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ABSTRACT
This article seeks to provide a snapshot of the security of Wi-Fi access points in the
metropolitan area of A Coruña. First, we discuss the options for obtaining a tool that
allows the collection and storage of auditable information fromWi-Fi networks, from
location to signal strength, security protocol or the list of connected clients.
Subsequently, an analysis is carried out aimed at identifying password patterns in
Wi-Fi networks with WEP, WPA and WPA2 security protocols. For this purpose, a
password recovery tool called Hashcat was used to execute dictionary or brute force
attacks, among others, with various word collections. The coverage of the access
points in which passwords were decrypted is displayed on a heat map that represents
various levels of signal quality depending on the signal strength. From the
handshakes obtained, and by means of brute force, we will try to crack as many
passwords as possible in order to create a targeted and contextualized dictionary both
by geographical location and by the nature of the owner of the access point. Finally,
we will propose a contextualized grammar that minimizes the size of the dictionary
with respect to the most used ones and unifies the decryption capacity of the
combination of all of them.

Subjects Computer Networks and Communications, Cryptography, Security and Privacy
Keywords WPA/WPA2, Wi-Fi security, Password cracking, Hashcat

INTRODUCTION
Although research on system security is necessary, it becomes indispensable when that
system is “everywhere”. This article explains why Wi-Fi is a ubiquitous technology today
and how different iterations in password security protocols have made users the weakest
link in the chain.

According to the Spanish National Statistics Institute (INE) (INE, 2018), as of 2018,
86.1% of Spanish households (more than 14 million) had broadband Internet access
through the different technologies available: optical fiber or ADSL, mobile Internet (3G,
4G or 5G) or satellite. With the exception of mobile Internet, the technologies mentioned
above are concerned with providing connection, not Internet access, for devices, so it is
necessary to add an access point that communicates with them. Currently, the most widely
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used device for this purpose is the router, which combines modem and router functions to
create a private network to which various devices are connected, either via Ethernet cables
or Wi-Fi.

The first routers incorporating Wi-Fi technology appeared in 2000, and it has since
become the most popular way to connect to the Internet in the home and business
environment. This popularity is clearly marked by two milestones: the term Wi-Fi was
added to the Merriam-Webster dictionary in 2005 and by 2012, it had been implemented
in 25% of households worldwide (Alliance, 2019).

Wi-Fi technology made it easy for a wide variety of devices to connect to the Internet
without the need to be physically wired to the router. The advantages are clear: the cheaper
and easier implementation of local area networks (LANs), proliferation of applications and
mobile devices, possibility of creating spaces with immediate connectivity, and user
mobility (Castro, 2005). However, connecting became riskier because physical access to the
cable was no longer necessary in orther to attack a network, and the data were transmitted
publicly, through the “air” (or, technically, the radio spectrum). Anyone within the range
of a wireless network could try to access it.

The first security protocol that attempted to address this vulnerability in Wi-Fi
networks was Wired Equivalent Privacy (WEP), launched at the same time as the first
products certified by the Wi-Fi Alliance. However, by the end of 2001, the WEP protocol
was already considered insecure (Fluhrer, Mantin & Shamir, 2001) and Wi-Fi Protected
Access (WPA) was developed with the intention that any device supporting WEP
encryption could support the new protocol with a simple firmware update, a compromise
solution while the WPA2 standard was being developed. The WPA protocol, maintained
certain problems and vulnerabilities of WEP (e.g., chop chop attack (Beck & Tews, 2008)
and packet injection (Huang et al., 2005)), but represented important advancements, along
with the introduction of the four-way handshake.

In 2004, the first WPA2-compliant devices began to be certified, and starting in 2006, all
new devices without Wi-Fi certification were required to implement it. In 2019, WPA2
became the best-known protocol, but it was neither the newest nor safest. During the last
few years, vulnerabilities have been discovered (e.g., the decryption of group keys (Vanhoef
& Piessens, 2016) or the famous KRAK (Vanhoef & Piessens, 2017)) which, as with WPA,
endanger the traffic between the client and access point, although they do not compromise
the security of the key.

In January 2018, WPA version 3 was announced, with the intention of solving the
problems discovered in WPA2. It is currently being implemented as an option by
manufacturers. In this new version, the four-way handshake has been replaced by a
protocol called “simultaneous peer-to-peer authentication” which promises to be resistant
to offline dictionary attacks. In offline attacks, once the file is obtained containing the hash
that is to be decrypted, there is no restriction regarding the number of possibilities that can
be tested until it is achieved, contrary to what usually happens in Internet services.
However, a vulnerability of this protocol has already been found in the WPA2
compatibility mode (Vanhoef & Ronen, 2019), which is that it would still allow offline
attacks to be executed. The aim of this work is to crack as many passwords as possible
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using the handshakes collected while walking through the metropolitan area of A Coruña.
Additionally, using brute force, we built a targeted and contextualized dictionary that takes
into account both the geographical location and the nature of the access point’s owner.
Finally, we reduced the size of the dictionary using a contextualized grammar.

The four-way handshake or why your neighbor sleeps more soundly
New vulnerabilities in the WPA/WPA2 protocols have been discovered each year, but
none of them have compromised the confidentiality of the authentication key. The four-
way handshake has proven effective in preserving the security of that part of the protocol—
each time a client wants to connect to an access point, they exchange four messages to
confirm that the know the authentication key. This key is “hashed”, that is, a function has
been applied to it that transforms the arbitrary size key (in WPA2, from eight to 63
characters) into another set of fixed size characters.

In cryptography, a desirable quality of a hash function is that it is not reversible in
practice, i.e., it is computationally not feasible to calculate the inverse function and retrieve
the input from the hash function. This is why passwords were obtained exclusively based
on the available time and computing capacity since the WPA/WPA2 protocol was
extended. The process of “dehashing” a password often involves three steps:

1. Loading many terms, combinations of terms, or combinations of terms and symbols to
build a word.

2. Applying the hash algorithm to the word.

3. Comparing the output of the previous algorithm with the hash to be deciphered.

Therefore, on article, the only threat to the confidentiality of the WPA/WPA2 key is
technological progress. The greater the computing capacity of the devices and the faster the
input/output becomes, the more keys that can be tested in a reasonable time.

As is the case with the authentication approach outlined in Vorakulpipat, Pichetjamroen
& Rattanalerdnusorn (2021), potential alternatives are currently being researched. A case
study of the implementation of a secure time attendance system, offers a security scheme
that seamlessly integrates all traditional authentication factors plus a location factor into a
single system. Comprehensive-factor authentication, which makes use of all available
authentication factors, may maintain the necessary security level and usability in practical
application.

Utilizing reputation and reputational models to assign a trust value to networked
devices is another line of defense (Fremantle & Scott, 2017). Reputation is a basic idea that
is utilized frequently in all fields of knowledge, including computer sciences as well as the
humanities, arts, and social sciences. Reputation is used to gauge a system’s
trustworthiness in computer systems.

In light of this, the System-Theoretic Process Analysis for Security (STPA-Sec) (Yu,
Wagner & Luo, 2021) method considers losses to be the outcome of interactions, focuses
on reducing system vulnerabilities rather than preventing external threats, and is relevant
to complex socio-technical systems. However, the STPA-Sec lacks effective advice for
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defining information security concepts and pays less attention to concerns relating to
information security than safety (such as data confidentiality).

Any of the approaches discussed above may be possible improvements or even
solutions, but when authentication relies directly or indirectly on the existence of a
password, the human factor is decisive. As will be seen in this study, the generation of
passwords by users and administrators continues to be inefficient, causing password
generation grammars to be extrapolated even today with a relatively high success rate.

You promised me that 10 characters would be enough
The only threat to the confidentiality of the WPA/WPA2 key is technological progress. On
article, with each new access data leak (such as LinkedIn, “Collection #1” or IO
Verifications), you learn more about choosing a password. The ethical implications of
using this type of leak for research are the subject of discussion (Egelman et al., 2012;
Thomas et al., 2017). There is a tendency to use short, conspicuous passwords with
combinations of numbers, letters, or words that are easy to remember. When web pages
(or other systems) require a special number or character to be included, it is added to the
end of the password (WPEngine, 2021; Riley, 2006), and since it is assumed that a secure
password has already been created, partly because it is unknown to others, it is reused in
other services (Google, 2019), increasing the likelihood of it appearing in some filter.

At best, when these leaks occur, the published passwords are “hashed”. A “hashed”
password is more secure than a plain-text password, but there are also better hash
functions than others, and once a hash is made public on the Internet, anyone can try to
crack it. Because the computing is distributed over many nodes, the time to decipher is
considerably reduced and soon these collections become partly or completely plain text, as
well as public. In the worst case scenario, companies save passwords directly in plain text
and none of the above is necessary. The information provided by these leaks is especially
valuable because they are real passwords, which may be used in statistical analyses and to
compile huge dictionaries. In short, the “vulnerability” of WPA/WPA2 passwords depends
on the person choosing them.

STATE OF THE ART
To better understand the concepts used in this work, it is worth dedicating a few pages to
explaining what the four-way handshake is, why it was designed that way, and how tools
like Hashcat execute the decoding. We also discuss below what can be understood by
password security and why a significant percentage of passwords will almost always be
cracked due to user behavior.

The following explains the behavior of the four-way handshake from two processes
informally known as “encryption” and “decryption”. We first explain the calculation
process, step by step, and clarify why the simplest options are not optimal from the point of
view of password security, in order to build a clear picture of how an access point (router)
and a client confirm they know the authentication key, privately and securely. Second, we
explain what is calculated in the opposite process of decryption since, as you will see, it is
not a question of undoing the steps of encryption one by one.
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The handshake process
The four-way handshake authentication process is explained below. In addition, Fig. 1
shows a scheme of this authentication process.

The basic principle behind the four-way handshake is that the pre-shared key (PSK)
cannot be transmitted to the public medium under any circumstances. Therefore, the first
thing the client should do before starting the message exchange is to build the pairwise
master key (PMK), as shown in Formula (1).

PMK ¼ PBKDF2ðHMAC � SHA1; PSK; SSID; 4096; 256Þ (1)

This is the version used by theWPA andWPA2 protocols. In order to understand it and
the reasons for its choice, it would be interesting to shell it and build it step-by-step. One
could start with a very simple version of this function (Formula (2)).

PMK ¼ HMAC � SHA1ðPSKÞ (2)

HMAC-SHA1 is a hashing function and the PSK is used as input. This process returns a
finite string of characters, the summary, which is inconsistent in the eyes of a human. This
string could be used as a PMK, but this approach has a serious threat: hash tables. The
result of entering two equal words in the HMAC-SHA1 function is the same, and is the
same as saying that two equal passwords generate the same hash. The attack vector is clear,
generates many of them with different passwords, and creates a hash table. These tables are
distributed over the Internet and the only operation used to decipher a hash is to find it in
this collection.

It is therefore essential to use this pseudo-random function (see Formula (3)) that
prevents two identical passwords from generating the same hash. The result of applying a

Figure 1 Four-way handshake scheme. Full-size DOI: 10.7717/peerj-cs.1185/fig-1
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pseudo-random function is not completely random, as one can guess from its name, since
it is determined by a set of initial values. The set of initial values in the WPA/WPA2
protocol is the SSID, i.e., in order the name of the access point. This process is known as
salt or “salting”.

PMK ¼ FUNCION PSEUDOALEATORIAðHMAC � SHA1;PSK; SSIDÞ (3)

Although this version is better than the initial one, one can still add complexity to it. It is
necessary to design a function that repeats this process a certain number of times to
generate a key of a certain number of bits (see Formula (4)). This function is PBKDF2 and
when it repeats the application of the pseudo-random function, 4,096 times, it generates a
256-bits key, the PMK.

PMK ¼ PBKDF2ðHMAC � SHA1; PSK; SSID; 4096; 256Þ (4)

From this function, one should be able to receive the first handshake message from the
access point, the ANonce. With ANonce the client has all the necessary information to
build the PTK, and it is only necessary to concatenate PMK, ANonce, Authenticator Mac
Address (AMA), and Supplicant Mac Address (SMA). The result of the concatenation is
passed as input to another pseudo-random function that will return a 64-byte (512-bit)
string, the PTK (see Formula (5)).

PTK ¼ PRF512ðCONCATðPMK;ANonce; SNonce;AMA; SMAÞÞ (5)

The PTK is divided into five parts as shown in Table 1.
At this point, the client sends the second handshake message, composed of its SNonce

and an Message Integrity Code (MIC). As the customer already has the PTK, in addition to
sending the SNonce, it protects it with an MIC. The MIC is calculated from the SNonce
and the Key Confirmation Key (KCK). WPA and WPA2 use different hash functions for
this step, as can be seen in Formulas (6) and (7), respectively.

WPAMIC ¼ HMACðKCK; SNonce;MD5SHAÞ (6)

WPA2MIC ¼ HMACðKCK; SNonce; SHA1Þ (7)

Thus, when the access point receives SNonce and MIC, it can also calculate the PTK
(until now it lacked SNonce) and with SNonce and PTK, it can validate the MIC (that is,
calculate it and compare if it is the same as the one it has received). If the MIC validation is
positive, the access point confirms that it and the client are using the same PTK, which was
the initial target. At this point in the handshake, the person intercepting the messages has
enough information to make an attempt to decipher the password. Messages 3 and 4 of the

Table 1 PTK key decomposition.

PTK

16 bytes 16 bytes 16 bytes 8 bytes 8 bytes

KCK KEK TK MIC-tx MIC-rx
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process are not relevant to the purpose of this article, so they will be ignored in the
following explanations.

Decoding
Once the second handshake message is intercepted, only the PSK is missing when
reconstructing the PTK. A PSK must be assumed to perform the computation process. It is
at this point that a dictionary, brute-force attack, or another method of word generation is
used. For each word, the corresponding PTK is generated, from which the KCK is
extracted and the MIC is calculated. If the MIC matches the genuine MIC, then the
password has been found.

Naturally, each test with each word is totally independent from the others and no
communication between nodes is necessary, which allows for the perfect parallelization of
the decoding process. This is a case where it is preferable to have many low-power
processors rather than some high-power ones. Graphics cards fit this description.

THE SECURITY OF PASSWORDS
There are numerous studies on the suitability of passwords as a form of system
authentication, not only from a technical computing perspective but also from the
psychological perspective of users. In 1979, the security of passwords in UNIX systems was
explored by Morris & Thompson (2002).

Passwords are commonly used to represent system design because they have a usually
simple implentation that is easy to understand for whoever uses the system. As mentioned
above, users are often the weakest link in the chain and compromise the security of systems
by forgetting passwords, writing them down, sharing them with others, or defining them in
easy-to-guess patterns. The extent to which passwords are weak due to a person’s lack of
motivation or cognitive limitations remains an open question. Some studies conclude that
there is not yet strong evidence that people who are aware of how to enhance password
security actually choose passwords that prevent cracking by a knowledgeable attacker, as
they are often considered cumbersome or impractical (Bonneau, 2012; Notoatmodjo &
Thomborson, 2009). Attempts to educate the “average user” about creating more secure
passwords through advice and enforcement of password policies are often unsuccessful.
Password requirements are minimally met or the advice given for their creation is ignored
or misunderstood (Forget et al., 2008). For example, a policy that requires including at least
three digits in a password will often result in the user simply adding “123” to the end of an
insecure password. Cracking tools include large sets of rules like those (Weir et al., 2010).

Other works found little difference between normal users and “conscious” users due to
the fact that most tend to vary the complexity of passwords as the importance of the
accounts they want to protect varies. Most people who participate in studies have a similar
sense of the trade-off between security and convenience when choosing a password and
understand that reusing passwords or using weak passwords for their important accounts
could put their data at risk (Notoatmodjo & Thomborson, 2009; Wash et al., 2016;
Gehringer, 2002).
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While the technical computer approach or, in other words, what makes a password
secure, does apply in the specific case of Wi-Fi passwords, the results of the psychological
approach in general do not seem to be extrapolated. First, because in most of the works
reviewed (Riley, 2006; Notoatmodjo & Thomborson, 2009; Forget et al., 2008; Bryant &
Campbell, 2006; Yan et al., 2004; Komanduri et al., 2011; Narayanan & Shmatikov, 2005)
the psychological processes of choosing a password (both when creating and reusing
another one) imply that the system asks for a password. This is radically different to Wi-Fi
routers where, by default, the password is fixed and it is the userwho voluntarily changes it.
Secondly, the Wi-Fi password only needs to be entered once per device, with the operating
system being responsible for keeping it secure for each new authentication.

The most popular strategies for reducing the weaknesses inherent in password use
include the following (Bryant & Campbell, 2006):

1. Password lengths of at least eight characters: longer passwords increase the time it takes
for “cracking” programs to decrypt them.

2. Randomly combining uppercase and lowercase letters with special symbols: including
uppercase, lowercase and symbols (!£$%, etc.) in passwords requires the use of brute
force methods and increases the number of character permutations to be tested. A
proposed way to approach this strategy is to use mnemonic rules (e.g., “I want to
generate a secure password against cracking Software” generates “IwtgaspacS” by taking
the first letter of each word).

3. Not using dictionary words to minimize dictionary attacks.

4. Changing the password periodically: If an intruder obtains a valid password, most
systems allow them to continue accessing until the intrusion is detected. If users
periodically change their passwords, the intruder will be forced to identify the new
password.

Regarding strategy number 2, users rarely generate random passwords (a perfectly
randomly generated set of passwords would produce an even distribution of characters).
Cracking software optimizes brute-force attacks that use character frequency tables by
exploiting an inherent property of language: certain characters appear more often than
others. According to Narayanan & Shmatikov (2005), when users are invited to create
passwords based on mnemonic standards, most select lyric phrases from songs, movies,
literature, or TV shows. The text from these sources is often available on the Internet. This
opens up the possibility of building an effective dictionary for these passwords as well.

Strategy 4 has been considered for several years to be a generally incorrect
recommendation (Adams & Sasse, 1999; Mazurek et al., 2013). Passwords should be
changed when you have the intuition or knowledge that they have been compromised or
when they have become potentially insecure due to technological advancements.

These strategies make creating passwords and memorizing them a particularly difficult
task, especially since the proliferation of password management services on the Internet
means that all passwords have to be managed but none can be reused. However, this is a
problem that, as mentioned above, does not affect Wi-Fi passwords since they only need to
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be entered once. With this difficulty overcome, there is no excuse for not using long and
complex passwords selected entirely at random. Knowing that these requirements are
contrary to the properties of human memory (Yan et al., 2004), several security experts
have argued that writing down the password and keeping it in a safe place could be a good
option for the average user (Schneier, 2005). It is not surprising then that different studies a
relationship between writing down passwords and making them more secure (Komanduri
et al., 2011).

A long and complex password is required for the PSK of the WPA/WPA2 protocol,
since “cracking” the handshakes is done offline. The key issue is to answer the questions of
“how complex” and “how long it must be”, for which there is no single, sure answer. If we
assume that we want to generate a password that can only be encrypted through brute
force attacks while avoiding dictionary words, we can think of the following practical
approach.

VRx;y ¼ xy (8)

The password search space will be the variation with repetition of x order elements y
(see Formula (8)), where x is the cardinality of the character set to be used and y is the
length of the word. The cardinality is limited by the characters allowed by theWPA/WPA2
protocol, the printable ASCII characters: digits (10 characters), uppercase letters (26
characters), lowercase letters (26 characters), and symbols (33 characters). Arguably, the
simplest and most effective way to improve password security for the average user is to
increase its length. Increasing it produces an exponential growth of the search space, while
expanding its complexity by increasing the cardinality of the character set produces only a
polynomial growth, which has been empirically proven. Growing in length also allows the
user to not use special characters, which can cause problems with poor implementations of
the WPA/WPA2 protocol. The following two password composition policies should result
in passwords with the same entropy: one that requires passwords to be at least 16
characters long and another that requires at least eight characters, but also a capital letter, a
number, a symbol, and a dictionary check, according to the best available guidelines (Burr,
Dodson & Polk, 2006). However, the 16-character policy produces significantly less
predictable passwords and, according to several metrics, is less costly for users (Komanduri
et al., 2011).

In short, the two attack vectors that are exploited in this work to decipher the
intercepted Wi-Fi passwords are: first, to rely on the existence of passwords in a search
space that can be covered by brute force with the available infrastructure and time; and,
second, to rely on human carelessness that has led to the use of typical passwords that were
subject to some kind of leak. The average success of these approaches is usually around
30% in mass decryption projects, while published numbers of various studies on password
cracking effectiveness vary substantially: gpuhash.me (28.70%), and wpa-sec (31.93%).
According to Bonneau (2012):

� Most studies have deciphered 20–50% of dictionary-size passwords in the 220�230 word
range.
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� All studies show decreasing yields for larger dictionaries.

� There is little data on the efficiency of small dictionaries, as most studies use the largest
dictionary they can process.

Previous works on analyzing password patterns
Bonneau (2012) investigated how people form passwords by looking at many publicly
available password sets, such as RockYou and CSDN. They defined a variety of password
properties, including all digits, non-ascii characters, and the usage of neighboring keys.
The article used a pattern of adjacent keys excluding repetitions as an indicator of a
keyboard pattern, and found that this pattern appeared in 3% of RockYou passwords and
11% of CSDN passwords.

Veras, Collins & Thorpe (2014) proposed an intriguing paradigm for categorizing
passwords meaningfully. To segment passwords, they produced all feasible segmentations
of a password and then used a source corpus to find the ones with the best coverage (which
we would refer to as a training dictionary).

In many other studies, dictionaries were utilized to generate variant guesses by applying
mangling criteria as well as as a source of passwords. For some early work in this area, see
Klein (1990). An article by Dell’Amico, Michiardi & Roudier (2010) is an example of recent
work. This research took into account a number of dictionaries accessible from John the
Ripper, and an assessment was made by comparing the passwords cracked using only the
dictionary entries. Two conclusions emerged: it is preferable to employ the same kind of
dictionary as the target type (for example, Finnish when attacking Finnish passwords), and
while bigger dictionaries are better, they have decreasing benefits.

Using a Markov model (Narayanan & Shmatikov, 2005), Castelluccia et al. (2013) aimed
to use personal information to improve password cracking. Their OMEN+ technology
combined personal information with standard training based on passwords that have been
disclosed.

Castelluccia et al. (2013) looked into the usage of personal data like email, birthdays, and
usernames, but they did not utilize prior passwords or cross-site passwords. Castelluccia
et al. (2013) tweaked the 3-gram probabilities so that a complete test set yielded better
results. The suggested method, on the other hand, employed a very efficient PCFG-based
training system that avoided the drawbacks of the Markov technique. Furthermore, it did
not need any changes to the training or cracking components; instead, it merely
necessitated the creation of extra grammars and dictionaries.

Using a 12,306 obtained from a Chinese train ticket website, Li, Wang & Sun (2016)
looked at the usage of personal information in password cracking. To build the Personal-
PCFG system, Li, Wang & Sun (2016) enhanced Weir et al. (2009) probabilistic’s context-
free grammar method. Wang et al. (2016) also investigated the usage of prior passwords
and enhanced probabilistic context-free grammars (Weir et al., 2009). They used a tagged
variable system instead of a new variable B for personal information such as birthdays,
with the subscript denoting length, as Li, Wang & Sun (2016) did.
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Das et al. (2014) evaluated data from publicly accessible leaked password sets with user
IDs to determine passwords for the users. They were able to uncover 6,077 distinct
individuals with at most two passwords apiece; 43% of the passwords were the same, while
the rest were non-identical. Das et al. (2014), on the other hand, did not take into
consideration the modifications that a user may make while using identical passwords for
the same or different accounts. Zhang, Monrose & Reiter (2010) carried out a large-scale
investigation on password changes prompted by password expiration. They were able to
get access to a database of over 7,700 accounts, each with a known password and a
password that was later changed. They simulated a password change as a series of steps.

The art of “cracking” passwords
Some of the concepts used throughout this work are shown below with simple examples.

In Table 2, we took 10-character passwords and using a current graphics card, the
NVIDIA GTX1080, as a reference, were able to calculate around 400,000 hashes per second
(Gosney, 2016). The search space corresponds to the number of possibilities for each
combination of ASCII characters: numeric only, alphanumeric with lower case letters,
alphanumeric combining upper and lower-case letters (mixed), and mixed alphanumeric
with special symbols. The time to go through the space was the division between the space
and the search and the power of the graphic card, or in other words, the time it would take
to decipher the password if it was the last one to try the entire search space, the worst case
scenario.

These times correspond to what are called brute-force attacks. The only variables that
require a brute-force attack to be executed are the bearable characters and the length of
what is attempted to be deciphered. That is why, for this type of attack, there is no
distinction between “holahola12” and “83dk12w7p1” when anyone, at first glance, can
intuit that one must be easier to decipher than the other.

That intuition is what the word collections or dictionaries condense. It is known that
the password “holahola12” is statistically more likely than “83dk12w7p1”, not only
because “hello” is a word frequently used in the Spanish language, but also because it
has been found in the real world by other people who have already used it. According to
Pwned Passwords (https://haveibeenpwned.com/Passwords) “holahola12” was found in

Table 2 Brute force password calculation.

Password Search space Time to go through space

1111111111 10,000,000,000 About 7 h

3548346841

Holahola12 2,758,547,353,515,625 About 220 years

83dk12w7p1

HolaHola12 604,661,760,000,000,000 About 47,934 years

83Dk12w7P1

HolaHola1# 38,941,611,811,810,745,401 About 3,087,076 years

8#Dk1^w7P1
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721 leaks. A brute-force attack that knows the two variables mentioned in the previous
paragraph will, in time, always crack the password. The problem is that many times one
neither knows the characters used, the length of the word, or they do not have the
necessary time, and that is why a compromise is sought: the search space is restricted to a
subset in exchange for reducing the chances of success by deciphering the key.

The easiest option is to use one of the most popular dictionaries in circulation on the
Internet, which range in length from hundreds of thousands to billions of words. Many of
them tend towards most Anglo-Saxon terms, but for this strategy based on pure
probability, it is not a disadvantage. The other option is to develop one’s own specialized
dictionary when knowing some target data such as the country, the name of the owner of
the access point, or the company’s password length policy, and from that propose some
patterns that generate the words of the dictionary.

For example, an audit is to be performed at a point in Spain and the pattern chosen is
“two Spanish words plus one or two digits or special symbols”. We would start by choosing
the words that RAE publishes as the most used in Spanish (RAE, 2021), out of which the
first 10,000 are taken (“hola” is number 7,373) and those with fewer than four and more
than eight characters are discarded, leaving 5,935, and each one is concatenated with the
other 5,934 and with itself. This generates 35,224,225 base words. Adding one digit or
special character generates 1,549,865,900, and adding two digits or special characters
generates 68,194,099,600. Finally, there is a total of 69,743,965,500 words, which the
reference graphics card can be tested in two days in the worst case.

The two strategies can and do complement each other in this work. A first sweep with
generic dictionaries must decipher a sufficient amount of passwords to be able to infer a
series of patterns with which to generate a minimum specific dictionary for the
metropolitan area of A Coruña. Thus, on the one hand, new and more specialized
candidate words are available and, on the other hand, it would not be necessary to use
high-performance hardware to crack the passwords in the area.

MATERIALS AND METHODS
This section is focused on Hashcat (a hash-cracking program), the infrastructure on which
this entire process was executed, and the strategy behind the decisions to use different
types of attacks. Afterwards, with the already deciphered passwords, we will comment on
the patterns that were found and how a minimum dictionary was elaborated for the
metropolitan area of A Coruña.

This section is dedicated to the decryption of passwords and focuses on the three
essential questions: the software used to decode, the hardware on which it runs, and the
strategy to follow, given that both time and computer resources are limited.

Hashcat
Hashcat (version 4.2.1) was chosen to decipher the handshakes. Hashcat is an open source
password recovery tool that supports five attack modes for about 200 hashing algorithms
for both CPU or GPU and other hardware accelerators on Linux, Windows, and MacOS.
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Infrastructure
For the password cracking phase, access to two NVIDIA Tesla K80 and two other NVIDIA
Tesla K20m graphics cards was provided. The Tesla K80 features 4992 CUDA cores, 24 GB
of GDDR5 memory, and 480 GB/s of aggregate memory bandwidth. The Tesla K20m has
2496 CUDA cores, 5 GB of GDDR5 memory, and 206 GB/s of aggregate memory
bandwidth.

Strategy
The more time and resources available to crack a password, the less useful the strategy is. It
simply feeds the tool of choice with the various intended and expected attacks. However, in
an environment where time or resources (or both) are limited, it is logical to lead the first
efforts towards the more obvious operations in an attempt to achieve results in a short
period of time. The strategy can be divided into three phases: obvious overlaps, mass tests,
and common variations of base words.

It is appropriate to make two observations on the estimates that will follow. The first is
that, in order to make estimates comparable between the different attacks, the entire set of
handshakes has always been considered. In practice, as they were deciphered, they were not
tested again. The second is that it should be taken into account that dictionary attacks with
rules are faster than dictionary attacks due to the PCI-e bandwidth limit and latency in the
transfer of information from the host. That is, if one has a base word dictionary and rule
set, it is much more time-efficient to send only the base words to GPU and have them
modified on the GPU itself than to generate the entire collection of modifications on CPU
and then send them to the GPU.

First phase
The first attempts were two dictionary attacks using PasswordsPro and RockYou, two of
the most known and used word collections. PasswordsPro is a collection of words made by
the InsidePro team while RockYou is the result of a 2009 leak of access data from RockYou,
a company that developed widgets for MySpace and applications for other social networks
such as Facebook. RockYou used an unencrypted database to store personal information
and passwords and was the target of an SQL injection attack.

A widespread practice is to use the DNI or “Spanish ID” as a password since it is eight
digits and one letter, thus meeting the minimum requirements of some registration forms.
The general idea in the Spanish population is that the letter is random, which is incorrect; it
is calculated from the digits. Therefore, what could be a search space of 369 terms,
effectively becomes an order of magnitude smaller (108).

The next two were brute-force attacks with eight- and nine-digit numbers. The eight-
and nine-digit search space has 108 and 109 of possibilities, respectively.

Table 3 shows the times consumed by all the attempts to solve the 133 targets at 937,400
H/s (maximum capacity of the infrastructure used) and their respective results:

It was then tested with the names of the access points themselves along with a set of
rules provided by Hashcat called “best64.rule”, Table 4. Some examples of the
modifications made to the base words were: turning it over, putting it in capital letters, and
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adding a number at the end or at the beginning. In this case, first the ESSIDs of the audited
access points were used as a dictionary and then the 100 most common names of men and
women in Spain according to the INE (INE, 2018).

In these two cases, the accelerating effects of the rules were not relevant given the
minimal amount of ESSIDs (131) and names (200).

Second phase
The second phase tested some of the smaller dictionaries with the “best64.rule” rule set. It
is in these cases that one can notice the acceleration of the use of rulers as well as the work
that Hashcat does by rejecting certain words according to its preconfigured policies.
Following these policies, up to 90% of all candidate words can be rejected. Therefore,
although “best64.rule” produces 10,087 variations, it does not translate into 10,087 times
more “cracking” time, Table 5.

Table 3 Passwords decrypted and time consumed by all attempts using only dictionaries.

Dictionary Words Time consumed Decrypted

PasswordsPro 2,937,125 6 min 0

RockYou 14,344,391 33 min 13

DNI 100,000,000 236 min 0

8 Digits 100,000,000 236 min 11

9 Digits 1,000,000,000 2,364 min 2

Table 4 Passwords decrypted and time consumed by all attempts using dictionaries and applying
rules.

Dictionary Rules Words Time consumed Decrypted

ESSIDs best64.rule 1,432,354 3 min 2

Names best64.rule 2,017,400 4 min 1

Table 5 Password decrypted and time consumed by all attempts using dictionaries and the “best64.
rule” rule set in second phase.

Dictionary Words Time consumed Decrypted

Hk_hlm_founds 38,647,798 91 min 3

CrackStation 63,941,069 151 min 0

Top306M ProbableWordlists 306,429,377 724 min 4

HashesOrg 446,426,204 1,055 min 0

Andronicus 626,198,124 1,500 min 0

Breachcompilation 1,012,024,699 2,395 min 0

Rocktastic 1,133,849,621 2,681 min 0

Weakpass_2_wifi 2,347,498,477 5,551 min 5

Weakpass_2 2,649,982,129 6,266 min 0
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In Fig. 2, the length of the collections is represented in logarithmic scale against the
success rate of each one. The three collections with the best results were RockYou, 8-digit
mask, and weakpass_2_wifi. It is necessary to use the natural logarithm given the large
variation in length between collections, since there are four orders of magnitude from the
smallest to the largest.

The final number of decoded passwords amounted to 44, a 33.08% success rate, which
corresponded with other empirical evidence already mentioned. Perhaps the most
worrying fact is that, following this strategy, in less than two days of computing, 22.13% of
passwords had already been recovered, which was approximately two thirds of the total
that would eventually be cracked. As shown in Figs. 3 and 4, passwords of 10 characters or
less were dominant in length and in type, numerical, and alphabetical passwords. This data

Figure 2 Relationship between the length of word collections and decoded passwords. Full-size DOI: 10.7717/peerj-cs.1185/fig-2
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is not strange, since the higher the length or complexity of the passwords, the more difficult
it is to crack them.

Handshakes collection
The area for collecting the handshakes covers an area of about 105,785m2 and a perimeter
of about 1,518m (see Fig. 5). This is an interesting area because of the presence of all kinds

Figure 3 Relationship between the size of word collections and decoded passwords.
Full-size DOI: 10.7717/peerj-cs.1185/fig-3

Figure 4 Length distribution of decoded passwords. Full-size DOI: 10.7717/peerj-cs.1185/fig-4
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of homes and businesses, including banks, small shops, pharmacies, restaurants, and bars.
It has been considered a sufficiently representative area of the metropolitan area of A
Coruña.

It is also interesting to know the concentration of dwellings and residents (in main
houses) due to technical issues: to capture a handshake it is necessary to have devices
connected to the access point, which in most cases means that the dwellings are occupied
by people using Wi-Fi devices. According to the latest INE census data, the chosen area
covers the census sections that shown in Table 6 in large part or in full.

As shown, the population concentration is not particularly high, 2.14 people per house,
a fact that makes it difficult to obtain handshakes a priori.

The audit to obtain the handshakes lasted 19 h distributed over 11 days, between May
21 and June 11, 2019, during which about 15 kilometers were covered. The number of
handshakes that was set as a goal to achieve was 100–200 in order to ensure a reasonable
number of decrypted passwords. Initially, no method was followed to go through the area.

Figure 5 Map of the audit area. Map data ©2022 Inst. Geogr. Nacional, Google.
Full-size DOI: 10.7717/peerj-cs.1185/fig-5
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Once the number of handshakes exceeded 100, the locations were no longer random, but
rather we attempted to go to those locations where none had yet been intercepted. The
numbers that represent the results of this massive audit are as follows: 333 individual
audits were carried out in which 239 handshakeswere obtained, 142 were unique, therefore
a 42.64% probability of interception in each audit. Of these 142, 133 corresponded to the
PSK authentication and nine to the RADIUS server authentication. Consequently, the final
number of handshakes to be deciphered was 133, equivalent to one for every 795 m2.

PATTERN ANALYSIS AND MINIMUM DICTIONARY
DEVELOPMENT
A quick visual examination of cracked passwords revealed a pattern underlying the vast
majority. To describe it we define two sets of words: base words and endings. If a word is in
a set of base words S1 (common name, business name, or common words of the language)
and a set of endings S2 (numbers, days, months, or years), a word may belong to the
dictionary if it is in the next set. This approach is shown in Formula (9).

D ¼ fv1…vnt=v 2 S1; t 2 S2; v1 6¼ k; 8 � jv1…vntj � 63g (9)

That is, the set of all those word concatenations belonging to the sets S1 and S2 in which
the only word that cannot be the null strip (k) is the first one (v1) and provided that the
resulting concatenation has a length between eight and 63 characters.

The union of the following sets forms the set S1 (see Formula (10)) of base words:
Blambda ¼ fkg
Bnat ¼ N
Bnames ¼ Set of the 100most frequent names in Spain according to the INE
Bbusiness ¼ Random subset of ACoru~na business names
Bwords ¼ Subset of themost used nouns according to RAE data

S1 ¼ Blambda [ Bnat [ Bnames [ Bbusiness [ Bwords (10)

The names of persons were obtained from the list of the 100 most common male and
female names according to the INE. Three variations were applied to those 200 names: all
letters in upper case, all in lower case, and only the first one capitalized. The business
names were obtained by scraping the Google Maps platform and a manual cleaning was
performed (elimination of spaces, or invalid characters) to make them suitable.

Table 6 Census data.

Census tract Residents in main dwellings Dwellings

15-030-01-004 1,590 775

15-030-01-012 975 475

15-030-03-001 780 310

Total 3,345 1,560
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On the other hand, the S2 set of terminations is the merger of the following natural
subsets (see Formula (11)):

Tnum ¼ fu=u 2 N; 0 � u � 9g
Tdia ¼ fu=u 2 N; 1 � u � 31g
Tmes ¼ fu=u 2 N; 1 � u � 12g
Tano1 ¼ fu=u 2 N; 0 � u � 20; 78 � u � 99g
Tano2 ¼ fu=u 2 N; 1;978 � u � 1;999; 2;000 � u � 2;020g

S2 ¼ Tnum [ Tdia [ Tmes [ Tano1 [ Tano2 (11)

For the minimum dictionary it is necessary to limit the word patterns (see Formula
(12)). The minimum dictionary is made up of the merger of the following sets of words:

B1 ¼ fw=w 2 N; 10;000;000 � w � 19;999;999g
B2 ¼ fw=w 2 N; 20;000;000 � w � 29;999;999g
B3 ¼ fw=w 2 N; 269;000;000 � w � 270;999;999g
B4 ¼ fw2=w 2 N; 0 � w � 9;999g
B5 ¼ fw2=w 2 N; 0 � w � 99;999g
B6 ¼ fw2=w 2 N; 0 � w � 999;999g
B7 ¼ fuvw=1 � u � 31; 1 � v � 12; 1;978 � w � 2;020g
B8 ¼ f0123456789; 12345678; 123456789; 1234567890; 1223334444; 1122334455;

135792468; 1357924680; 246813579; 2468013579; 12345678910;
123456789123456789g

B9 ¼ fuv=u 2 B9; v 2 ASCII upper and lowercase setg
B10 ¼ Bbusiness

B11 ¼ Bbusiness � Tyear2

B12 ¼ Bbusiness � Tmonth � Tyear1

B13 ¼ Bbusiness � Tnum

B14 ¼ B13 � Tnum

B15 ¼ Bname

B16 ¼ Bname � Tano2

B17 ¼ Bname � Tmonth � Tyear1

B18 ¼ Bname � Tnum

B19 ¼ B18 � Tnum

B20 ¼ fvw=v 2 Bwords; w 2 Tyear2; 4 � jvj � 7g
B21 ¼ fvw=v 2 Bwords; w 2 B8; 4 � jvj � 7g
B22 ¼ Bwords � Bwords

B23 ¼ B22 � Tnum

B24 ¼ fw=w 2 Bwords; jwj � 8g
B25 ¼ B24 � Tnumg
B26 ¼ B25 � Tnumg

Dmin ¼ fu=u 2
[26

i¼1

Bi; 8 � juj � 63g (12)

Carballal et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1185 19/25

http://dx.doi.org/10.7717/peerj-cs.1185
https://peerj.com/computer-science/


Figure 6 Proportion of each pattern in the dictionary. Full-size DOI: 10.7717/peerj-cs.1185/fig-6

Figure 7 Proportion of each pattern in the dictionary. Full-size DOI: 10.7717/peerj-cs.1185/fig-7
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Each pattern in the list generated a dictionary of words whose length should be between
8 and 63 (both inclusive) ASCII characters to meet the requirements of the WPA/WPA2
protocol. After joining all the sets, a single file of 288 megabytes was obtained.

Figures 6 and 7 provide a detailed visual overview of how the different subdictionaries
are divided according to importance, as well as the types of words that make them up.

CONCLUSION
As stated above, humans are lazy and predictable. Figures 4 and 5 show that our password
patterns are still not very random. Even when having access to a superior set of symbols
(special characters and distinction between upper and lower case), the collected patterns
show a great predominance of numeric and lower case alphabetic ones. This predictability
can be illustrated in an everyday example. When we are asked to create a password

Figure 8 Heatmap of the routers form which the password has bees decoded. Map data ©2022 Inst.
Geogr. Nacional, Google. Full-size DOI: 10.7717/peerj-cs.1185/fig-8
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nowadays (ignoring automated random password creation systems) we are asked to use “at
least one special character and one uppercase letter”. Again, Figs. 4 and 5 show that this
“recommendation” is interpreted literally by the user, who includes “only” a special
character and an uppercase letter. All this means that even today, dictionaries of this type
can be created with a considerably high success rate. Given that this human behavior will
continue password generation restrictions should ensure that dictionaries of this type will
not be sufficient a priori.

Likewise, the context or destination of the access point used for the creation of your
security password continues to give credibility to the adjectives used for human
administrators.

Thanks to the equipment used, the location information for each audit can be saved,
and a visual representation on a map can be produced showing the assumed range of each
access point from which the password was decoded. It should be noted that the position
where each access point was located is where the audit was executed. It is accepted that in
each audit, we waited for the GPS to determine a position with a margin of error of 7 m or
less because only targets with a good signal quality were set.

In Wi-Fi networks the range depends largely on the environment in which the router is
deployed. We made a very basic estimate and did not consider any key elements such as
signal obstacles, height (the access point may be on a high floor of a building), or router
model. Heights can vary from 15 m inside a house to 100 m outdoors. For the sake of
simplicity, the 15, 30, and 45 m radios were chosen to represent the quality of the signal. It
can be observed that with one handshake per 795m2, and with a 30% average success rate
in deciphering passwords, the audited geographical area can be completely covered
(Fig. 8). It would be possible to go through the entire area by connecting to different
routers without ever losing the Internet connection.
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