid function (Eq. (4)) (Glorot, Bordes & Bengio, 2011), both are most
commonly used saturating non-linear activation functions. In saturating non-linear
activation functions, when input increases, the output gradient decreases and approaches
zero. The classification performance and the learning speed of CNN can be improved
using non-saturating non-linear functions like rectified linear unit (ReLU) (Li et al., 2014).
In the proposed CNNmodel, the ReLU activation function is implemented. The outcomes
indicated that the performance is improved than using any saturating non-linear function
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such as Sigmoid and TanH. The training and validation accuracies for ReLU, Sigmoid, and
TanH are shown in Fig. 3.

TanH function equation:

f ðxÞ ¼ tanhðxÞ (3)

Figure 2 Training and validation accuracy of max-pooling and average-pooling. Full-size DOI: 10.7717/peerj-cs.1186/fig-2

Figure 3 Training and validation accuracy of ReLU, Sigmoid and TanH. Full-size DOI: 10.7717/peerj-cs.1186/fig-3
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Sigmoid function equation:

f ðxÞ ¼ 1=ð1þ e�xÞ (4)

Drop-out layer
Drop-out is a regularisation technique and it is used to avoid neural network from over-
fitting. During training of the neural network, the dropout actually works like creating a
narrow network with unique combinations of neurons in dense or fully connected layers
and randomly dropping these combinations at different points. In every training iteration,
a new narrow network is created with different neurons randomly dropped based on the
probability of hyper-parameter p. Training the neural network by using dropout is like
training various different narrow networks and then combining them to create a single
neural network which holds the properties of each narrow network. In Dahl, Sainath &
Hinton (2013) the performance of the neural network is improved by applying a drop-out
algorithm. In the proposed methodology, a dropout algorithm is used and the hyper-
parameter’s probability p is selected to 0.5.

EXPERIMENTS
Dataset
The proposed Sketch-DeepNet model used the TU-Berlin dataset collected from 1,350
participants from the crowd-sourcing platform (Amazon Mechanical Turk). This dataset
consists of 20,000 sketches across 250 categories. Sketches images are given as 1,111 ×
1,111 pixels PNG files. The images are resized to 64 × 64 pixels because large size is
unnecessary, particularly on sketch datasets. It is possible to use smaller sizes and get better
results. As sketches are black and white images, each pixel value is converted to the range
[0, 1]. The dataset is divided into three sub-datasets 70/20/10 as training/validation/test.
The sample sketches from TU-Berlin dataset are shown in Fig. 4

In the pre-processing stage, the images are resized into 64 × 64 pixels and apply a
random vertical and horizontal flip to the images to augment the dataset. After using
augmentation techniques, the size of the dataset increase by a factor of 30 and becomes
500,000 images. Then the dataset is randomly split into train, validation, and test sets.

Implementation details
A flexible neural computing software platform is required to implement the proposed
Sketch-DeepNet CNN architecture. Therefore, we selected the open-source neural

Figure 4 Sample sketches from the TU-Berlin dataset. Full-size DOI: 10.7717/peerj-cs.1186/fig-4
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network framework Pytorch to train the proposed network. After hyper parameters
tuning, the learning rate and batch size are set to 0.01 and 128, respectively. There are
approximately 2,735 total batches. The network trained up to 22 epochs because it became
stable after this point. The network is trained on NVIDIA Tesla P100 GPU with 16 GB
memory. GPU is used to accelerate the learning process because of the larger dataset and
number of parameters. The system consists of 32 GB of RAM, 1TB of SSD, and an Intel i7
processor. The training loss, training accuracy, validation accuracy, and testing accuracy
results of the proposed Sketch-DeepNet are shown in Fig. 5.

RESULTS AND EVALUATIONS
The proposed Sketch-DeepNet is compared with existing state-of-the-art standard
techniques (Dalal & Triggs, 2005; Li et al., 2015; Yang & Hospedales, 2015; Zhang et al.,
2016; Yu et al., 2017; Ahn, Shin & Kim, 2016; Dai et al., 2017; Sert & Boyacı, 2019; Zhang
et al., 2020; Zhou & Jia, 2020; Li et al., 2020) as shown in Fig. 6. These techniques can be
divided into two categories based on the features they utilize to represent sketches. One is
hand-engineered features, and the other is deep learning-based features. Handcrafted

Figure 5 Training loss represents the error on the training set of data. In graph (A) the training loss
value continuously decreases and it almost reaches zero at 22 epoch. (B) The training accuracy curve
shows model learning and the learning stopped at the point where the model converges to prevent over-
learning. The validation accuracy plot in (C) represents the generalization ability of the model and the
model achieved 94% accuracy on the validation set. The testing accuracy (D) depicts the performance of
the model on test data or unseen data. The tests are attempted after completion of every epoch and the
final result recorded 95%. Full-size DOI: 10.7717/peerj-cs.1186/fig-5
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features-based techniques are HOGSVM (Dalal & Triggs, 2005) and MKL-SVM (Li et al.,
2015) with the classification accuracy of 56% and 65.8% respectively. The deep learning-
based techniques are DeformNet (Dai et al., 2017) with a classification accuracy of 62.6%,
SketchNet (Zhang et al., 2016) having classification accuracy of 80.42%, Thinning-DNN
(Ahn, Shin & Kim, 2016) having classification accuracy of 74.3%, CNN-PCA-SVM (Sert &
Boyacı, 2019) and its classification accuracy was 72.5%, Hybrid-CNN (Zhang et al., 2020)
having classification accuracy of 84.42%, VGG16-CNN (Zhou & Jia, 2020) with the
classification accuracy of approx. 78%, Sketch-R2CNN (Li et al., 2020) having classification
accuracy of 85.4%, Sketch-a-Net (Yu et al., 2017) and its resultant classification accuracy
was 77.95%, and finally, the Sketch-DNN (Yang & Hospedales, 2015) having the accuracy
of 72.2%. The proposed model accuracy is 95.05%. So, it is clear from the comparisons of
results that the proposed model performs well as compared to the existing models (Dalal &
Triggs, 2005; Dai et al., 2017; Yang & Hospedales, 2015; Yu et al., 2017; Zhang et al., 2016;
Ahn, Shin & Kim, 2016; Sert & Boyacı, 2019; Zhang et al., 2020; Li et al., 2015; Zhou & Jia,
2020; Li et al., 2020). The following observation is also made:

1. The proposed Sketch-DeepNet remarkably outperforms all the existing methods (Dalal
& Triggs, 2005;Dai et al., 2017; Yang & Hospedales, 2015; Yu et al., 2017; Zhang et al., 2016;
Ahn, Shin & Kim, 2016; Sert & Boyacı, 2019; Zhang et al., 2020; Li et al., 2015; Zhou & Jia,
2020; Li et al., 2020) designed for sketch recognition.

Figure 6 Comparison with state-of-the-art results on sketch recognition. Full-size DOI: 10.7717/peerj-cs.1186/fig-6
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2. The 95.05% classification accuracy of the proposed Sketch-DeepNet model also
outperforms the human-computer interaction having a classification accuracy of 73%
(Eitz, Hays & Alexa, 2012).

3. Upon close examination at the category level, we concluded that the proposed Sketch-
DeepNet performed well at fine-grained object categories. This performance shows that
Sketch-DeepNet learned more discriminative feature representation than hand-crafted
features.

4. The proposed model also performs well on geometric invariance property. Using data
augmentation techniques (horizontal and vertical flips), we trained the model on randomly
rotated sketch images that overcome the geometry invariance problem.

5. Resizing sketch images to 64 × 64 not only reduces the training time but also benefits
learning accuracy. Even in small sizes, sketches are powerful in representing information,
and it’s more convenient to work with small-sized input for CNN.

6. The proposed model will fall short if any ambiguous sketch is provided as an input to the
model or if the input sketch does not belong to the categories present in the TU-Berlin
dataset, e.g., if we feed the model with the sketch image of a digital wrist-watch but the
model is trained on an analogue wrist-watch, then the model’s accuracy for the wrist-
watch category will be affected.

Figure 7 depicts confusion matrices of first 50 classes of the TU-Berlin dataset, Fig. 8
depicts confusion matrices of second 50 classes, Fig. 9 shows confusion matrices of third 50
classes, Fig. 10 shows the confusion matrices of fourth 50 classes, and Fig. 11 represents
confusion matrices of the remaining 50 classes of the TU-Berlin dataset.

Figure 12 Top 10 classes with maximum classification accuracy achieved by Sketch-DeepNet.
Full-size DOI: 10.7717/peerj-cs.1186/fig-12
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From Figs. 7–11 we can see that some classes are 100% correctly classified using
proposed Sketch-DeepNet i-e grenade, head-phones and scissors, etc., while some other
classes pen, squirrel and bridge are correctly classified with the accuracy of 77%, 84% and
86% respectively. Figure 12 depicts the top ten classes for which the proposed model
Sketch-DeepNet achieved the highest classification accuracy, whereas Fig. 13 depicts the
ten worse classes with the lowest classification accuracy.

CONCLUSION
This article focused on free-hand sketch classification. Free-hand sketch classification is
the first and most critical task to be considered while designing sketch-related AIoT
systems, such as a sketch context recognition system or a sketch-based searching system.
To accomplish this task, this article proposed a deep neural network-based free-hand
sketch recognition model called Sketch-DeepNet. Sketch-DeepNet achieved an efficient
representation of sketches and increased the accuracy of sketch recognition to 95.05% as
compared to the existing state-of-the-art techniques DeformNet (62.6%) (Dai et al., 2017),
Sketch-DNN (72.2%) (Yang & Hospedales, 2015), Sketch-a-net (77.95%) (Yu et al., 2017),
SketchNet (80.42%) (Zhang et al., 2016), Thinning-DNN (74.3%) (Ahn, Shin & Kim,
2016), CNN-PCA-SVM (72.5%) (Sert & Boyacı, 2019), Hybrid-CNN (84.42%) (Zhang
et al., 2020), VGG-CNN (approx. 78%) (Zhou & Jia, 2020), Sketch-R2CNN (85.4%) (Li
et al., 2020), and human recognition accuracy 73% (Eitz, Hays & Alexa, 2012). The
proposed Sketch-DeepNet model used the TU-Berlin dataset (Eitz, Hays & Alexa, 2012).
The efficiency of the proposed model makes it a perfect candidate for sketch classification-
related problems such as sketch recognition (Eitz, Hays & Alexa, 2012), sketch-based
image retrieval (Eitz et al., 2010), and forensic sketch analysis (Klare, Li & Jain, 2010). The

Figure 13 The worst 10 classes with minimum classification accuracy achieved by Sketch-DeepNet.
Full-size DOI: 10.7717/peerj-cs.1186/fig-13
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article also concluded that the proposed model is independent of the geometric invariance
property of sketch images and small image size profits in training time and learning
accuracy. The learned sketch feature representation is a great advantage for sketch-related
applications such as automatic sketch synthesis and sketch-based image retrieval.

In the future, we would further flourish our most optimistic approach by conducting
more extensive experiments. We will also explore the benefit of late fusion schemes. We
would also love to explore utilizing transfer learning as a feature extractor.
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