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ABSTRACT
Background. The development of sequencing technology increases the number of
genomes being sequenced. However, obtaining a quality genome sequence remains a
challenge in genome assembly by assembling a massive number of short strings (reads)
with the presence of repetitive sequences (repeats). Computer algorithms for genome
assembly construct the entire genome from reads in two approaches. The de novo
approach concatenates the reads based on the exact match between their suffix-prefix
(overlapping). Reference-guided approach orders the reads based on their offsets in a
well-known reference genome (reads alignment). The presence of repeats extends the
technical ambiguity, making the algorithm unable to distinguish the reads resulting
in misassembly and affecting the assembly approach accuracy. On the other hand, the
massive number of reads causes a big assembly performance challenge.
Method. The repeat identification method was introduced for misassembly by prior
identification of repetitive sequences, creating a repeat knowledge base to reduce
ambiguity during the assembly process, thus enhancing the accuracy of the assem-
bled genome. Also, hybridization between assembly approaches resulted in a lower
misassembly degree with the aid of the reference genome. The assembly performance
is optimized through data structure indexing and parallelization. This article’s primary
aim and contribution are to support the researchers through an extensive review to
ease other researchers’ search for genome assembly studies. The study also, highlighted
the most recent developments and limitations in genome assembly accuracy and
performance optimization.
Results. Our findings show the limitations of the repeat identification methods
available, which only allow to detect of specific lengths of the repeat, and may
not perform well when various types of repeats are present in a genome. We also
found that most of the hybrid assembly approaches, either starting with de novo or
reference-guided, have some limitations in handling repetitive sequences as it is more
computationally costly and time intensive. Although the hybrid approach was found
to outperform individual assembly approaches, optimizing its performance remains
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a challenge. Also, the usage of parallelization in overlapping and reads alignment for
genome assembly is yet to be fully implemented in the hybrid assembly approach.
Conclusion. We suggest combining multiple repeat identification methods to enhance
the accuracy of identifying the repeats as an initial step to the hybrid assembly approach
and combining genome indexing with parallelization for better optimization of its
performance.

Subjects Bioinformatics, Computational Biology, Algorithms and Analysis of Algorithms, Data
Science, Software Engineering
Keywords Genome assembly, Genome analysis, Indexing genome data, Genome misassembly,
Parallelize genome data, Repetitive genome sequence identification

INTRODUCTION
Repeats in the genome
Deoxyribonucleic acid (DNA) is the genetic material of most organisms, which is made
up of a chain of four chemical bases indicated by letters A, C, G, and T, and a complete
set of DNA sequences an organism called genome (Baxevanis, 2020). Repetitive sequences
were found across all kingdoms of life. More than 50% of the human genome is occupied
by DNA repetitive sequences. Repeat is a segment of sequence that appears multiple
times in the genome in the identical or near-identical form (Jain et al., 2018b; Venuto &
Bourque, 2018). The essential repeat categories in biology are transposable elements (TE),
and tandem repeats (TR) (Zeng et al., 2018). TEs are DNA sequences that are able to copy
themselves from one genome region, overwriting another region, which are considered
to play a major role in the genome evolution, thus, can change the structure and size of
genomes, as shown in Fig. 1. The length of TE can be varied, such as long-terminal repeat
retrotransposons, the length of which generally ranges from 100 bp to 25 kb (Liao et al.,
2021). On the other hand, TR is a repetitive DNA sequence, which is either known as a
microsatellite for a short repeat segment (1–12 bp) or a minisatellite for a longer repeat
segment (12–500 bp) located adjacent to each other. Both types of repeats have the ability
to expand their copy number and change the structure and size of the genome (Paulson,
2018; Genovese et al., 2018). The expansion of repeat sequences can cause many diseases
in humans, such as Huntington’s disease and Kennedy’s disease (Pinto et al., 2017). The
presence of the repetitive offers crucial biological information that stores historical genome
changes within and between species, which should be properly handled during assembly,
and cannot be treated as a duplication and then truncated by data cleaning.

Genome assembly in genome analysis project
Genome analysis can be divided into three main phases; genome sequencing, genome
assembly, and genome annotation. In the first phase, genomic sequences from an organism
will be extracted and further processed through a sequencing machine, in which the
sequences will be fragmented into smaller fragments as an output (reads). In the genome
assembly phase, all the reads will be overlapped or mapped to the existing reference
genome to construct the genome of the organism. Finally, the assembled genome will
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Figure 1 Biological activities of TE and TR change genome size.
Full-size DOI: 10.7717/peerjcs.1180/fig-1

be annotated according to their genome position for coding (e.g. gene) and non-coding
(e.g. intron) regions. The genome assembly phase is the most computationally intensive
part of genome analysis. Given such a collection of reads, a genome containing all
genetic information about an organism will be constructed. In the genome assembly,
reads(substrings) are concatenated together to construct the genome. The next generation
sequencing (NGS), which is one of the sequencing technology, output (reads) genome
reads are available in public repositories such as the National Centre for Biotechnology
Information (NCBI) (Ekblom &Wolf, 2014), the DNA Databank of Japan (DDBJ), and the
UC Santa Cruz Genomics Institute (UCSC) (Kulkarni & Frommolt, 2017). Genome data
reads can be stored in FASTA and FASTQ files (Ekblom &Wolf, 2014).

Data structure approaches for genome assembly
An exact match is considered when two matched strings are identical, as shown in Fig. 2A.
On the other hand, the approximate match represents the high similarity between two
strings and is not necessarily identical, and some differences might be there. The number
of different letters between similar approximate matched strings is called distance (Patil,
Toshniwal & Garg, 2013). The distance can be a substitution representing a letter in the
target string differently from its corresponding one in the reference string (Röhling et al.,
2020). The distance can also be an insertion of a letter in the target string that does not
exist in its corresponding offset in the reference string. Another type of distance is deletion,
which one letter is absent in the target string compared to its corresponding offset in the
reference string, as shown in Fig. 2B. de novo is Latin word that means from scratch or
new. One of the genome assembly approaches is de novo approach, which concatenates
overlapping reads with the exact match between the suffix of a read with a prefix of another
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Figure 2 String exact and approximate match.
Full-size DOI: 10.7717/peerjcs.1180/fig-2

read (Baichoo & Ouzounis, 2017). Overlapping reads will be concatenated into a longer
string called a contig. Similarly, overlapping contigs will be concatenated into a scaffold,
as shown in Fig. 3 (Gopinath et al., 2018). Overlapping distance (length) is a significant
parameter for any overlapping algorithm. Overlapping errors have a small impact when
sufficient distance is used, as shown in Fig. 4, which suggests that empirical overlapping
distance should be greater than 40% from the read length (Haj Rachid, 2017).
On the other hand, the assembly is guided by known reference genome instances in the

reference-guided approach. Reads are mapped against the reference genome to determine
their orders, called the reads alignment process (Kim, Ji & Yi, 2020), as shown in Fig. 5. The
reads alignment against the reference genome is based on an approximate match between
the read and its corresponding k-mer of the reference genome. Mer is a Latin word that
means part, while k is the length of this part (Simpson & Pop, 2015). It is not necessarily
the reads exactly match the reference k-mer, because reads of the target genome are slightly
different from the used reference genome due to individual biological variation (Zeng et
al., 2018).

Limitations of current sequencing technology as the root cause of
genome assembly challenges
In 1965 Fred Sanger and colleagues sequenced the first DNA reads to produce reads slightly
less than one kilo-base (kb) in length. However, it was first-generation DNA sequencing.
Second-generation DNA sequencing or next-generation sequencing (NGS) is a massive
number of tiny Sanger sequencing running in parallel. In NGS, large quantities of DNA
can be sequenced quickly. Short-length reads are considered the first limitation in this
technology, generating a big challenge for assembling repetitive sequences from short
reads. Recently, third-generation DNA sequencing (TGS) was introduced by Stephen
Quake. The main characteristic of this method is generating longer-length reads. TGS is
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Figure 3 Overlapping suffix-prefix match.
Full-size DOI: 10.7717/peerjcs.1180/fig-3

currently available, generating longer-length reads able to bridge long repetitive sequences,
and used to develop assemblies such as Canu and Flye (Guiglielmoni et al., 2021). However,
the natural high error rate of up to 15% of long reads impacts the accuracy of the assembly
requiring higher computational complexity correction processes when processing large
datasets (Shafin et al., 2020; Liao et al., 2021). The most common question is why DNA
molecules cannot be sequenced as a single string. Firstly, the enzyme used in the sequencing
experiment naturally generates sequence errors after sequencing three kilo-base (Garibyan
& Avashia, 2013). Secondly, the DNA sequencing experiment is toomuch time-consuming.
Thus, sequencing the entire genome using a single sequencing machine would take years
to be done (Angeleska, Kleessen & Nikoloski, 2014). There is no sequencing platform that
provides complete coverage of the whole genome as a single string (Jain et al., 2018a). In
NGS, each region is sequenced many times in order to ensure that genome is accurately
sequenced, called coverage. Data coverage is the average number of times a base of a genome
is sequenced to ensure that the genome is sequenced accurately. It is often expressed as (1x,
2x, 3x,. . . , nx) as shown in Fig. 6. Target genome reads from NGS are extremely massive
data. For example, the number of 60X sequence coverage is often mentioned in that the
number of letters in the dataset is 60 times bigger than the original genome size (Jain et al.,
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Figure 4 The impaction of overlapping length on assembly accuracy.
Full-size DOI: 10.7717/peerjcs.1180/fig-4

2018b). This massive data amount is considered the second limitation of NGS, resulting in
big performance challenges during genome assembly.

Genome assembly challenges
Assembling repeats from short reads misassembly
The presence of repeats in a genome has increased the complexity of accurately assembl the
genome from short reads (Lohmann & Klein, 2014; Acuña Amador et al., 2018). In the de
novo approach based on overlapping, algorithms might concatenate reads wrongly, leading
to amisassembly simply because they have the samematched overlapping distance (Simpson
& Pop, 2015; Wang et al., 2021). The formulation in Fig. 7 assumes that the given genome
G ={TGGGACTGG}, then the genome G is sequenced, resulting in an array of reads R
={GACT, ACTGG, TGGGAC }. According to computer science, concatenating these reads
based on overlapping is correct if and only if the reads have an exact suffix-prefix match
at a specific overlapping distance. Thus, so both assembled genomes {GACTGGGAC} and
{TGGGACTGG} are correct solutions accordingly. However, because of the ambiguity
that is resulted from repeats in short reads, when the genome is assembled genome to
be {GACTGGGAC} while the real one is {TGGGACTGG}, this problem is a well-known
problem called misassembly (Medvedev, 2019).
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Figure 5 Reads mapping against reference genome (reads alignment).
Full-size DOI: 10.7717/peerjcs.1180/fig-5

Most de novo overlapping algorithms have a high degree of misassembly resulting
from repeat ambiguity. The greedy algorithm is one of the simplest algorithms in
a data structure. It is used for overlapping. It starts with joining the two reads that
overlap the highest. Unassembled reads are chosen for the next run until a pre-defined
minimum threshold is reached (Simpson & Pop, 2015). Although the greedy approach is
computationally feasible, it cannot distinguish the repeats, merging reads wrongly resulting
in misassembly (Simpson & Pop, 2015) as shown in the example in Fig. 8 for the Genome
G = {GGATGGGGATGCCT} that has two repeats ‘‘ATG’’. Overlap Layout Consensus
(OLC) is a famous graph-based algorithm introduced by Staden in 1980 and subsequently
improved and extended by others.Many de novo assembly tools are based onOLCmethods,
such as Newbler, PCAP, Celera Celera, CAP3, and ARACHNE. In OLC, repeats in short
reads create a mathematical problem of finding a Hamiltonian path. The graph will be too
complex if the genome is highly repetitive, such as the human genome.

Another widely used algorithm is De Bruijn Graphs (DBG), which Nicholas Govert
de Bruijn introduced in the 1940s. DBG considers each read is a k-mer from the
Genome (Simpson & Pop, 2015). The first step in DBG is to divide each read with length k
into two substrings (edges) with length (k-1). Next, draw each left substring corresponding
to its right substring. A path that contains every edge of the graph exactly once is called
the Eulerian path or Eulerian walk. DBG is a widely used algorithm. Current de novo
assemblers use DBG, such as Euler, Velvet, SOA Pdenovo, ABySS, and IDBA. However,
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Figure 6 Sequencing coverage depth.
Full-size DOI: 10.7717/peerjcs.1180/fig-6

repeats in short reads create a fragmented assembly problem in this algorithm, shown in
Fig. 9.

In the reference-guided approach, repetitive sequences can result in ambiguity during
the alignment process when a read has approximatelymatches withmany positions (offsets)
in the reference genome. This ambiguity is a well-known data structure problem called
the multiple-matching problem. However, multiple-matching results in misassembly, as
shown in Fig. 10. Most alignment tools cannot accurately map reads against the reference
genome. The sensitivity or confidence of the Alignment tool (S) is calculated by the ratio of
correctly mapped read to incorrectly mapped read at a particular threshold (S = Number
of reads mapped correctly/a number of reads mapped incorrectly). Repeats in short reads
affect the sensitivity of the alignment tool, resulting in a degree of misassembly, decreasing
the total accuracy of assembly (Thankaswamy-Kosalai, Sen & Nookaew, 2017).

Computational performance challenges in genome assembly
The second computational problem in genome assembly is challenging performance due
to the massive data amount generated by high coverage NGS. This massive data amount
generates big performance challenges in each assembly approach in terms of CPU,memory,
and storage. Assembly performance challenges exist in both assembly approaches (Jain et
al., 2018b). In the reference-guided approach, reads alignment works in time complexity
O(NL). N is the number of reads (millions) to be aligned against each offset of reference
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Figure 7 Mis-assembly in de novo approach.
Full-size DOI: 10.7717/peerjcs.1180/fig-7

genome with length L, which might be billions of letters. It is a highly intensive process,
as shown in Fig. 11. On the other hand, computational complexity in de novo overlapping
works in time complexity O(N)2, where (N) is the number of reads (millions). Comparing
millions of reads against millions to detect overlapping is a well-known data structure
querying problem called all-against-all or all-suffix-prefix problem (ASPP), as shown in
Fig. 11 (Haj Rachid, 2017).

Accuracy and performance evaluation in genome assembly
The accuracy of the genome assembly produced through the assembly approaches can
be evaluated using metrics scores throughout the assembly process, such as counting, the
number of contigs, the proportion of reads that can be aligned against the known reference
genome if exists (misassembly degree), and the absolute length of contigs. A commonly used
statistical metric is N50. Given a set of contigs, each with its own length, the N50 is defined
as the shortest contigs’ length in the group of contigs which represent 50% of the assembly
length. N50 can be used to denote the contiguity of the assembly. The pseudocode of how
to calculate N50 from an array of contigs is shown in the pseudocode in Box 1 (Manchanda
et al., 2020). Although N50 is still widely used for assembly evaluation, this metric does
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Figure 8 Mis-assembly in greedy algorithm.
Full-size DOI: 10.7717/peerjcs.1180/fig-8

not reflect the quality of an assembly and can be misleading (Lischer & Shimizu, 2017). An
example of using N50 to evaluate the genome assembly is a Ciona intestinalis genome with
an estimated N50 of 234 kb length, which was found inaccurate a few years later due to
repeat problems that resulted in misassembly. The N50 metric does not consider that some
contigs may be erroneously joined or even overlapped (Giordano et al., 2018; Castro & Ng,
2017). U50 is similar to N50 in the calculation, and the only difference is that U50 uses
unique contigs for calculation that do not overlap with other contigs to represent a more
accurate result (Lischer & Shimizu, 2017). Another method to ensure the completeness of
an assembly is by detecting the presence-absence variations (PAV) against the reference
genome. It identifies the sequences in the reference genome that are entirely missing in the
newly generated assembly (Giordano et al., 2018). Also, QUAST-LG is a tool that compares
large genomic de novo assemblies against reference sequences and calculates the quality
metrics (Mikheenko et al., 2018). The Merqury, is a reference-free tool assembly evaluation
By comparing k-mers in a de novo assembly to those found in unassembled high-accuracy
reads (Rhie et al., 2020; Chen et al., 2021).

Magdy Mohamed Abdelaziz Barakat et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1180 10/34

https://peerj.com
https://doi.org/10.7717/peerjcs.1180/fig-8
http://dx.doi.org/10.7717/peerj-cs.1180


Figure 9 Fragmented assembly in DBG algorithm.
Full-size DOI: 10.7717/peerjcs.1180/fig-9

Box 1. N50 Metric Calculation

Let C array of scaffolds lengths C={c1, c2, c3,. . . .,ci}
Let AL is Sum C[]
Let AL50= Sum C[]/2
Let incL is the incremental length with initial value incL=0
Let CN50[] is an empty array to store N50 scaffolds’ members
Let i is the length of array C[]
Sort C descending
For n=1 to n=i
Do
IF (incL= AL50)
Break For Loop
ELSE

incL= incL + C[n].Length
Add C[n] to CN50[]
End IF
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Figure 10 Mis-assembly in reference-guided approach.
Full-size DOI: 10.7717/peerjcs.1180/fig-10

End For
return CN50[]
Thus:
N50=min(CN50[])

The performance of genome assembly can also be evaluated through the computational
execution time (time complexity), referred to as time complexity, which is represented as
O(N), where (N) is the size of the input and (O) is the execution time for the algorithm, it
can be linear, logarithmic, quadratic, exponential or any other relationship. For example,
if the number of reads to search for overlapping is five reads, and the index hits ten times,
the time complexity of overlapping is O(2N), as shown in the pseudocode in Box 2. Also,
the computational performance of the genome assembly can also be assessed by memory
or storage consumption.

Box 2. Index hit represent the overlapping computational time complexity

Let N=5 reads
Let All-against-all O(N)2 =25 times
Current index hit=10
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Figure 11 Overlapping and reads alignment time complexity.
Full-size DOI: 10.7717/peerjcs.1180/fig-11

Thus: Overlapping thus computational time complexity is O(2N) which is liner algo-
rithm.

Survey methodology
This review article summarizes the enhancement in genome assembly accuracy using prior
repeat identification and hybrid assembly approaches. Also, we highlight the limitations
of current methods. On the other hand, we overview the most famous data structure
indexing to optimize genome assembly, such as k-mer index, tree index, hash index, also
parallelization methods. We also highlight the limitations and show that combining more
than one method improves accuracy and performance. This review helps computer science
researchers understand genome data and its considerations, such as repeat. Also, it will help
to identify the main research problems in the genome assembly area in terms of accuracy
and performance optimization.

Search strategy
The authors found the primary studies through seven digital libraries: Web of Science,
Science Direct, SCOPUS, Google Scholar, IEEE Explore, PubMed, and EMBASE. These
digital libraries are most preferred and widely used by the research community. The search
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query string is applied to an individual database to find relevant studies based on the
research questions shown below in Box 3. The search strategy for the literature process is
shown in Fig. 12. A total of 65 research papers, after the duplications were removed, were
found and downloaded from the mentioned database.

Box 3. Search string

(Genome assembly OR genome analysis OR indexing genome data OR genome mis-
assembly OR parallelize genome data OR repetitive genome sequence identification)
AND (accuracy OR performance OR enhancement) AND (method OR approach)
AND (de novo approach OR reference guided approach OR hybrid approach) AND
language (English)

Inclusion criteria
The studies concerning that are:
1. Written in English
2. Based on genome assembly.
3. Focused on accuracy and performance optimization.
4. Published in conference or journal

Current Solutions for Misassembly Problem
A. Prior Repeat IdentificationMethods

Repeat identification is a method to detect and identify repetitive sequences in the
reads or in the reference genome (Zeng et al., 2018). Identifying repetitive sequences before
genome assembly helps the assembly algorithm distinguish the reads that have repeats, and
avoid misassembly, thus, significantly enhancing the accuracy of genome assembly from
short reads (Seitz, Hanssen & Nieselt, 2018). Repeat identification methods are introduced
first in the reference-guided approach through the repeat masker method. However, it did
not work well with big genomes (Zeng et al., 2018). The de novo approach is preferable,
identifying repeats from target genome reads rather than a reference genome (Baichoo &
Ouzounis, 2017). Most of the current repeat identification methods are statistically based,
calculating the occurrences of repetitive sequences in reads. In order to clearly understand
how it works, let (G) is the genome that is sequenced with 5X coverage, so (C =5). Let rs
is a repetitive sequence with a length of 9 letters, rs ={ACGTGATAT}. Let R denote the
array of reads generated by sequencing genome (G), R ={r1,r2. . . ri} as shown in Fig. 13.
Reads are just a substring of Genome (G). According to the current sequencing coverage,
we expect any unique substring of (G) to appear in (R) several times less than or equal to
(C). In this example, a read, ri{GTG} appears in the data set six times, which means the
frequency of ri, f ri = 6, while the sequencing coverage C = 5. If ri sequence is a unique
sequence in Genome (G) the max f ri = 5 under coverage (C = 5) and max f ri = 6
under coverage (C = 6), and so on. If (f rs = 1) in (G), it is impossible that the frequency
of the entire rs or even any substring of rs exceeds the sequencing coverage (C) in the
reads dataset. In Fig. 13, f ri = 6, greater than C, simply means that the extra occurrence
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of ri comes from sequencing another copy of rs. If the read frequency is less than or
equal to the sequencing coverage, it means that this read comes from a unique sequence
in the genome. On the other hand, if the frequency of the read exceeds the well-known
sequencing coverage, it means that this read comes from the repetitive sequence in the
genome. More than half of some genomes are repeats and vary in length, which might be
too long, such as TE. Thus, the size of repetitive sequences is used as a criterion to evaluate
the accuracy of identifying repeats in many repeat identification methods (Genovese et al.,
2018; Taylor et al., 2022; Liao et al., 2021). Many algorithms have been proposed according
to the previous statistical concept. Earlier, the RePS algorithm assumed that any 20-mer
(substring from the read with length 20 letters) that appears in the dataset more often
than a sequencing coverage is likely to be an exact repeat and is masked out. A sliding
window assembly (SWA) is a genome assembly algorithm proposed by Lian et al. (2014)
for identifying and assembling repeats. Fundamentally, the algorithm considers the entire
read is a substring of the genome. SWA calculates the frequency of each read in the dataset.
Based on the well-known sequencing coverage SWA splits reads into two groups, repeat
and non-repeat, assembling them separately. The non-repeat group consists of those reads
with a frequency less than the sequencing coverage, while the repeat group includes those
with a frequency greater than the sequencing coverage. Then, the overlap is run for each
group separately in parallel to construct the genome superstring. However, SWA considers
the entire reads as the substring of genome superstring, which means it can detect repeat
length that is only greater than or equal to the read length, while repetitive sequences might
be smaller than the read’s length, such as microsatellite tandem repeat, which cannot be
detected by SWA (Zeng et al., 2018) as shown in Fig. 14. Repeat de novo (REPdenovo) is a
repeat identification method proposed by Chu, Nielsen & Wu (2016), similar to the earlier
method RepARK that splits reads into smaller substrings (k-mers) then identifies the
frequency of k-mers, group them to repeat and non-repeat groups, finally, assembles these
k-mers. Unlike SWA, REPdenovo uses the average k-mers frequency as a threshold of this
algorithm, where a repeat is identified when a k-mer frequency is more than the threshold,
as shown in Fig. 15. REPdenovo is also able to identify a repeat shorter than the read length
by constructing them from reads’ k-mers to longer repeats. Evaluation and comparison
show that REPdenovo outperforms the earlier RepARK method regarding the accuracy
and completeness of repeats construction. REPdenovo discovered that previous repeat
annotations had missed a significant number of 190 potentially new repeats in the human
genome. The high accuracy of identifying the repeat enhances the genome’s contiguity with
N50 3141, while RepARKmethod only N50 116. However, when reads are chopped up into
k-mers the biological info represented in the reads is lost (Angeleska, Kleessen & Nikoloski,
2014). Similar to REPdenovo, the detection of long repeats (DLR) converts all reads into
unique k-mers of a certain length and screens out the k-mers with a high frequency (Liao
et al., 2019). The detection method in the DACCOR assembly is also similar to REPdenovo
calculation introduced as a stage in Characterization Reconstruction (DACCOR) hybrid
assembly. Unlike REPdenovo, it splits the reference genome into k-mers instead of the
reads themselves, then identifies repeats from k-mers of the reference genome, similarly
to REPdenovo calculation. The detection method in DACCOR assembly identifies repeats
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Figure 12 SearchMap.
Full-size DOI: 10.7717/peerjcs.1180/fig-12

from the reference genome, which might come with low identification accuracy, simply
because repeats in the reference genome might be slightly different from the real repeat in
target genome reads (Zeng et al., 2018).

On the other hand, digital signal processing can also detect repetitive elements. In most
signal-processing methods, DNA sequences are converted to numerical sequences, and
repetitive elements can be identified by Fourier power (Yin, 2017). However, capturing the
essential features of repetitive elements, such as copy numbers of repeats, is still challenging.
In addition, Fourier transform cannot capture repeats in short genomes (Yin, 2017).

Recently, machine learning has been employed for identifying repetitive elements.
Repeat Detector (Red) has been proposed by Girgis, (2015) as de novo tool for discovering
repetitive elements in genome reads. Red utilizes a Hidden Markov model (HMM)
dependent on labeled training data, and it successfully identified new repeats in the
human genome. However, it only generates genome coordinates for repeats without
any annotation. Therefore, the red output does not help analyze repeat content or TEs
evolution (Zeng et al., 2018). Improvements are required in optimizing computation
requirements and choosing suitable training datasets for such a machine-learning program
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Figure 13 Repetitive sequences frequency greater than coverage depth.
Full-size DOI: 10.7717/peerjcs.1180/fig-13

in order to strengthen the program accuracy and precision on the repeat prediction in the
genomes (Libbrecht & Noble, 2015).

As shown in the current limitations of some current repeat identification methods
in Table 1. No one algorithm fits all lengths of repetitive sequences (Guo et al., 2018).
The combination of two or more methods might introduce a better solution to
identify and assemble repeat accurately. A combination of repeat identification methods
consistently outperforms the usage of a single method due to the variety of repetitive
sequences. An example of this combination is merging consensus sequences generated
by RepeatModeler and Repbase library, which successfully annotated many repeats in
many genomes (Zeng et al., 2018). Another example of a repeat identification methods
combination is Tandem Repeats Finder (TRFi), used to identify tandem repeats and
combined with the RepeatExplorer method, and the result outperforms both of them in
identifying complex tandem repetitive sequences (Peška et al., 2017). However, combining
methods adds more computational complexity, which might be addressed by data indexing
and increasing the parallelism level during the identification process.

B. Hybrid assembly approach
The last two decades have seen significant improvement in solving the misassembly

problem that resulted from repeats through the hybridization concept. Fundamentally,
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Figure 14 Repetitive sequence as substring of read.
Full-size DOI: 10.7717/peerjcs.1180/fig-14

hybridization combines two or more methods to perform genome assembly. Hybridization
appears in genome assembly in different ways. It can combine data from different
platforms (Chen, DL & Meng, 2020) or two or more genome assembly methods. The
example is combining the OLC and the DBG method to introduce DBG2OLC to enhance
assembly accuracy that is affected by repeats (Jain et al., 2018a). The hybridization between
de novo and reference-guided approaches creates a hybrid assembly hybrid approach
which able to complement each approach’s limitation (Platt, Blanco-Berdugo & Ray, 2016).
The idea of a hybrid assembly approach has been introduced by Silva et al. (2013), who
proposed a scaffold-builder assembler composing an initial de novo assembly from reads,
followed by aligning contigs against a reference genome to build a scaffold. Enhancing
assembly accuracy through the hybrid assembly approach adds many contributions to
understand the diversity of species. An example of is a study on Cyclospora cayetanensis
species, a parasite that caused intestinal infection, has a highly repetitive genome that could
not be assembled accurately using de novo alone. Combining a reference-guided approach
with a de novo approach generates new assembly for this species with a significantly greater
depth of coverage and a lower degree of misassembly (Gopinath et al., 2018).

Although, accurate reconstruction of repetitive sequences cannot be without repeat
resolution (repeat identification). Most of the current assembly hybrid approaches do
not employ prior repeat identification (Seitz, Hanssen & Nieselt, 2018). The accuracy is
enhanced by using more than one reference genomes or multiple samples of the target
genome from different sequencing platforms (Gopinath et al., 2018). The characterization
and reconstruction of repetitive regions (DACCOR) introduced a new idea to enhance
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Figure 15 Reads’,figK-mers Frequency in REPdenovo.
Full-size DOI: 10.7717/peerjcs.1180/fig-15

Table 1 The limitations of current repeat identification methods.

Repeat identification method Limitations

SWA Cannot detect repetitive sequence shorter than read’s
length

Detection in DACCOR assembly Identify repetitive sequences from the reference genome
that are slightly different from the target genome resulting
in low identification accuracy.

REPdenovo Biological info represented in read structure are lost when
the reads are chopped up into k-mers

Digital signal processing Difficult to capture a copy number of repeats and cannot
capture repeats in short DNA sequences which means that
many types of tandem repeats cannot be identified

Machine learning Not useful for analysing repeat content such as transposon
element for biological evolution and big performance
challenge on massive genome data

the hybrid assembly approach based on identifying repetitive sequences in the reference
genome prior to hybrid assembly. Although the detection repeat identification method
in DACCOR identifies repetitive sequences from the reference genome, the results on
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the bacterial genome Treponema pallidum, as shown in Table 2, reveals high accuracy in
identifying repetitive sequences (Seitz, Hanssen & Nieselt, 2018). In Table 3, the comparison
of the accuracy in generating contigs from repetitive regions detecting repeats for T.
pallidum (sample AR1 with the coverage X157), DACCOR successfully constructed 96.8%
of contigs that can be mapped to the reference genome, while, SPAdes de novo assembly
generates about 69.5% of contigs from repetitive regions that can be mapped to the
reference genome and EAGER reference guided approach with generates around 42.1%.
Using repetitive sequences from the reference genome to detect repeats in the target
genome in DACCOR might have advantages over the conventional assembly approach.
However, the repeats identified through the approach might be limited to the reference
genome, which may not well represent the actual repetitive sequences present in the target
genome. On the other hand, the hybrid assembly approach comes with big performance
challenges. The total assembly time in the hybrid approach is exceptionally challenging for
any traditional algorithm or hardware architecture. Although performance challenges are
well-optimized in each approach individually (Liu et al., 2018), no data structure indexing
is introduced to fit overlapping and reads alignment together in the hybrid assembly
approach.

Current solution for performance optimization of genome data
A. Indexing in genome assembly
Indexing could speed up the search by reducing the number of iterations (time complexity),
leading the algorithm to focus on a specific part of the data instead of searching in the entire
dataset (Xiaolei et al., 2015). One of the earliest data structure indexing methods is k-mer
index. However, massive genome data requires more optimization for this index. The keys
of k-mer index can be extracted as a shape, skipping letter instead of extracting all k-mers
from the string to speed up the index hitting. As shown in Fig. 16, k-mers are extracted
as a pattern by taking the first and third letters followed by the fifth and sixth letters. This
reduces the index total size, which improves the specificity of the index hitting and index
verification. This kind of index must be hit with the same index pattern. This idea was
implemented in Homopolymer Compressed k-mers method proposed by (Liu et al., 2018).
This implementation added significant enhancement of mapping reads to the reference
genome. Another variation to speed up querying k-mer index is a binary search. Binary
search, also known as half-interval search, logarithmic search is a search algorithm that
finds the position of a target value within a sorted array. The k-mers of the genome must
be ordered alphabetically in ascending order, as shown in Fig. 17. In this case, the query
does not look up in the entire index simply because (TGG) is alphabetically greater than
(GTG). The query does bisection (dividing the problem into two halves), skipping the first
part of the index (Berztiss, 2014). Each iteration bisection occurs, resulting in a significant
reduce the query time. The total number of bisections that are needed to perform can be
calculated as Log2(n). This implementation significantly reduces search trials during reads
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Table 2 Repeat identification in Treponema pallidumGenome using Detection method in DACCOR.

Detected repetitive sequences Treponema pallidum

True positives 22,382
True negatives 1,116,478
False positives 0
False negatives 773
Accuracy(%) 99.93

Table 3 DACCOR Enhance the genome resolution compared to SPAdes and EAGERmethod.

Sample Method Contigs from repetitive
regions mapped against
reference genome

SPAdes (de novo) 69.5%ARI
(Coverage
157X)

EAGER (Reference-guided approach) 42.1%
DACCOR (Hybrid approach with prior repeat
Identification

96.8%

mapping to reference genome and can be implemented for reads during the search for
overlapping (Brodsky et al., 2010).
The Hash index is the most famous implementation of k-mer index. In the hash index,

the hash function is responsible for mapping each distinct k-mer to one bucket (group),
as shown in Fig. 18. the Hash index is widely used in many studies on genome data
for indexing dataset reads (Zhang et al., 2018) to reduce suffix-prefix search in de novo
overlapping. However, because of repeat, sometimes two keys may generate an identical
hash causing both keys to point to the same bucket, which is known as a hash collision,
slowing down the search in the hash index (Xiaolei et al., 2015).
Suffix indexes are another data structure index family. There are four variations of suffix

indexes: trie suffix tree, suffix array, and FM index. However, the suffix tree (ST) is the most
popular and widely used indexing tool in bioinformatics applications (Barsky et al., 2009).
It is the base of some popular sequence alignment tools, such MUMmer and RePuter, and
can be used to solve more complex problems such as repeat identification. Unfortunately,
the construction of ST is highly memory and CPU-consuming (Pingali, Tanay & Baruah,
2017). However, there are many research efforts to reduce the construction of ST time
complexity, for example, scaling the construction of ST on multiple CPU cores (64 cores)
that (Labeit, Shun & Blelloch, 2017) achieves a speedup from 2X to 4X over the original
algorithm to construct S.T. Figure 19 shows the construction of ST index from genome G
={ACGCGT}.
In overlappingmassive genome reads, maybe performing an approximatematch between

suffix and prefix first add a significant reduction of time complexity of overlapping by
skipping the exact match for suffix prefix candidates that do not have an approximate
match. The pigeonhole principle (PP) is a well-known data structure principle called seed
and extends principle that can achieve this idea. PP separates the read into non-overlapping
partitions, and the exact matching algorithm checks the match of one of the partitions
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Figure 16 Querying k-mer index with pattern match.
Full-size DOI: 10.7717/peerjcs.1180/fig-16

considered suffix prefix approximate match, then the verification step must be done as
shown in Fig. 20. According to this powerful principle, many algorithms and methods
for indexing introduced to genome data took advantage of the pigeonhole principle and
suffix-tree index. The result of Escherichia Coli genome shows that the pigeonhole solution
with prefix tree is superior in terms of time and storage compared to the traditional suffix
tree for overlapping (Haj Rachid, 2017), as shown in Table 4.
The optimization using data structure indexes for overlapping reads and read alignment

in the genome hybrid assembly approaches remains a challenge. However, ST is the
best solution for repetitive sequences scenarios, its construction memory, and CPU
consumption. In Hash, index collisions slow down the search at this key. FM.- index is
based on Burrows-Wheeler Transformation (BWT) that was proposed by Burrows and
Wheeler in 1994 (Wang et al., 2002). Querying FM index cannot use binary search because
it does not consist of the complete rotation of the genome and needs another process to
find the offset of the index hit, which is a highly computational task in massive genome
data.
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Figure 17 Binary search to querying k-mer index.
Full-size DOI: 10.7717/peerjcs.1180/fig-17

Hybridization between two indexes might introduce a better solution for indexing
massive genome data. An example of the hybrid between two indexes is MiniSR index
which uses k-mer indexing with the hash index. MiniSR can index the massive human
genome in a few minutes (Bayat et al., 2018). The hybridization between a few indexed
might introduce a solution to optimize overlapping and read alignment in hybrid genome
assembly.

B. Parallelization in genome assembly
The exponential growth of genomic data has instigated a significant challenge for genomics
analysis computing infrastructure and software algorithms. Genomic experiments
are now reaching the size of Terabytes and Petabytes (Shi & Wang, 2019). Scientists
may require weeks or months to process this massive amount of data using their
own workstations (Shi & Wang, 2019). Parallelism techniques and high-performance
computing (HPC) environments can help to reduce the total processing time (Ocaña
& De Oliveira, 2015; Shi & Wang, 2019). The simplest definition of parallelization is to
split the extensive process into smaller subprocesses and run them in parallel on multiple
CPUs (Pingali, Tanay & Baruah, 2017; Shi & Wang, 2019). It solved many performance
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Figure 18 Construction of hash index and collision resulted by repeat.
Full-size DOI: 10.7717/peerjcs.1180/fig-18

challenges in the big data area. However, parallelization is introduced in genome data for
genome assembly in some stages individually.

Sequencing technologies produce millions to billions of short reads. The first step to
assembling these reads is to extract them from FASTA or FASTQ files into structured
database tables, which is too time-consuming. Parallelization could reduce raw data
streaming time is to split big FASTA or FASTAQ files into smaller files processed in
parallel (Pan et al., 2016).

Another variation of parallelization in genome data is parallelizing the index’s
construction. An example of this idea is proposed by Haj Rachid & Malluhi (2015) for
speeding up prefix tree index construction by letting each processor work on strings that
start with a specific character in the alphabet (A, C, G, and T). For example, processor 1
constructs the part of the tree that corresponds to strings that start with the letter ‘‘A’’ while
processors 2, 3, and 4 construct the parts of the tree corresponding to the strings starting
with ‘‘C’’, ‘‘G’’, and ‘‘T’’ respectively. A similar idea was introduced by (Ellis et al., 2017),
proposing HipMer assembler to construct k-mer index using a deterministic function to
map each k-mer to a target processor.
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Figure 19 Prefix-tree index construction.
Full-size DOI: 10.7717/peerjcs.1180/fig-19
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Figure 20 Pigeonhole principle in overlapping.
Full-size DOI: 10.7717/peerjcs.1180/fig-20

Table 4 Comparison betdeegPT, PP index in time and space.

Metric PT PP

Space consumption 230 MB 298 MB
Time consumption 757 second 49 second

In de nove overlapping and read alignment of reference-guided approach, the IBD
algorithm addressed pairwise comparison problems that can be used to overlap two reads
or align reads against k-mer of the reference genome (Sapin & Keller, 2021). The algorithm
breaks the problem (N2) using massive parallelization with each order (N) comparison.
This approach is applied to the U.K. Biobank dataset, with a 250X faster time and 750X
less memory usage over the standard approach of pairwise alignment.

Over the last decades, many computing platforms parallelize different stages of genome
assembly. For instance, Hadoop (Shi & Wang, 2019) introduced a powerful idea of
parallelizing the suffix tree index construction. However, the Apache spark platform
works 100 times faster than Hadoop, especially in iterative operators (Wan & Zou, 2017).
A distributed and parallel computing tool named HAlign-II was introduced by Shi & Wang
(2019) to address read alignment with extremely high memory efficiency.

Magdy Mohamed Abdelaziz Barakat et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1180 26/34

https://peerj.com
https://doi.org/10.7717/peerjcs.1180/fig-20
http://dx.doi.org/10.7717/peerj-cs.1180


GraphSeq method proposed splitting genome files and using a high scaling platform (Su
et al., 2018). GraphSeq works on the Apache spark platform and achieved 13X speedup de
novo genome assembly. GraphSeq splits a big compressed file into several small ones loading
all of the reads in parallel, generating the corresponding suffixes, grouping those suffixes
with the exact initial string into the same partition, and applying string graph construction
in parallel by partitions. Similarly, an innovative algorithmic approach proposed by Paulson
(2018) is called Scalable Overlap-graph Reduction Algorithms (SORA), performing string
graph reduction on Apache Spark. SORA was evaluated with human genome samples to
process a nearly one billion edge of string graph in a short time frame with linear scaling.

Parallelization enhances the performance of streaming massive genome data, genome
index construction, and overlapping in the de novo approach or read alignment in the
reference-guided approach. Despite its performance, due to the nature of the hybrid
assembly approach, to our best knowledge, the usage of parallelization in overlapping and
reads alignment for genome assembly is yet to be fully implemented.

CONCLUSIONS
Assembling genome reads with the presence of repetitive sequences at a good quality is
essentially important but, indeed, far more challenging. Ignoring repeats in the genome
would revoke the purpose of the genome assembly. A massive number of reads produced
by sequencing technologies have caused high computational performance for the genome
assembly approach. A lot of research has contributed significantly to the development
of enhancing assembly accuracy by reducing the degree of misassembly in the genome
assembly approaches. In this article, we suggest by using prior repeat identification
methods to create prior repeat resolution guiding overlapping algorithm in de novo or
alignment algorithm in the reference-guided approach could reduce the chance of genome
misassembly. However, none of the repeat identification methods can accurately detect
all types with different lengths of repetitive sequences. The combination of de novo with
the reference-guided assembly approach could yield better results for genome assembly,
which can be another alternative solution. Although the hybrid assembly approaches
found to outperform the individual de novo approach and the reference-guided approach,
repetitive sequences can still generate misassembly, which could be enhanced through the
use of multiple samples or multiple reference genomes. However, using multiple samples
or reference genomes will add high computational complexity to the hybrid assembly
approach. Moreover, most of the current assembly hybrid approaches still lack repeat
identification prior to the approach, which can help to increase the accuracy of the genome
assembled.

The combination between the de novo approach and the reference-guide approach comes
with a more computationally extensive performance challenge than using the approach
individually. Therefore, the investigation of optimizing the computational performance
challenges in the hybrid assembly approach for overlapping and reads alignment is still an
open challenge.

Enhancement of the repeat identification accuracy by approaches would be one of
the main priorities in addressing issues of genome misassembly. The enhanced repeat
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Figure 21 Solution to propose accurate and optimized assembly hybrid approach.
Full-size DOI: 10.7717/peerjcs.1180/fig-21

identification method should be added at the prior stage for hybrid genome assembly to
enhance the accuracy without relying on multiple samples or reference genomes, which
can increase the computational complexity of the the hybrid assembly approach.

Consequently, the performance of the hybrid assembly approach might be optimized
through the hybridization of indexingmethods with parallelization to optimize overlapping
and reads alignment in the hybrid genome assembly approach.

Hybrid genome assembly enhanced by accurate prior repeat identification and optimized
by a combination of indexing and parallelization, as shown in Fig. 21, might be a novel
solution for assembling repetitive genomes from short reads.
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