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ABSTRACT
Image super-resolution reconstruction can reconstruct low resolution blurred images
in the same scene into high-resolution images. Combined with multi-scale Gaussian
difference transform, attention mechanism and feedback mechanism are introduced
to construct a new super-resolution reconstruction network. Three improvements are
made. Firstly, its multi-scale Gaussian difference transform can strengthen the details
of low resolution blurred images. Secondly, it introduces the attention mechanism and
increases the network depth to better express the high-frequency features. Finally, pixel
loss function and texture loss function are used together, focusing on the learning of
structure and texture respectively. The experimental results show that this method is
superior to the existing methods in quantitative and qualitative indexes, and promotes
the recovery of high-frequency detail information.

Subjects Computer Vision, Neural Networks
Keywords Super-resolution reconstruction, Multi-scale, Gaussian difference transform, Attention
mechanism

INTRODUCTION
Image super-resolution (SR) reconstruction is a basic task of image processing and is
widely used in image compression (Chen et al., 2021a; Shi, Li & Jiahuan, 2022; Chen et al.,
2021b), medical imaging (Jiao et al., 2020), and other fields. It is a research hotspot in
the field of image processing. Current SR methods can be divided into two categories:
reconstruction-based and learning-based methods.

Reconstruction-based methods can be divided into two categories: frequency domain
methods and spatial domain methods. Image reconstruction based on the frequency
domain (transform domain) is the indirect processing of images directly in the transform
domain. The transformations used include Wavelet transform (Jing & Wu, 2014), Fourier
transform (Liu, 2018), etc. (Xiong et al., 2015). These algorithms are simple in principle,
have low computational complexity, and are easy to implement in hardware. Therefore,
the frequency methods can only deal with global translational motion and cannot utilize
the image a priori information.
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The spatial domain methods mainly include iterative back-projection (IBP) (Irani
& Peleg, 1991; Song et al., 2010; Seema & Bailey, 2019), projections onto convex sets
(POCS) (Patti & Altunbasak, 2001; Fan et al., 2017; Ma & Ren, 2020), maximum a
posteriori (MAP) probability estimation method (Shen et al., 2007; Belekos, Galatsanos
& Katsaggelos, 2010;Nascimento & Salles, 2020) and other methods. These methods use the
sub-pixel information existing between low-resolution (LR) images to provide additional
information for reconstructing the images. The algorithms reconstruct well and are
mainly used in scientific research, satellite remote sensing and other fields. However, these
classical reconstruction methods require researchers to have a large amount of a priori
knowledge and deep professional reserves. With the rise of deep learning, learning-based
reconstruction methods have received wide attention because the technology does not
require much a prior knowledge and the quality of reconstructed images is better than that
of traditional algorithms.

Convolutional neural network (CNN) is one of the main algorithms for deep learning,
and has excellent performance in areas such as image classification (Wang, Wang & Wang,
2015) and computer vision (Gatys, Ecker & Bethge, 2015a). Super-resolution convolutional
neural network (SRCNN) was proposed by Dong et al. (2014) to apply CNN to super-
resolution reconstruction. The proposed SRCNN is of milestone significance, but there are
some shortcomings, such as over-reliance on contextual information of small image areas
and slow convergence speed during training. In view of these shortcomings, Dong, Loy &
Tang (2016) proposed the fast super-resolution convolutional neural network (FSRCNN).
Increasing the number of network layers and using a smaller convolution kernel make
the network deeper and learn more features. Kim, Lee & Lee (2016) proposed very deep
convolutional networks for super-resolution (VDSR) models with increased number of
network layers.

Deepening the network structure can bring more features, but it also tends to cause
gradient disappearance or gradient explosion. ResNet (He et al., 2016) can effectively solve
these problems and improve the expressiveness of the network. Subsequently, Mao, Shen
& Yang (2016) applied it to the very deep residual encoder–decoder network (RED-Net).
Unlike ResNet, DenseNet (Huang et al., 2017) connects each layer in series with other
layers, which can better preserve the characteristic information of the original image. Even
if it is transferred to the later layers, the image information is not easily lost, and the problem
of gradient disappearance is well solved. Considering the advantages of DenseNet, Tong et
al. (2017) proposed SRDenseNet. Zhang et al. (2018b) combined the residual block with
the dense module to form the residual dense block (RDB). Yu et al. (2018) proposed the
Wide Activation Image Super-Resolution (WASR) model. WASR consists of a convolution
module, a residual module, and a pixel reorganization module. The pixel shuffle is realized
by using the sub-pixel layer proposed by the efficient sub-pixel convolutional neural
network (ESPCN) (Shi et al., 2016) for up sampling.

The images generated by these algorithms have a high peak signal-to-noise ratio (PSNR),
but the perceptual quality is poor. To generate images for human eye perception, Ledig et
al. (2016) proposed to realize image super-resolution by means of a Generative Adversarial
Network (SRGAN). Themain body of the network adopts aGenerativeAdversarialNetwork
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(GAN) (Goodfellow et al., 2014). Although the PSNR is not the highest, the reconstructed
image is more natural and clear, which is more in line with the visual effect of human
eyes. Wang et al. (2018b) improved SRGAN and proposed Enhanced super-resolution
Generative Adversarial Networks (ESRGAN). SRGAN uses activated features to calculate
perceptual loss, while ESRGAN uses pre-activated features to calculate perceptual loss.
Wang, Yu & Dong (2018) proposed SFTGAN and added a new spatial feature transform
(SFT) to the model that combines effective a priori information with the neural network
for end-to-end training. The reconstructed images appear visually more natural.

Most of the neural network-based SR methods do not fully utilize the information of
the original LR image, resulting in unsatisfactory results. Zhang et al. (2018a) proposed
the residual channel attention network (RCAN) by combining the channel attention
mechanism with the residual block. Zhang et al. (2018a) also pointed out that there
is a large amount of low-frequency information in low-resolution images, which can be
transmitted directly to the last layer of the network through long-hop connections, allowing
the network to focus on learning high-frequency information and reducing the learning
burden of the network.

In addition to improving the network structure, different loss functions are used to
generate different image qualities. Commonly used loss functions include pixel loss,
content loss, confrontation loss (Mao et al., 2017), texture loss (Gatys, Ecker & Bethge,
2015b; Gatys, Ecker & Bethge, 2016), total variation loss (Rudin, Osher & Fatemi, 1992),
and context loss (Mechrez et al., 2018). Since each loss function has its own emphasis,
combining multiple loss functions to train the network, the image generated by the model
will achieve good results in both objective evaluation and subjective visual effects. At
present, most models adopt a joint training method with multiple loss functions, such as
EnhanceNet proposed by Sajjadi, Scholkopf & Hirsch (2017). The loss function consists of
perceptual loss, confrontation loss, and texture loss, which can produce a realistic texture.

In order to generate realistic textures and natural details with high visual quality, this
paper combines reconstruction methods and learning methods to build a deep learning
network Garesat-Net based on Gaussian transform, residuals and channel attention. In the
network, a new detail enhancement module based on Gaussian transform is constructed.
The new module and the channel attention mechanism module are embedded into the
residual structure to form a new residual block. In the network, the residual block is
used to enhance the details of the image and send it to the subsequent layers for training.
During the training process, the loss function comprises pixel loss and texture loss to
limit the generation of super-resolution images. Through simulation experiments and
real data testing, our algorithm can effectively utilize color image channel correlation and
outperform existing algorithms in reconstruction.

The rest of the paper is organized as follows. The related work and evaluation metrics
are given in the next section. Section 3 describes the workflow of the proposed model in
detail. To evaluate the proposed algorithm, simulation and experimental results are given
in Section 4. Finally, a brief conclusion is drawn in Section 5.
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RELATED WORK AND EVALUATION INDEXES
Multi-scale Gaussian difference transform
Gaussian smoothing is a kind of digital image processing method, calculated from a
two-dimensional normal distribution (Gaussian distribution) function. The Gaussian
kernel used in the two-dimensional Gaussian distribution function is the product of two
one-dimensional Gaussians x and y, and the standard deviation σ isusually the same in
both dimensions:

G(x,y)=
1

2πσ 2 e

(
−

x2+y2

2σ2

)
. (1)

Gaussian smoothing is the convolution of an imagewith a two-dimensional Gaussian kernel
of a certain size. Gaussian kernel is a discrete approximation of a continuous Gaussian
function, which is usually obtained by discrete sampling and normalization of Gaussian
surfaces. Here, normalization means that the sum of all elements of the convolution kernel
is 1. The standard deviation σdetermines the influence of the surrounding pixels on the
current pixel. When σ increases, the influence of distant pixels on the central pixel is
improved, with smoother filtering results. The Gaussian kernel is a discrete approximation
of the continuous Gaussian. The more natural the window is, the better the approximation
is. However, the Gaussian function is a bell-shaped curve. The farther away from the center,
the smaller the value, which can be ignored if the distance is far enough. After the standard
deviation is determined, the radius is 3σ , that is, the window size is 6σ ×6σ . Usually, the
nearest odd number is taken.

The Gaussian multi-scale difference method (Kim et al., 2015) uses different Gaussian
kernel functions to obtain different Gaussian blurred images, so as to extract different
detailed images and fuse different detailed images into a whole. First, different Gaussian
blurred images are obtained using different Gaussian kernel functions, and the image to be
enhanced is I:

B1(I )=G1 ∗ I ,B2(I )=G2 ∗ I ,B3(I )=G3 ∗ I (2)

whereGkk=1 (,2,3) is theGaussian kernel function.We extract fine detailD1, intermediate
detail D2 and rough detail D3, which are given by the following formula:

D1(I )= I−B1(I ),D2(I )= I−B2(I ),D3(I )= I−B3(I ). (3)

Merging the three-layer detail map to generate the overall detail and adding it to the
original image:

I ∗= I+ (1−ω1× sgn(D1(I )))×D1(I )+ω2×D2(I )+ω3×D3(I ). (4)

where ω1,ω2,ω3are the weight coefficients and sgn is a step function.
Gaussian multi-scale difference method is introduced in CNN to construct a Gaussian

enhancement block, as shown in Fig. 1. The input multi-channel features are convoluted
by a three-channel convolutional layer based on different Gaussian kernels, respectively,
and three different Gaussian fuzzy feature maps are obtained. Three detail maps were
obtained by making a circular difference with the original feature maps, and then fused
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Figure 1 Gaussian enhancement block.
Full-size DOI: 10.7717/peerjcs.1182/fig-1
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with the original feature map to obtain the enhanced feature map. The parameters of fusion
ω1,ω2,ω3were fixed at 0.5, 0.5 and 0.25.

The attention mechanism
Humans can naturally and effectively find significant regions in complex scenes. Inspired
by this observation, an attention mechanism was introduced into computer vision to
imitate this aspect of the human visual system. This attention mechanism can be viewed as
a dynamic weight adjustment process based on the input image features, which is widely
used in various types of deep learning tasks such as natural language processing, image
recognition and speech recognition. It is one of the core technologies that deserve attention
and deeper understanding in deep learning technology. The core goal of deep learning
attention mechanism is to select more critical information for the current task from a large
amount of information. Its representatives are channel attention and spatial attention.

Channel attention block
Squeeze-and-Excitation Networks (SENet) (Jie, Li & Gang, 2018) considered the
relationship between feature channels and an added attention mechanism to the feature
channels. SENet automatically obtains the importance of each feature channel through
learning and uses the obtained importance to improve features and suppress features
that are not important for the current task. Using global maximum pooling and average
pooling, the spatial dimension is compressed to obtain the channel weights of the different
features, and this feature is applied to the original channel, and the features that need to be
enhanced are augmented, and the two different enhanced features are fused and output.
For more information, please see Fig. 2.

Spatial attention block
In the convolution layer, the receptive field is limited due to the size limitation of the
convolution kernel. Wang et al. pointed out in Wang et al. (2018a) that nonlocal means
that the receptive field can be very large, rather than the local field. If global information
can be introduced into some layers, the problem of not seeing the global situation for local
operations can be solved, bringing richer information to the later layers. A module called
spatial transformer is proposed to transform the spatial information in the image so as to
extract the key information. The essence of spatial attention is to locate the target and make
some changes or obtain weights. As shown in Fig. 3, the target is located by compressing
the channels with mean and maximum values to obtain the weights of different parts.
Enhanced features are obtained by interacting with the original feature map, and the two
enhanced feature maps are combined and convoluted and output.

Residual convolutional neural network
The residual convolutional neural network adds a jump connection branch (He et al., 2016)
where the input feature map is added directly to the output and then activated. The residual
network is a good solution to the degradation problem of deep neural networks (Wang et
al., 2019). The error signal can be propagated directly to the lower layer without any
intermediate weight matrix transformation, thus alleviating the gradient dispersion
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Figure 2 Channel attention block.
Full-size DOI: 10.7717/peerjcs.1182/fig-2

Figure 3 Spatial attention block.
Full-size DOI: 10.7717/peerjcs.1182/fig-3

problem and achieving better reconstruction. On the premise of the same number of
layers, the convergence speed of the residual network is faster. In the super-resolution
reconstruction proposed in this paper, the Gaussian transform enhancement module and
the attention mechanism block are embedded into the residual module to construct a new
residual block.

Evaluation indexes
The objective evaluation indexes of image hiding and recovery networks used in this paper
include peak signal-to-noise ratio (PSNR) (Welstead, 1999), and structural similarity index
measure (SSIM) (Wang, Bovik & Sheikh, 2004).

MATERIALS & METHODS
Garesat-Net
In this section, the super-resolution image reconstruction network, Garesat-Net, was
proposed, and the pixel shuffle and the proposed ResBlock were used for this network.
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Figure 4 Garesat-Net. The struture of Garesat-Net.
Full-size DOI: 10.7717/peerjcs.1182/fig-4

The specific structure and parameter settings are shown in Fig. 4. The whole network
consists of 11 convolutional layers, two ResBlocks and a pixel shuffle layer. Among them,
10 convolution layers have 64 convolution kernels, and only the sixth convolution layer
has 256 convolution kernels, which is to prepare for the next pixel shuffle layer. The
ResBlock has three branches. The first branch is the Gaussian enhancement block; the
second branch is the channel attention module, as well as the spatial attention module and
the convolutional layer, in that order. This output of the second branch is concatenated
with the output of the first branch and fed to the next convolutional layer. Finally, the
output is concatenated with the output of the third branch. The third branch has only one
convolutional layer with a convolution kernel of 1×1. The input LR image passes through
three convolutional layers, ResBlock, three convolutional layers, pixel shuffle layer, three
convolutional layers, ResBlock and three convolutional layers in turn, and the output SR
image is twice the length and width of the original image.

Loss function
During the training process, the loss function combines pixel loss and texture loss to limit
the generation of super-resolution images.

Pixel loss
Most SR models currently adopt pixel loss. Pixel loss is generally divided into L1 loss and
L2 loss, and their expressions are as follows:
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L1=
1

CHW

C∑
k=1

H∑
i=1

W∑
j=1

|ŷi,j,k−yi,j,k | (5)

L2=
1

CHW

C∑
k=1

H∑
i=1

W∑
j=1

(ŷi,j,k−yi,j,k)2 (6)

where C is the number of channels of the image, generally 3; H is the height of the image;
W is the width of the image; ŷi,j,k is each pixel of the generated high-resolution image; yi,j,k
is each pixel of the real image.

Texture loss
Gatys, Ecker & Bethge (2015b) and Gatys, Ecker & Bethge (2016) introduced texture loss to
super-resolution reconstruction. The texture loss uses the Gram matrix. The Gram matrix
expression is as follows:

Gl
i,j(I )= F l

i (I )F
l
j (I ) (7)

where F l
i (I ) is the feature map of the i-th channel on the l-th layer of Image I ; F l

j (I ) is the
feature map of the j th channel on the l-th layer of Image I. The expression for texture loss
is as follows:

Ltexture =
1
C2
l

√√√√ Cl∑
i=1

Cl∑
j=1

(Gl
i,j(ŷ)−G

l
i,j(y))2. (8)

The loss function is defined as:

L= (L2+Ltexture)/2

=

 1
3HW

3∑
k=1

H∑
i=1

W∑
j=1

(ŷi,j,k−yi,j,k)2+
1
32

√√√√ 3∑
i=1

3∑
j=1

(Gi,j(ŷ)−Gi,j(y))2
(9)

where ŷi,j,k,yi,j,k represent each pixel of SR image andHR image, respectively, ŷ,y represent
SR image and HR image, respectively, and Gi,j(ŷ)−Gi,j(y) represent the Gram matrix of
layers i and j of SR image and HR image, respectively. In the training process, pixel loss
was used to reconstruct the magnified image that was not fine enough, and texture loss was
used to determine the detail part.

Optimization and parameter initialization settings
The proposed network was optimized using the Adam stochastic optimization
method (Kingma & Ba, 2014). The convolution kernel was initialized with Gaussian
distribution weights having zero expectation and variance of 0.02. In the experiment, the
batch size was 4 and the initial learning rate was set to 0.005. The regularization coefficient
in the loss function, the basic learning rate and the weight attenuation were set to 10e−4.
After 400 epochs, the loss function became stable without further decline and stopped
training.

Zou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1182 9/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1182


RESULTS
In this section, we conducted several experiments to demonstrate the effectiveness of the
proposed method.

Developmental environment and dataset
The proposed Garesat-Net model was trained and tested under a workstation operating
system of Windows 10, accelerated with single GeForce RTX 3090Ti graphics adapters.
The proposed model is based on Python (3.7) and Pytorch (1.1.0) to build a deep learning
model.

As the training datasets, 200 images were used from the Berkeley Segmentation Dataset
(BSD) (Martin et al., 2001). In the testing stage, we employed Set5 (Bevilacqua et al., 2012),
Set14 (Zeyde, Elad & Protter, 2010), BSD100 (Martin et al., 2001), and Urban100 (Huang,
Singh & Ahuja, 2015) datasets.

Comparative analysis of related algorithms
This experiment compares the method proposed in this paper with five existing deep
learning-based SR algorithms with good performance in this field. The compared methods
are RNAN (Zhang, Li & Li, 2019), LatticeNet (Luo, Xie & Zhang, 2020), SCGAN (Liu &
Chen, 2021), FPMMLGPR (Lu & Yu, 2022), and AMG (An &Wang, 2022), where the
bicubic interpolation method is used as the benchmark algorithm. This comparison
verifies the effectiveness and generalization ability of the method proposed in this paper.
The trained models published for these methods are used to produce all reconstruction
results of the compared methods to ensure the fairness of the experiment. Table 1 shows
the PSNR and SSIM indicators obtained for the above five mainstream deep learning-based
ISR algorithms on the four test sets.

The proposed network reconstructs 2× super-resolution images and reconstructs 4x and
8x super-resolution images by reuse. The image quality gradually decreases as the number
of uses increases. In the following illustration, we show the results of reconstructing 4×
super-resolution images from LR images.

Figures 5, 6, 7 and 8 show the visual effects produced by the different 4× super-resolution
reconstruction methods in BSD100, Set5, Set14 and Urban100, respectively. From a simple
visual point of view, we cannot tell the difference. When magnifying a part of it, it can
be seen that our proposed method is better in terms of texture features and closer to HR
images. As can be seen from the spots on the anemone in Fig. 5, upon amplification, the
first four and Bicubic are blurred at the edges and have differences in color. Only the
AMG method and the proposed method have high quality in terms of reconstructed edges
and colors. In Fig. 6, the blood filaments in the baboon’s eyes have been blurred in the
reconstruction of the previous methods, and our method only yields similar smoothed
results.

In Fig. 7, the SR images generated by bicubic and the first three methods are not very
natural, and the SR images generated by the latter two methods and our method are more
natural. In Fig. 8, with a window in a high-rise building in the generated SR image, the
image generated by our method is more natural and clear with better edge performance,
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Table 1 Statistical analysis results of the sevenmethods on the four datasets of Set5, Set14, BSD100 and Urban100.

Methods Evaluating
indicator

Set5 Set14 BSD100 Urban100

2 4× 2× 4× 2× 4× 2× 4×

PSNR 32.87 28.45 30.25 25.38 29.56 24.80 26.68 22.89
Bicubic

SSIM 0.9226 0.8777 0.8695 0.8245 0.8441 0.8111 0.8411 0.7905
PSNR 36.49 30.89 33.88 28.34 32.29 27.64 32.69 27.66

RNAN
SSIM 0.9586 0.8856 0.9213 0.8476 0.9018 0.8398 0.9343 0.8746
PSNR 36.93 31.11 33.88 28.49 32.30 27.45 32.82 27.94

LatticeNet
SSIM 0.9595 0.8853 0.9213 0.8473 0.9019 0.8367 0.9367 0.8665
PSNR 33.57 30.20 32.89 26.61 32.32 26.61 32.91 27.13

SRGAN
SSIM 0.9543 0.8726 0.9232 0.7668 0.9021 0.7313 0.9366 0.7742
PSNR 34.83 31.47 33.54 28.59 32.30 26.45 32.54 28.51

FPMMLGPR
SSIM 0.9527 0.8971 0.9367 0.8464 0.9034 0.8356 0.9367 0.8813
PSNR 37.14 32.45 33.88 29.69 32.35 29.88 32.79 29.56

CMG
SSIM 0.9719 0.9287 0.9321 0.8888 0.9078 0.8713 0.9390 0.8985
PSNR 37.69 32.89 34.36 29.75 33.15 29.54 33.23 29.46Proposed
SSIM 0.9775 0.9246 0.9413 0.8921 0.9162 0.8691 0.9411 0.9007

Notes.
Bold indicates the best result in this column.

and for the one window in a tall building in Fig. 8, the details of the image reconstruction
are improved using the texture loss function. Figure 9 shows the 2×, 4× and 8× SR
images of the butterfly in Set5 reconstructed by the proposed method. Among them, the
LR image used for reconstruction is a 32×32 image obtained by resizing the LR butterfly
image in set5, and the SR images of 64×64, 128×128, and 256×256 are obtained by the
proposed method. Their PSNR and SSIM are (38.22, 0.9777), (32.59, 0.9233), and (28.23,
0.8815), respectively. It can be seen that the image quality decreases rapidly as the number
of reconstructions increases.

Table 1 shows the average performance of several methods on the four datasets. The
proposed method performs best on 2xSR images and achieves the best effect on the four
datasets. Our proposed method is not the best in terms of image evaluation indicators
PSNR and SSIM, but it is the best in terms of detail and texture.

To further verify the method proposed in this paper, Table 2 gives the parameters and
average testing time of the method proposed in this paper and other deep learning models.

As can be seen from Table 2, the number of parameters of the proposed model in this
paper is only more than the number of RNAN parameters, and the average test speed is the
fastest. The proposedmethod achieves a good balance between reconstruction performance
and model complexity.

CONCLUSIONS
Garesat-Net SRwas proposed to reconstruct realistic textures, edges and details by obtaining
high visual quality. Gaussian enhancement block, spatial attention module and channel
attention module were applied. The Gaussian enhancement block can enhance the edge
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Figure 5 Compared in BSD100. The visual effects produced by different methods of 4× super-
resolution reconstruction are compared in BSD100. Image credit: c©2001 IEEE. Reprinted, with
permission, fromMartin et al. (2001).

Full-size DOI: 10.7717/peerjcs.1182/fig-5

Zou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1182 12/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1182/fig-5
http://dx.doi.org/10.7717/peerj-cs.1182


Figure 6 Compared in Set14. The visual effects produced by different methods of 4× super-resolution
reconstruction are compared in Set14. Image source credit: Reprinted by permission from SPRINGER
NATURE LICENSE: Springer-Verlag Berlin, Curves and Surfaces (Zeyde, Elad & Protter, 2010). c©2012.

Full-size DOI: 10.7717/peerjcs.1182/fig-6

information in the feature map, so that the final SR image is not blurred at the edges.
During the learning process, the feature maps of LR images are obtained and enhanced
by convolutional layer learning. Some feature maps contain only a small amount of
information, while some learn most of the information of the LR image. Channel attention
enhances the weights of the feature maps with more information, and the spatial attention
module enhances the weights of the area containing important information in the feature
map.

In the training process, the use of the pixel loss function ensures more similarity in
color and structure. SR images score higher in PSNR and SSIM. The use of the texture
loss function results in SR images with more detailed structure, more realistic texture and
more natural details. Numerous experiments show that Garesat SR surpasses the existing
models and achieves the most advanced performance. Finally, the proposed method and
the five most advanced deep learning SR methods are tested on four datasets: Set 5, Set14,
BSD100, and Urban100. Experimental results show that the PSNR and SSIM of the SR

Zou et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1182 13/21

https://peerj.com
https://doi.org/10.7717/peerjcs.1182/fig-6
http://dx.doi.org/10.7717/peerj-cs.1182


Figure 7 Compared in Set5. The visual effects produced by different methods of 4× super-resolution
reconstruction are compared in Set5. Image source credit: Bevilacqua et al. (2012). Dataset: https://people.
rennes.inria.fr/Aline.Roumy//results/SR_BMVC12.html.

Full-size DOI: 10.7717/peerjcs.1182/fig-7
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Figure 8 Compared in Urban100. The visual effects produced by different methods of 4× super-
resolution reconstruction are compared in Urban100. Image source credit: c©2015 IEEE. Reprinted, with
permission, from Huang, Singh & Ahuja (2015).

Full-size DOI: 10.7717/peerjcs.1182/fig-8
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Figure 9 SR images of butterfly. The 2×, 4× and 8× SR images of butterfly in Set5 reconstructed by
the proposed method. Image source credit: Bevilacqua et al. (2012). Dataset: https://people.rennes.inria.fr/
Aline.Roumy//results/SR_BMVC12.html.

Full-size DOI: 10.7717/peerjcs.1182/fig-9

Table 2 Deep learning model parameter comparison.

RNAN LatticeNet SRGAN CMG Proposed

Number of parameters 69087 909283 710343 1883045 793899
Average of test time 2.8 2.63 1.03 1.01 0.85

images obtained by the proposed method are not optimal during testing, but the obtained
images are more natural and closer to HR images in terms of details and edges. After
enlarging the details, we can also see that there are differences between SR images and HR
images, which means that the SR algorithm needs further improvement, which will be our
future work.
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