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ABSTRACT
To solve the nonlinear constrained optimization problem, a particle swarm
optimization algorithm based on the improved Deb criterion (CPSO) is proposed.
Based on the Deb criterion, the algorithm retains the information of ‘excellent’
infeasible solutions. The algorithm uses this information to escape from the local best
solution and quickly converge to the global best solution. Additionally, to further
improve the global search ability of the algorithm, the DE strategy is used to optimize
the personal best position of the particle, which speeds up the convergence speed of
the algorithm. The performance of our method was tested on 24 benchmark
problems from IEEE CEC2006 and three real-world constraint optimization
problems from CEC2020. The simulation results show that the CPSO algorithm is
effective.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation
Keywords Particle swarm optimization algorithm, Constrained optimization problems, Deb
criterion

INTRODUCTION
Various types of constraints in numerous practical problems increase the difficulty of
optimization. Problems with constraints are referred to as constrained optimization
problems (COPs) (Sun & Yuan, 2006). Because the efficient solution of COPs is an
important research topic in the optimization field, studying methods for solving COPs is
both theoretically and practically important.

The core of the solution method for a COP is the constraint-handling technique
employed. The key to designing a constraint-handling technique is balancing the objective
function against the constraint function. The most popular constraint-handling techniques
fall within three categories: (1) penalty function-based methods; (2) methods based on a
feasibility criterion (a Deb criterion); and (3) multiobjective optimization-based methods.
For the first method, a penalty factor is introduced into the constraint function, which is
then included in the objective function, thereby converting the COP into an unconstrained
optimization problem. These methods include the static penalty function (Kulkarni & Tai,
2011), dynamic penalty function (Liu et al., 2016), and adaptive penalty function (Yu et al.,
2010). These methods are simple and easy to implement and have therefore been widely
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used in numerous algorithms. However, selecting penalty factors, which directly affect the
results, is very difficult. For the second approach, Deb proposed this criterion in 2000 (Deb,
2000) as a means of selecting between solutions: a feasible solution is always preferred to an
infeasible solution; for two feasible solutions, the one with a smaller fitness value is
retained; and for two infeasible solutions, the one with a lower level of constraint violation
is retained. This method is easy to implement, has a high convergence speed and is
therefore widely used in various algorithms for solving COPs (Wang et al., 2016; Sarker,
Elsayed & Ray, 2014; Elsayed, Sarker & Mezura-Montes, 2014). However, this method
overemphasizes the importance of feasibility: under certain conditions, infeasible solutions
may be closer to the global optimum than feasible solutions. Regardless, these ‘excellent’
infeasible solutions containing useful information would be discarded using the Deb
criterion. Thus, studying how to better utilize these ‘excellent’ infeasible solutions is
necessary. For the third problem, a COP is transformed into an unconstrained
multiobjective optimization problem with two objectives (Wang et al., 2007): the objective
function of the original problem and a constraint-violation-degree function composed of
all the constraint functions of the original problem. This method can be solved by existing
multiobjective algorithms (Wang, Dai & Hu, 2010; Cai, Hu & Fan, 2013), and it can
produce a good diversity of solutions. However, multiobjective optimization problems
have a high computational time complexity and are difficult to solve.

With the rapid development of intelligent algorithms, different algorithms have been
integrated into the abovementioned methods for solving COPs. For example, Wang et al.
(2016) proposed a FROFI algorithm in which feasibility criteria were incorporated into a
differential evolution (DE) algorithm to solve COPs. Karaboga & Akay (2011) integrated
the Deb criterion and an improved artificial bee colony (ABC) algorithm and used a
probabilistic selection scheme for feasible solutions based on their fitness values. Francisco,
Costa & Rocha (2016) combined the firefly algorithm with feasibility and dominance rules
and a fitness function based on global competitive ranking to solve nonsmooth nonconvex
constrained global optimization problems. Kohli & Arora (2018) proposed the chaotic grey
wolf algorithm for COPs. Kimbrough et al. (2008) used a data-driven approach to analyse
the dynamics of a two-population genetic algorithm (GA). Among numerous available
algorithms, the particle swarm optimization (PSO) algorithm proposed by Kennedy &
Eberhart (1995) has a small number of parameters and a fast convergence and has
therefore attracted considerable attention for solving COPs. Yadav & Deep (2014)
proposed a coswarm PSO algorithm for nonlinear constrained optimization. In this
algorithm, the total swarm is subdivided into two sub swarms. The first swarm uses the
shrinking hypersphere PSO (SHPSO), and the second uses DE. Venter & Haftka (2010)
converted the COP into an unconstrained biobjective optimization, which was solved by a
multiobjective PSO algorithm. Liu et al. (2018) proposed a parallel boundary search PSO
algorithm, in which an improved constrained PSO algorithm is adopted to conduct a
global search for one branch, while the subset constrained boundary narrower (SCBN)
function and sequential quadratic programming (SQP) are applied to perform a local
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boundary search for a different branch. A cooperative mechanism of the two branches
guides the global search direction to the boundaries of the active constraints. Liu, Cai &
Wang (2010) integrated the PSO algorithm with the DE algorithm to solve COPs. When
the PSO algorithm remains stagnant, introducing DE during the PSO update forces the
PSO algorithm out of stagnation. Wang & Cai (2009) used a parallel search operator to
divide an existing swarm into multiple subspaces and a local PSO algorithm as the search
engine for each subswarm. DE improves the global search by evolving the optimal solution
for individual particles. Kohler, Vellasco & Tanscheit (2019) proposed a novel PSO
algorithm, PSO+, which uses a feasibility repair operator and two swarms to ensure that a
swarm always exists with particles that fully satisfy every constraint. In addition, diversity
is inserted into the swarm to improve the search-space coverage. Ang et al. (2020)
introduced a novel constraint-handling technique to guide the population search towards
the feasible regions of the search space. Two evolution phases, known as current swarm
evolution and memory swarm evolution, are introduced to provide multiple search
operators for individual particles and thereby improve the robustness of the algorithm for
solving different types of COPs.

A PSO algorithm based on an improved Deb criterion was developed in this study to
solve COPs. Useful information from ‘excellent’ infeasible solutions is retained to guide the
algorithm in jumping out of a local extremum and to accelerate convergence to the global
optimal solution. Moreover, inspired by the use of HMPSO (Wang & Cai, 2009) and PSO-
DE (Liu, Cai & Wang, 2010) to improve the global search ability, DE was introduced to
optimize the particle positions in the swarm, thereby increasing the convergence speed of
the proposed algorithm.

INTRODUCTION TO COPS
A general COP can be expressed as follows (Sun & Yuan, 2006):

min f ðxÞ
s:t: gjðxÞ � 0; j ¼ 1; 2; L; q

hjðxÞ ¼ 0; j ¼ qþ 1; qþ 2; L;m

x ¼ ðx1; x2; L; xDÞ 2 S

Li � xi � Ui; i ¼ 1; 2; L;D

(1)

where x 2 S is the decision variable; S ¼ QD
i¼1 ½Li;Ui� is the decision space; Li and Ui are

the lower and upper bounds of the ith component, respectively; f ðxÞ is the objective
function; gjðxÞ is the jth inequality constraint; hjðxÞ is the jth equality constraint; and q and
m� q are the numbers of inequality and equality constraints, respectively.

For a COP, the degree of violation of each decision vector x for the jth constraint is
defined as

GjðxÞ ¼ maxð0; gjðxÞÞ; 1 � j � q
maxð0; jhjðxÞj � dÞ qþ 1 � j � m

�

where d is the slack in the equality constraint. Therefore, the degree of violation of the
decision vector x for all constraints can be defined as given below.
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GðxÞ ¼
Xm
j¼1

GjðxÞ

If the degree of constraint violation of the decision vector x is GðxÞ ¼ 0, then the
decision vector is a feasible solution of the COP; otherwise, it is an infeasible solution. The
feasible solution with the minimum value is the optimal feasible solution. Thus, the goal of
solving the COP is to find the feasible solution with the minimum function value.

A PSO ALGORITHM BASED ON AN IMPROVED DEB
CRITERION
PSO is an evolutionary technique that was proposed by Dr. Eberhart and Dr. Kennedy in
1995 (Kennedy & Eberhart, 1995). PSO originated from research on the predatory
behaviour of birds. PSO is similar to the genetic algorithm (GA) in that it is an iterative-
based optimization method; that is, a system is initialized using a set of random solutions,
and the optimal value is then searched through iteration.

(1) Classical PSO algorithm
Consider an n-dimensional target search space containing a population of N particles,

each of which is regarded as a point. Each particle is characterized by a unique position
vector x ¼ ðx1; x2;…; xnÞ that corresponds to a different fitness function value of the
objective function.

Algorithm 3.1 Adaptive PSO (APSO)
Step 1: Initialization. The population size N, self-cognitive coefficient c1, and social-

cognitive coefficient c2 are determined. The i-th particle (i ¼ ð1; 2;…;NÞ) in the n-
dimensional space is characterized by a position vector xi and a velocity vector vi. The
maximum number of iterations is Tmax. An initial swarm Xð0Þ of N particles is randomly
generated, and t :¼ 0 is set.

Step 2: Particle evaluation. The fitness value of each particle is calculated or evaluated.
Step 3: The velocity and position of each particle are updated using the following

equations:

vTþ1
id ¼ wvTid þ c1r1ðpibestd � xTidÞ þ c2r2ðgbestd � xTidÞ (2)

xTþ1
id ¼ xTid þ vTþ1

id (3)

w ¼ wmax � tðwmax � wminÞ
Tmax

(4)

where wmax and wmin are the maximum and minimum values of the inertia weights,
respectively.

Step 4: The best position pibest of the i�th particle and the global best position gbest are
updated for each particle.

Step 5: Termination. If the termination Deb criterion is met, the global optimal value is
output as the optimal solution, and the calculation process is terminated. Otherwise,
t :¼ t þ 1 is set, and the process is repeated from Step 2.
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Unlike the typical PSO algorithm, the APSO algorithm introduces an adaptive linear
decreasing function into the selection of inertia weights, which is similar to the concept of a
global search.

(2) Improved Deb criterion
Unlike the methods used to solve general unconstrained optimization problems, the

entire space must be searched to solve COPs. Having to both optimize the objective
function and ensure the feasibility of the solution during the evolution process inevitably
increases the difficulty of the solution procedure. Hence, the development of the Deb
criterion has attracted considerable attention. To satisfy the Deb criterion, a feasible
solution is used to replace an infeasible solution to become the optimal particle position for
the current generation. However, the condition shown in Fig. 1 often occurs, that is, the
infeasible solution is closer to the global best position than the feasible solution. Discarding
the infeasible solution to satisfy the Deb criterion affects the convergence speed. Therefore,
we propose an improved Deb criterion. Specifically, an ‘excellent’ infeasible solution for
which the objective function values are close to the global best solution is stored. The rules
for this procedure are given below.

i) If two particles represent feasible solutions, the particle with the smaller fitness value is
retained.

ii) If one particle represents a feasible solution and the other represents an infeasible
solution, the particle representing the feasible solution is retained. Moreover, an
infeasible solution with a small fitness value is stored in an ‘excellent’ infeasible
solution set A.

iii) If both particles represent infeasible solutions, the particle with a lower degree of
constraint violation is retained. Moreover, an infeasible solution for an unselected
particle with a small fitness value is also stored in the ‘excellent’ infeasible solution set
A.

Thus, an ‘excellent’ infeasible solution set is built from infeasible solutions with small
fitness values. In subsequent operations, these particles are used to update the current
swarm, where the information from these infeasible solutions is used in the iterative
process.

Figure 1 The position relation of feasible solution, infeasible solution and global best solution.
Full-size DOI: 10.7717/peerj-cs.1178/fig-1
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(3) Updating the optimal particle position
After each iteration of the algorithm, the optimal particle position is updated using the

improved Deb criterion. Because the PSO algorithm can easily fall into a local optimum,
DE has been integrated into the PSO algorithm to improve the global search ability (Yadav
& Deep, 2014; Liu, Cai &Wang, 2010;Wang & Cai, 2009) with good results. Therefore, DE
was used to improve the global search ability of the algorithm in this study.

The following steps are performed.

(i) Randomly select r1; r2 2 f1; 2;…;Ng for the optimal position of the ith particle,
i ¼ 1; 2;…;N .

(ii) Mutation: vi ¼ Pbesti þ FðPbestr2 � Pbestr1Þ, where vi is an intermediate variable, and
F is a scaling factor.

(iii) Cross operation: for j ¼ 1:n

ui;j ¼ vi;j if randj � CR or j ¼ jrand
Pbesti;j otherwise

�

where ui;j is an intermediate variable, CR is the crossover probability, and jrand is a random
integer, f1; 2;…; ng.
(iv) If ui;j exceeds the upper and lower bounds of the jth dimension, the following equation
is used (Liu, Cai & Wang, 2010):

ui;j ¼
Lj if rand � 0:5 and ui;j, Lj

2 � Lj � ui;j if rand. 0:5 and ui;j, Lj
Uj if rand � 0:5 and ui;j.Uj

2 � Uj � ui;j if rand. 0:5 and ui;j.Uj

8>><
>>:

where rand is a random number within [0, 1] with a normal distribution.

(v) Compare ui and Pbesti based on the improved Deb criterion. If ui is better, then update
Pbesti and the infeasible solution set A.

Note that the DE strategy is incorporated into the HMPSO algorithm (Wang & Cai,
2009) to update the optimal positions of individual particles. However, the algorithm
performs a mutation operation on a particle’s optimal position by using three other
particles to generate an intermediate particle, without using the information for the
optimal position of the particle to be mutated. The optimal position of a particle
determined by the PSO algorithm is the best position of the particle over all iterations,
which contains historical information and should not be directly discarded. Therefore, the
optimal position of the particle to be mutated is retained, and the optimal positions of only
two other particles are used in the mutation operation.

(4) Updating the current swarm using the infeasible solution set
The PSO algorithm differs from the DE and GA algorithms. Both of these algorithms

only perform evolutionary optimization of the current population. However, the PSO
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algorithm stores both the current swarm and the optimal-particle swarm, that is, the
optimal solutions of the particles since the first iteration. Many PSO modifications were
developed based on the optimal particle swarm, and the effect of the efficient evolution of
the current swarm on the entire algorithm was neglected. In “Classical PSO algorithm”, we
used the improved Deb criterion to obtain an ‘excellent’ infeasible solution set A. Inspired
by the FROFI algorithm (Wang et al., 2016), this infeasible solution set is used to update
the current particle swarm. However, the FROFI algorithm only uses an external set to
update one particle of the current swarm in each iteration, such that information from
excellent infeasible solutions is not used. Hence, the infeasible solution set was used in this
study to guide the evolution of the current swarm.

The following steps are performed.

i) A nondominance operation is performed on the elements of set A; that is, the objective
function value and the degree of constraint violation are regarded as two objective
values. Particle dominance is considered as follows: if the objective function value and
degree of constraint violation of a particle a1 are higher than those of a2, then a1 is
removed from the swarm. This process is repeated until all dominant particles are
removed.

ii) The particle with the lowest degree of constraint violation in set A and the particle
with the highest degree of constraint violation in the current swarm are compared.
If the former degree is larger than the latter degree, the current particle is replaced with
the former particle and deleted from set A. This process is repeated until the degree of
constraint violation of the particle with the lowest degree of constraint violation in set
A is larger than the highest degree of constraint violation in the current swarm.

(5) Retention strategy used to determine the best global position
The following retention strategy is used to determine the global best position. (i) The

particles with global optimal positions and the optimal particle swarm are combined into a
candidate swarm U. (ii) If swarm U contains feasible solutions, the particle solution with
the smallest fitness value is stored as the global best position. If swarm U does not contain
feasible solutions, the particle solution with the smallest constraint violation value is stored
as the global best position.

(6) PSO algorithm based on the improved Deb criterion
Algorithm 2
The procedure for the PSO algorithm for constrained optimization problems (CPSO) is

summarized below.
Step 1: Initialization. Randomly initialize the position vector X ¼ ðx1; x2;…; xNÞ and

the velocity vector V ¼ ðv1; v2;…; vNÞ; set the parameters c1, c2, wmax, wmin, F, CR, Tmax,
N , and D (the dimensions of the decision vector); and set t = 0.

Step 2: Calculate the objective function value of each particle in the initial swarm, where
the optimal positions of the initial particles are Pbest ¼ X. Store gbest using the retention
strategy described in “Updating the Current Swarm Using the Infeasible Solution Set”.
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Step 3: Update the current swarm based on Eqs. (2) and (3) to generate a new
generation xi;jtþ1, and use the following equation to treat out-of-bound particles (Liu et al.,
2018).

xi;j
tþ1 ¼

0:5ðxi;jt þ LjÞ if xi;jt , Lj
0:5ðxi;jt þ UjÞ if xi;jt > Uj

xi;jtþ1 otherwise

8<
: ;

Step 4: Update the optimal particle positions pibest and i ¼ ð1; 2;…;NÞ based on the
improved Deb criterion proposed in “Classical PSO algorithm”, and store ‘excellent’
infeasible solutions in set A.

Step 5: Use DE (as described in “Improved Deb criterion”) to update the optimal
particle position and set A.

Step 6: Update the current swarm using set A, and after the update, let A ¼ f.
Step 7: Update gbest based on the retention strategy.
Step 8: Termination. If the termination criterion is met, the global best particle is output

as the optimal solution, and the calculation process is terminated. Otherwise, let t :¼ t þ 1,
and return to Step 2.

(7) Complexity Analysis
We present the computational time complexity of the CPSO algorithm below,

considering only the worst-case scenarios for the main steps during one iteration for a
swarm of size N.

1. Updating a particle: OðNÞ
2. Updating the optimal particle position and the set A: OðNÞ
3. DE updating strategy: OðNÞ
4. Update the current swarm using set A (for the worst case in which all the current
particles must be replaced): OðN logNÞ

5. The retention strategy for the global best position: OðNÞ
Thus, the computational time complexity of the CPSO algorithm for the worst case is

OðN logNÞ, which demonstrates that the algorithm is computationally efficient.

TEST FUNCTIONS AND PARAMETER SETTINGS
A total of 24 test functions from IEEE CEC2006 (Liang et al., 2006) were used to further
evaluate the performance of the proposed algorithm. However, because finding feasible
solutions for functions G20 and G22 is widely believed to be difficult, they were
subsequently excluded. The 22 remaining functions were of various types. Table 1 shows
the specific characteristics of the functions. N represents the number of decision variables.
Linear, nonlinear, polynomial, quadratic, and cubic objective functions are considered.
q ¼ j�j=jSj is the estimated ratio between the randomly simulated feasible area and the
search space, jSj is the number of randomly generated solutions in the search space, and
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j�j is the number of feasible solutions in jSj. The number of simulations is usually
1,000,000. LI and NI represent linear and nonlinear inequality constraints, respectively. LE
andNE represent linear and nonlinear equality constraints, respectively. a is the number of
active constraint functions near the optimal solution. The optimal solutions of the
considered functions are known, where f ðx�Þ denotes the global optimal function value.
The improved optimal solution of G17 obtained in the literature (Wang & Cai, 2011) was
used in this study.

To compare the performances of different algorithms, the parameters of HMPSO
(Wang & Cai, 2009) were used for CPSO: c1 ¼ 1:7, c2 ¼ 1:7, wmax ¼ 0:9, wmin ¼ 0:5,

F ¼ 0:7, CR ¼ 1:0, number of evaluations of the fitness function = 5� 105, and
d ¼ 0:0001. The algorithm was programmed and run in MATLAB software using a
computer with an Intel (R) core (TM) i7-6567U CPU @ 3.30 GHz 3.20 GHz processor and
8.00 GB of memory.

The Wilcoxon rank-sum test was used to compare the performance of these algorithms.
The null hypothesis is that there is no significant difference in the performance between
the proposed algorithm and the corresponding algorithm. The symbol (+) indicates
that the proposed algorithm is significantly better compared to the corresponding

Table 1 Salient features of 22 test problems.

Prob. n Type of objective function q (%) LI NI LE NE a f ðx�Þ
G01 13 Quadratic 0.0111% 9 0 0 0 6 −15.0000000000

G02 20 Nonlinear 99.9971% 0 2 0 0 1 −0.8036191042

G03 10 Polynomial 0.0000% 0 0 0 1 1 −1.0005001000

G04 5 Quadratic 52.1230% 0 6 0 0 2 −30,665.5386717834

G05 4 Cubic 0.0000% 2 0 0 3 3 5,126.4967140071

G06 2 Cubic 0.0066% 0 2 0 0 2 −6,961.8138755802

G07 10 Quadratic 0.0003% 3 4 0 0 6 24.3062090681

G08 2 Nonlinear 0.8560% 0 2 0 0 0 −0.0958250415

G09 7 Polynomial 0.5121% 0 4 0 0 2 680.6300573745

G10 8 Linear 0.0010% 3 3 0 0 6 7,049.2480205286

G11 2 Quadratic 0.0000% 0 0 0 1 1 0.7499000000

G12 3 Quadratic 4.7713% 0 1 0 0 0 −1.0000000000

G13 5 Nonlinear 0.0000% 0 0 0 3 3 0.0539415140

G14 10 Nonlinear 0.0000% 0 0 3 0 3 −47.7648884595

G15 3 Quadratic 0.0000% 0 0 1 1 2 961.7150222899

G16 5 Nonlinear 0.0204% 4 34 0 0 4 −1.9051552586

G17 6 Nonlinear 0.0000% 0 0 0 4 4 8,853.53387480648

G18 9 Quadratic 0.0000% 0 13 0 0 6 −0.8660254038

G19 15 Nonlinear 33.4761% 0 5 0 0 0 32.6555929502

G21 7 Linear 0.0000% 0 1 0 5 6 193.7245100700

G23 9 Linear 0.0000% 0 2 3 1 6 −400.0551000000

G24 2 Linear 79.6556% 0 2 0 0 2 −5.5080132716
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algorithms based on the Wilcoxon rank-sum test at the α = 0.05 significance level; the
symbol (−) indicates significantly worse, and the symbol (=) indicates no significant
difference (Derrac et al., 2011).

RESULTS
(1) Comparison of improved PSO algorithms based on different strategies

We introduced the improved Deb criterion (IDeb) and the DE update strategy into the
classic PSO algorithm. To demonstrate the effectiveness of the individual strategies, two
algorithms were constructed, i.e., PSO+Deb+DE and PSO+IDeb. The same parameters
were used for CPSO, PSO+Deb+DE, and PSO+IDeb to facilitate comparison of the
numerical results.

Table 2 shows the feasible rate and success rate of CPSO, PSO+Deb+DE and PSO+IDeb
for the 22 test functions after 25 runs. The feasible rate refers to the proportion of feasible
solutions in the numerical results, and the success rate refers to the proportion of solutions

Table 2 The feasible rate and success rate of the three algorithms on 22 test problems.

Prob. Feasible rate% Success rate%

CPSO PSO+Deb+DE PSO+IDeb CPSO PSO+Deb+DE PSO+IDeb

G01 100 100 100 100 88 8

G02 100 100 100 36 0 0

G03 100 100 100 96 92 0

G04 100 100 100 100 100 100

G05 100 100 100 100 100 8

G06 100 100 100 100 100 100

G07 100 100 100 100 100 0

G08 100 100 100 100 100 100

G09 100 100 100 100 100 100

G10 100 100 100 100 100 0

G11 100 100 100 100 100 100

G12 100 100 100 100 100 100

G13 100 100 100 48 40 0

G14 100 100 100 100 100 0

G15 100 100 100 100 100 44

G16 100 100 100 100 100 100

G17 100 100 100 36 32 0

G18 100 100 100 100 100 16

G19 100 100 100 100 100 0

G21 96 92 20 52 64 0

G23 100 100 64 100 96 0

G24 100 100 100 100 100 100
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for which the error in the function value is f ðxÞ � f ðx�Þ � 0:0001, where x is a feasible
solution. The formula is as follows:

feasible rate ¼ A�

A

success rate ¼ A��

A�

where A� denotes the number of feasible solutions obtained by the algorithm, A denotes
the number of solutions obtained by the algorithm, A�� denotes the number of solutions
for which the error in the function value f ðxÞ � f ðx�Þ � 0:0001, x is a feasible solution,
and x� is the known optimal solution.

The numerical results show that the feasible rates of CPSO and PSO+Deb+DE reached
100%, except for G21. The feasible rate of CPSO was 96% for G21 (that is, one out of 25
runs converged outside the feasible region), which was higher than that for PSO+Deb+DE
(92%) and PSO+IDeb (20%). PSO+IDeb had a lower feasible rate of 64% for G23. A 100%
success rate was obtained for 17 functions by CPSO, for 15 functions by PSO+Deb+DE,
and for eight functions by PSO+IDeb. After 25 runs, PSO+Deb+DE had not successfully
solved one function (G02) compared to 10 functions for PSO+IDeb. These results show
that introducing DE to update the optimal particle solution set increased the feasible rate of
the PSO algorithm and improved the global search ability. In particular, the feasible rates
of all three algorithms reached 100% for G02, but the success rates were 32%, 0%, and 0%.
Thus, the feasible space of a function can be easily found, but the global best solution is
difficult to obtain. The success rate of PSO+IDeb was not high but represented an
improvement over that of PSO.

The abovementioned numerical results were analysed in detail. Table 3 shows the
numerical results obtained using the three algorithms for the 22 test functions after 25
runs. In the table, Best denotes the best solution,Worst denotes the worst solution,Median
denotes the median value, Mean denotes the mean value, and Std denotes the standard
deviation. Wil test denotes the Wilcoxon test result. The success rates show that the
functions for which a success rate of 100% was obtained were relatively stable, with a small
standard deviation. Next, the five functions for which the CPSO success rate did not reach
100% (i.e., G02, G03, G13, G17, and G21) were considered. (a) For G02, only CPSO
obtained the optimal solution of −8.036191E−01. The Std obtained using CPSO was also
the smallest, indicating that the algorithm results fluctuated around the optimal solution.
(b) For G03, the results of CPSO and PSO+Deb+DE were close, although a smaller Std was
obtained by using CPSO than by using PSO+Deb+DE. By comparison, PSO+IDeb did not
produce good results. (c) For G13, CPSO and PSO+Deb+DE produced very close and good
results, whereas the optimal value obtained by PSO+IDeb was far from the best known
solution and indicated a nonideal performance. (d) For G17, both CPSO and PSO+Deb
+DE obtained the most recently obtained optimal solution (8,853.53387480648), where the
mean of CPSO was closer to the global best solution, but the std of PSO+Deb+DE was
smaller. In addition, the PSO+IDeb result was some distance from the latest optimal
solution. (e) For G21, the stability of the three algorithms was comparable, although that of
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Table 3 Results obtained by the three algorithms on 22 test problems.

Prob. Algorithm Best Worst Median Mean (Wil Test) Std

G01 CPSO −1.500000E+01 −1.500000E+01 −1.500000E+01 −1.500000E+01 0

PSO+Deb+DE −1.500000E+01 −1.300000E+01 −1.500000E+01 −1.476000E+01(=) 6.6333E−01

PSO+IDeb −1.500000E+01 −1.450557E−21 −6.000000E+00 −7.832492E+00(+) 4.2253E+00

G02 CPSO −8.036191E−01 −7.485572E−01 −7.948968E−01 −7.872680E−01 1.9431E−02

PSO+Deb+DE −7.852643E−01 −5.323286E−01 −7.425712E−01 −7.192754E−01(+) 6.9977E−02

PSO+IDeb −8.023317E−01 −3.380794E−01 −6.101827E−01 −6.145027E−01(+) 1.1817E−01

G03 CPSO −1.000500E+00 −9.945233E−01 −1.000500E+00 −1.000261E+00 1.1953E−03

PSO+Deb+DE −1.000500E+00 −9.694231E−01 −1.000500E+00 −9.990905E−01(=) 6.2359E−03

PSO+IDeb −9.181721E−01 −9.532822E−04 −3.325069E−01 −3.516404E−01(+) 3.5625E−02

G04 CPSO −3.066554E+04 −3.066554E+04 −3.066554E+04 −3.066554E+04 3.7130E−12

PSO+Deb+DE −3.066554E+04 −3.066554E+04 −3.066554E+04 −3.066554E+04(=) 3.7130E−12

PSO+IDeb −3.066554E+04 −3.066554E+04 −3.066554E+04 −3.066554E+04(=) 3.7130E−12

G05 CPSO 5.126497E+03 5.126497E+03 5.126497E+03 5.126497E+03 2.7847E−12

PSO+Deb+DE 5.126497E+03 5.126497E+03 5.126497E+03 5.126497E+03(=) 2.7847E−12

PSO+IDeb 5.126497E+03 6.095104E+03 5.169455E+03 5.544048E+03(+) 4.4784E+02

G06 CPSO −6.961814E+03 −6.961814E+03 −6.961814E+03 −6.961814E+03 0

PSO+Deb+DE −6.961814E+03 −6.961814E+03 −6.961814E+03 −6.961814E+03(=) 0

PSO+IDeb −6.961814E+03 −6.961814E+03 −6.961814E+03 −6.961814E+03(=) 0

G07 CPSO 2.430621E+01 2.430621E+01 2.430621E+01 2.430621E+01 8.2685E−15

PSO+Deb+DE 2.430621E+01 2.430621E+01 2.430621E+01 2.430621E+01(=) 1.7896E−14

PSO+IDeb 2.438534E+01 1.830037E+02 2.515368E+01 3.181996E+01(+) 3.3653E+01

G08 CPSO −9.582504E−02 −9.582504E−02 −9.582504E−02 −9.582504E−02 1.2981E−17

PSO+Deb+DE −9.582504E−02 −9.582504E−02 −9.582504E−02 −9.582504E−02(=) 1.3878E−17

PSO+IDeb −9.582504E−02 −9.582504E−02 −9.582504E−02 −9.582504E−02(=) 4.0062E−18

G09 CPSO 6.806301E+02 6.806301E+02 6.806301E+02 6.806301E+02 2.3206E−13

PSO+Deb+DE 6.806301E+02 6.806301E+02 6.806301E+02 6.806301E+02(=) 2.3206E−13

PSO+IDeb 6.806301E+02 6.806301E+02 6.806301E+02 6.806301E+02(=) 9.4636E−05

G10 CPSO 7.049248E+03 7.049248E+03 7.049248E+03 7.049248E+03 2.9646E−12

PSO+Deb+DE 7.049248E+03 7.049248E+03 7.049248E+03 7.049248E+03(=) 3.1506E−12

PSO+IDeb 7.281934E+03 8.487416E+03 7.891132E+03 7.786813E+03(+) 4.6290E+02

G11 CPSO 7.499000E−01 7.499000E−01 7.499000E−01 7.499000E−01 1.1331E−16

PSO+Deb+DE 7.499000E−01 7.499000E−01 7.499000E−01 7.499000E−01(=) 1.1331E−16

PSO+IDeb 7.499000E−01 7.499000E−01 7.499000E−01 7.499000E−01(=) 1.1102E−16

G12 CPSO −1.000000E+00 −1.000000E+00 −1.000000E+00 −1.000000E+00 0

PSO+Deb+DE −1.000000E+00 −1.000000E+00 −1.000000E+00 −1.000000E+00(=) 0

PSO+IDeb −1.000000E+00 −1.000000E+00 −1.000000E+00 −1.000000E+00(=) 0

G13 CPSO 5.394151E−02 4.388026E−01 4.388026E−01 2.540693E−01 1.9624E−01

PSO+Deb+DE 5.394151E−02 1.000000E+00 4.388026E−01 3.522019E−01(=) 3.0540E−01

PSO+IDeb 7.436901E−02 2.520161E+00 7.870618E−01 7.766994E−01(+) 6.3030E−01
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CPSO was slightly superior. Both CPSO and PSO+Deb+DE obtained the global best
solution. However, none of the three algorithms solved the problem stably. The results
presented in Tables 2 and 3 show that CPSO was superior to the other two algorithms for
solving the 22 functions; that is, the integration of Deb and DE improved the ability of the
PSO algorithm to solve the COPs. The results of the Wilcoxon test show that the
performance of CPSO is significantly better than PSO+IDeb, which is equivalent to PSO
+Deb+DE. However, combined with the success rates, the strategy of IDeb and DE can be
used simultaneously to solve these 22 problems.

Figures 2–9 shows the mean convergence of the 22 functions for the three algorithms.
The x-axis is the number of evaluations of the fitness function, and the y-axis is the mean

Table 3 (continued)

Prob. Algorithm Best Worst Median Mean (Wil Test) Std

G14 CPSO −4.776489E+01 −4.776489E+01 −4.776489E+01 −4.776489E+01 2.9008E−14

PSO+Deb+DE −4.776489E+01 −4.776489E+01 −4.776489E+01 −4.776489E+01(=) 2.9970E−14

PSO+IDeb −4.751686E+01 −3.522036E+01 −4.250627E+01 −4.194900E+01(+) 3.6848E+00

G15 CPSO 9.617150E+02 9.617150E+02 9.617150E+02 9.617150E+02 5.8016E−13

PSO+Deb+DE 9.617150E+02 9.617150E+02 9.617150E+02 9.617150E+02(=) 5.8016E−13

PSO+IDeb 9.617150E+02 9.714031E+02 9.617327E+02 9.642034E+02(+) 3.5206E+00

G16 CPSO −1.905155E+00 −1.905155E+00 −1.905155E+00 −1.905155E+00 4.5325E−16

PSO+Deb+DE −1.905155E+00 −1.905155E+00 −1.905155E+00 −1.905155E+00(=) 4.5325E−16

PSO+IDeb −1.905155E+00 −1.905112E+00 −1.905155E+00 −1.905152E+00(+) 9.4800E−02

G17 CPSO 8.853534E+03 8.927979E+03 8.927592E+03 8.900967E+03 3.6308E+01

PSO+Deb+DE 8.853534E+03 8.928355E+03 8.927592E+03 8.903943E+03(=) 3.5294E+01

PSO+IDeb 8.862857E+03 9.278930E+03 9.011912E+03 9.040134E+03(+) 1.2451E+02

G18 CPSO −8.660254E−01 −8.660254E−01 −8.660254E−01 −8.660254E−01 4.5325E−17

PSO+Deb+DE −8.660254E−01 −8.660254E−01 −8.660254E−01 −8.660254E−01(=) 2.2888E−16

PSO+IDeb −8.660163E−01 −4.991166E−01 −8.641657E−01 −7.940803E−01(+) 1.1888E−01

G19 CPSO 3.265559E+01 3.265559E+01 3.265559E+01 3.265559E+01 2.2328E−14

PSO+Deb+DE 3.265559E+01 3.265559E+01 3.265559E+01 3.265559E+01(=) 2.5905E−14

PSO+IDeb 3.393308E+01 9.548221E+01 5.001483E+01 5.448720E+01(+) 2.6790E+01

G21 CPSO 1.937245E+02 9.454397E+02 1.937245E+02 2.657074E+02 1.5449E+02

PSO+Deb+DE 1.937245E+02 9.618374E+02 1.937245E+02 2.897845E+02(=) 2.0339E+02

PSO+IDeb 2.557580E+02 9.999908E+02 8.620895E+02 7.866938E+02(+) 2.7833E+02

G23 CPSO −4.000551E+02 −4.000550E+02 −4.000551E+02 −4.000551E+02 1.5844E−05

PSO+Deb+DE −4.000551E+02 −4.000487E+02 −4.000551E+02 −4.000548E+02(=) 1.2780E−03

PSO+IDeb −2.100001E+03 6.835154E+02 −3.900000E−03 −3.350658E+02(+) 8.2946E+02

G24 CPSO −5.508013E+00 −5.508013E+00 −5.508013E+00 −5.508013E+00 9.0649E−16

PSO+Deb+DE −5.508013E+00 −5.508013E+00 −5.508013E+00 −5.508013E+00(=) 9.0649E−16

PSO+IDeb −5.508013E+00 −5.508013E+00 −5.508013E+00 −5.508013E+00(=) 9.0649E−16

+/=/—: PSO+Deb+DE 1/21/0 PSO+IDeb 15/7/0

Note:
Best denotes the best solution; Worst denotes the worst solution; Median denotes the median value; Mean denotes the mean value; and Std denotes the standard
deviation; Wil test denotes the Wilcoxon test result.
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Figure 2 The mean convergence curves of function G01, G02, G03 for the three algorithms.
Full-size DOI: 10.7717/peerj-cs.1178/fig-2
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Figure 3 The mean convergence curves of function G04, G05, G06 for the three algorithms.
Full-size DOI: 10.7717/peerj-cs.1178/fig-3
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Figure 4 The mean convergence curves of function G07, G08, G09 for the three algorithms.
Full-size DOI: 10.7717/peerj-cs.1178/fig-4
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Figure 5 The mean convergence curves of function G10, G11, G12 for the three algorithms.
Full-size DOI: 10.7717/peerj-cs.1178/fig-5
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Figure 6 The mean convergence curves of function G13, G14, G15 for the three algorithms.
Full-size DOI: 10.7717/peerj-cs.1178/fig-6
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Figure 7 The mean convergence curves of function G16, G17, G18 for the three algorithms.
Full-size DOI: 10.7717/peerj-cs.1178/fig-7
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Figure 8 The mean convergence curves of function G19, G21, G23 for the three algorithms.
Full-size DOI: 10.7717/peerj-cs.1178/fig-8
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of the function values for 25 runs. Note that for some functions (e.g., G01, G17, and G18),
the function values may be smaller than the known optimal solution. These solutions
appeared in the early stage of iteration and were therefore infeasible and invalid solutions
that were eliminated during the later stage. Figures 2–9 shows that CPSO did not converge
as fast as PSO+Deb+DE during the early stage for G02 and G05 but converged more
rapidly during the later stage than the other two algorithms.

(2) Comparison of CPSO and HMPSO
As the DE strategy was used in both CPSO and HMPSO (Wang & Cai, 2009) to perform

evolutionary operations on the optimal particle set, the numerical results of the two
algorithms were compared to confirm the effectiveness of CPSO. The source program of
the HMPSO algorithm was obtained from Yong Wang’s personal website. The same
parameters were used to facilitate comparison. As the local search PSO algorithm is used
for sub swarms in HMPSO, the parameters c1, c2, and w are not required. The other
parameters were the same as those used in Section Test Functions and Parameter Settings.

Table 4 shows that the same numerical results were obtained using CPSO and HMPSO
for seven functions (i.e., G01, G06, G11–12, G15–16, and G24). Both algorithms obtained
the optimal solution for the remaining 15 functions, except HMPSO, which did not obtain
the optimal solution for G13. The five worst solutions obtained by CPSO (i.e., for G03,
G13, G17, G19, and G23) were better than those obtained by HMPSO, whereas the two
worst solutions obtained by HMPSO (for G02 and G21) were better than those obtained by
CPSO. Both algorithms converged to the same solution for the other functions. Both
algorithms achieved the same mean value for nine functions (i.e., G04–05, G07–10, G14,
G18, and G23). CPSO produced a better mean than HMPSO for four functions (i.e., G3,
G13, G17, and G19), and HMPSO produced better mean values for the remaining two

Figure 9 The mean convergence curves of function G24 for the three algorithms.
Full-size DOI: 10.7717/peerj-cs.1178/fig-9
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Table 4 Comparing CPSO with respect to HMPSO on 22 benchmark test functions.

Prob. Algorithm Best Worst Median Mean (Wil Test) Std

G01 CPSO −1.500000E+01 −1.500000E+01 −1.500000E+01 −1.500000E+01 0

HMPSO −1.500000E+01 −1.500000E+01 −1.500000E+01 −1.500000E+01(=) 0

G02 CPSO −8.036191E−01 −7.485572E−01 −7.948968E−01 −7.872680E−01 1.9431E−02

HMPSO −8.036191E−01 −7.930840E−01 −8.036180E−01 −8.028473E−01(+) 2.6784E−03

G03 CPSO −1.000500E+00 −9.945233E−01 −1.000500E+00 −1.000261E+00 1.1953E−03

HMPSO −1.000500E+00 −9.902628E−01 −1.000500E+00 −1.000046E+00(=) 2.0501E−03

G04 CPSO −3.066554E+04 −3.066554E+04 −3.066554E+04 −3.066554E+04 3.7130E−12

HMPSO −3.066554E+04 −3.066554E+04 −3.066554E+04 −3.066554E+04(=) 7.4260E−12

G05 CPSO 5.126497E+03 5.126497E+03 5.126497E+03 5.126497E+03 2.7847E−12

HMPSO 5.126497E+03 5.126497E+03 5.126497E+03 5.126497E+03(=) 2.9529E−12

G06 CPSO −6.961814E+03 −6.961814E+03 −6.961814E+03 −6.961814E+03 0

HMPSO −6.961814E+03 −6.961814E+03 −6.961814E+03 −6.961814E+03(=) 0

G07 CPSO 2.430621E+01 2.430621E+01 2.430621E+01 2.430621E+01 8.2685E−15

HMPSO 2.430621E+01 2.430621E+01 2.430621E+01 2.430621E+01(=) 1.4025E−11

G08 CPSO −9.582504E−02 −9.582504E−02 −9.582504E−02 −9.582504E−02 1.2981E−17

HMPSO −9.582504E−02 −9.582504E−02 −9.582504E−02 −9.582504E−02(=) 0

G09 CPSO 6.806301E+02 6.806301E+02 6.806301E+02 6.806301E+02 2.3206E−13

HMPSO 6.806301E+02 6.806301E+02 6.806301E+02 6.806301E+02(=) 2.8892E−13

G10 CPSO 7.049248E+03 7.049248E+03 7.049248E+03 7.049248E+03 2.9646E−12

HMPSO 7.049248E+03 7.049248E+03 7.049248E+03 7.049248E+03(=) 1.2125E−10

G11 CPSO 7.499000E−01 7.499000E−01 7.499000E−01 7.499000E−01 1.1331E−16

HMPSO 7.499000E−01 7.499000E−01 7.499000E−01 7.499000E−01(=) 1.1331E−16

G12 CPSO −1.000000E+00 −1.000000E+00 −1.000000E+00 −1.000000E+00 0

HMPSO −1.000000E+00 −1.000000E+00 −1.000000E+00 −1.000000E+00(=) 0

G13 CPSO 5.394151E−02 4.388026E−01 4.388026E−01 2.540693E−01 1.9624E−01

HMPSO 6.622277E−02 4.601212E−01 2.988803E−01 2.932468E−01(=) 1.4041E−01

G14 CPSO −4.776489E+01 −4.776489E+01 −4.776489E+01 −4.776489E+01 2.9008E−14

HMPSO −4.776489E+01 −4.776489E+01 −4.776489E+01 −4.776489E+01(=) 2.4911E−14

G15 CPSO 9.617150E+02 9.617150E+02 9.617150E+02 9.617150E+02 5.8016E−13

HMPSO 9.617150E+02 9.617150E+02 9.617150E+02 9.617150E+02(=) 5.8016E−13

G16 CPSO −1.905155E+00 −1.905155E+00 −1.905155E+00 −1.905155E+00 4.5325E−16

HMPSO −1.905155E+00 −1.905155E+00 −1.905155E+00 −1.905155E+00(=) 4.5325E−16

G17 CPSO 8.853534E+03 8.927979E+03 8.927592E+03 8.900967E+03 3.6308E+01

HMPSO 8.853534E+03 8.945821E+03 8.927765E+03 8.905549E+03(=) 3.7560E+01

G18 CPSO −8.660254E−01 −8.660254E−01 −8.660254E−01 −8.660254E−01 4.5325E−17

HMPSO −8.660254E−01 −8.660254E−01 −8.660254E−01 −8.660254E−01(=) 1.1413E−08

G19 CPSO 3.265559E+01 3.265559E+01 3.265559E+01 3.265559E+01 2.2328E−14

HMPSO 3.265560E+01 3.265571E+01 3.265561E+01 3.265562E+01(+) 2.4444E−05

G21 CPSO 1.937245E+02 9.454397E+02 1.937245E+02 2.657074E+02 1.5449E+02

HMPSO 1.937245E+02 3.247028E+02 1.937245E+02 2.356388E+02(−) 6.2357E+01
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functions. A smaller standard deviation was obtained by using CPSO than by using
HMPSO for 11 functions, not including G2, G8, G13, and G21. In particular, the standard
deviation obtained by using CPSO for G18 and G19 was nearly nine orders of magnitude
smaller than that of HMPSO. The Wilcoxon test results show that CPSO had the same
performance as HMPSO on 18 functions, a better performance in three functions, and a
worse performance in function G21. These results show a higher convergence and stability
for CPSO than HMPSO in solving the 22 selected functions.

(3) Comparison of CPSO and other algorithms
To further illustrate its effectiveness, the CPSO algorithm was compared with other

intelligent algorithms from the literature. The main parameters of each algorithm were set
as follows: the number of evaluations of the fitness function was 2:4� 105, the mutation
probability was 0.6, and the crossover probability was 0.8 in the GA algorithm (Mezura-
Montes & Coello, 2005). The number of evaluations of the fitness function was 2:4� 105,
and the correction rate was 0.8 in the ABC algorithm (Karaboga & Akay, 2011). The
number of evaluations of the fitness function was 2:8� 105 in the CSHPSO algorithm
(Yadav & Deep, 2014). The number of evaluations of the fitness function was 3:5� 105 in
the PESO algorithm (Zavala, Aguirre & Diharce, 2005). The number of evaluations of the
fitness function 2½1:06� 104; 1:401� 105�, F 2 ½0:9; 1:0�, and CR 2 ½0:95; 1� in the PSO-
DE algorithm (Liu, Cai & Wang, 2010). Because most studies only discuss the test
problems G01-G13, the performance of each algorithm on these 13 problems is analysed
below.

The data in Table 5 are the best value and average value obtained by solving 13 test
problems with six algorithms, and the best value obtained by each problem is expressed in
bold (because the data retention digits used in each study are different, the comparison is
based on the rounding result of the last digit). If the optimal value is the same, then all are
bold. The best value and average value of G12 were successfully obtained by the six
algorithms. However, for G02, G05 and G13, the performance of each algorithm
decreased. Except for the average value of G02 obtained by the GA algorithm, the other
best values were only solved by the CPSO algorithm, and the other algorithms were far
from the real best solution; the GA algorithm did not obtain a feasible solution on G05 and
G13. The PSO-DE, PESO and ABC algorithms obtained the best value and the best average

Table 4 (continued)

Prob. Algorithm Best Worst Median Mean (Wil Test) Std

G23 CPSO −4.000551E+02 −4.000550E+02 −4.000551E+02 −4.000551E+02 1.5844E−05

HMPSO −4.000551E+02 −4.000189E+02 −4.000551E+02 −4.000528E+02(+) 7.5429E−03

G24 CPSO −5.508013E+00 −5.508013E+00 −5.508013E+00 −5.508013E+00 9.0649E−16

HMPSO −5.508013E+00 −5.508013E+00 −5.508013E+00 −5.508013E+00(=) 9.0649E−16

+/=/— HMPSO: 3/18/1

Note:
Best denotes the best solution; Worst denotes the worst solution; Median denotes the median value; Mean denotes the mean value; and Std denotes the standard
deviation. Wil test denotes the Wilcoxon test result.
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value on seven, six and four problems, respectively. The CSHPSO algorithm only obtained
the best value on G01, G08 and G12, but the best value and average value of the algorithm
were essentially the same, which demonstrates that the stability of the CSHPSO algorithm
is good, but the ability to jump out of local extremum needs to be improved. In the CPSO
algorithm, except for the fact that the average value of G02 and G03 did not obtain the best
solution, the other numerical results are among the best values. The CPSO algorithm had a
better robustness and optimization effect than the other five algorithms in solving these 13
problems.

CONSTRAINED REAL-WORLD OPTIMIZATION
In this section, we select three real-world constraint optimization problems to test the
CPSO algorithm (Kumar et al., 2020). We compare it with the top three algorithms of IEEE
Evolutionary Computing Conference (CEC2020) and Genetic and Evolutionary

Table 5 Results obtained by the six algorithms on test problems G01–G13.

Prob. Ind. GA ABC CSHPSO PESO PSO-DE CPSO

G01 Best −14.440 −15.000 −15.0000 −15.00000 −15.00000 −15.0000000000

Mean −14.236 −15.000 −15.0000 −15.00000 −15.00000 −15.0000000000

G02 Best −0.796231 −0.803598 −0.6900 −0.792608 −0.8036145 −0.8036191000

Mean −0.788588 −0.792412 −0.4970 −0.721749 −0.756678 −0.7872680328

G03 Best −0.990 −1.000 −0.1030 −1.0005010 −1.0005010 −1.0005001000

Mean −0.976 −1.000 −0.1030 −1.0005006 −1.0005010 −1.0002609791

G04 Best −30,626.053 −30,665.539 −30,700.0000 −30,665.538672 −30,665.5387 −30,665.5386717833

Mean −30,590.455 −30,665.539 −30,700.0000 −30,665.538672 −30,665.5387 −30,665.5386717833

G05 Best NF 5,126.484 5,290.0000 5,126.484154 – 5,126.4967140071

Mean NF 5,185.714 5,290.0000 5,129.178298 – 5,126.4967140071

G06 Best −6,952.472 −6,961.814 −6,960.0000 −6,961.813876 −6,961.81388 −6,961.81387558023

Mean −6,872.204 −6,961.813 −6,960.0000 −6,961.813876 −6,961.81388 −6,961.8138755802

G07 Best 31.097 24.330 24.3000 24.306921 24.3062091 24.3062090682

Mean 34.980 24.473 24.3000 24.371253 24.3062100 24.3062090682

G08 Best −0.095825 −0.095825 −0.0958 −0.095825 −0.09582594 −0.0958250414

Mean −0.095799 −0.095825 −0.0958 −0.095825 −0.09582594 −0.0958250414

G09 Best 685.994 680.634 681.0000 680.630057 680.63006 680.6300573744

Mean 692.064 680.640 681.0000 680.630057 680.63006 680.6300573744

G10 Best 9,079.770 7,053.904 7,050.0000 7,049.459452 7,049.248021 7,049.2480205287

Mean 10,003.225 7,224.407 7,050.0000 7,099.101385 7,049.248038 7,049.2480205287

G11 Best 0.750 0.750 0.7500 0.749000 0.749999 0.7499000000

Mean 0.750 0.750 0.7500 0.749000 0.749999 0.7499000000

G12 Best −1.000 −1.000 −1.0000 −1.000000 −1.000000 −1.0000000000

Mean −1.000 −1.000 −1.0000 −1.000000 −1.000000 −1.0000000000

G13 Best 0.134057 0.760 0.4390 0.8.1498 – 0.0539415140

Mean NF 0.968 0.4390 0.626881 – 0.2540692828

Note:
Where, “NF” is no feasible solution; “–” is not involved in the literature.
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Computation Congress (GECCO2020): Self-Adaptive Spherical Search Algorithm (SASS)
(Kumar, Das & Zelinka, 2020), LSHADE for Constrained Optimization with Lévy Flight
(COLSHADE) (Gurrola-Ramos, Hernandez-Aguirre & Dalmau-Cedeno, 2020), and
Modified Covariance Matrix Adaptation Evolution Strategy (sCMAgES) (Kumar, Das &
Zelinka, 2020).

(1) Optimal operation of alkylation unit problem
The main aim of this problem is to maximize the octane number of olefin feed in the

presence of acid. The objective function is defined as an alkylating product. The problem is
formulated as follows:

min f ðxÞ ¼ �0:035x1x6 � 1:715x1 � 10:0x2 � 4:0565x3 þ 0:063x3x5
s:t: g1ðxÞ ¼ 0:0059553571x26x1 þ 0:88392857x3 � 0:1175625x6x1 � x1 � 0

g2ðxÞ ¼ 1:1088x1 þ 0:1303533x1x6 � 0:0066033x1x26 � x3 � 0
g3ðxÞ ¼ 6:66173269x26 þ 56:596669x4 þ 172:39878x5 � 1000� 191:20592x6 � 0
g4ðxÞ ¼ 1:08702x6 � 0:03762x26 þ 0:32175x4 þ 56:85075� x5 � 0
g5ðxÞ ¼ 0:006198x7x4x3 þ 2562:3121x2 � 25:125634x2x4 � x3x4 � 0
g6ðxÞ ¼ 161:18996x4x3 þ 5000:0x2x4 � 489510:0x2 � x3x4x7 � 0
g7ðxÞ ¼ 0:33x7 þ 44:333333� x5 � 0
g8ðxÞ ¼ 0:022556x5 � 1:0� 0:007595x7 � 0
g9ðxÞ ¼ 0:00061x3 � 1:0� 0:0005x1 � 0
g10ðxÞ ¼ 0:8196721x1 � x3 þ 0:819672 � 0
g11ðxÞ ¼ 24500:0x2 � 250:0x2x4 � x3x4 � 0
g12ðxÞ ¼ 1020:4082x4x2 þ 1:2244898x3x4 � 100000x2 � 0
g13ðxÞ ¼ 6:25x1x6 þ 6:25x1 � 7:625x3 � 100000 � 0
g14ðxÞ ¼ 1:22x3 � x6x1 � x1 þ 1:0 � 0
1000 � x1 � 2000; 0 � x2 � 100
2000 � x3 � 4000; 0 � x4 � 100
0 � x5 � 100; 0 � x6 � 20
0 � x7 � 200

Table 6 shows the result of the optimal operation of the alkylation unit. All algorithms
obtained a feasible solution to this problem. The best values obtained by CPSO and
COLSHADH reached −4,529.1197. The worst and mean values found by CPSO are smaller
than the best results obtained by the other algorithms. The best std value was obtained by

Table 6 The results of optimal operation of alkylation unit problem.

Prob. CPSO SASS sCMAgES COLSHADH

Best −4,529.1197 −142.7193 −4,527.7659 −4,529.1197

Worst −4,529.1189 −142.7193 −3,536.3552 −3,716.9077

Median −4,529.1196 −142.7193 −4,427.2452 −4,529.1197

Mean −4,529.1196 −142.7193 −4,324.9110 −4,366.6773

Std 2.3407E−04 2.1985e−05 269.2210 324.8848

Feasible rate% 100 100 100 100
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SASS; however, in the process of searching for the best value, the results of this algorithm
are not ideal, indicating that the algorithm became trapped in a local extreme value on this
problem. Therefore, compared with other algorithms, CPSO is more stable for solving this
problem.

(2) Weight minimization of a speed reducer problem
This problem involves the design of a speed reducer for a small aircraft engine. The

resulting optimization problem is formulated as follows:

min
f ðxÞ ¼ 0:7854x22x1ð14:9334x3 � 43:0934þ 3:3333x23Þ þ 0:7854ðx5x27 þ x4x26Þ
�1:508ðx27 þ x26Þ þ 7:447ðx37 þ x36Þ

s:t: g1ðxÞ ¼ �x1x22x3 þ 27 � 0
g2ðxÞ ¼ �x1x22x

2
3 þ 397:5 � 0

g3ðxÞ ¼ �x2x46x3x
�3
4 þ 1:93 � 0

g4ðxÞ ¼ �x2x47x3x
�3
5 þ 1:93 � 0

g1ðxÞ ¼ 10x�3
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:91� 106 þ ð745x4x�1

2 x�1
3 Þ2

q
� 1100 � 0

g1ðxÞ ¼ 10x�3
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
157:5� 106 þ ð745x5x�1

2 x�1
3 Þ2

q
� 850 � 0

g1ðxÞ ¼ x2x3 � 40 � 0
g1ðxÞ ¼ �x1x�1

2 þ 5 � 0
g1ðxÞ ¼ x1x�1

2 � 12 � 0
g1ðxÞ ¼ 15x6 � x4 þ 1:9 � 0
g1ðxÞ ¼ 1:1x7 � x5 þ 1:9 � 0
0:7 � x2 � 0:8; 17 � x3 � 28; 2:6 � x1 � 3:6
5 � x7 � 5:5; 7:3 � x5; x4 � 8:3; 2:9 � x6 � 3:9

Table 7 reveals the results of the weight minimization of a speed reducer problem. For
this problem, all algorithms obtained similar results, and the stability of SASS and
COLSHADH is slightly better. The std value of CPSO also reached 10�8, which indicates
that the CPSO algorithm is stable and effective in solving such problems.

(3) Planetary gear train design optimization problem
The main objective of this problem is to minimize the maximum errors in the gear ratio,

which is used in automobiles. To minimize the maximum error, the total number of gear

Table 7 The results of weight minimization of a speed reduce problem.

Prob. CPSO SASS sCMAgES COLSHADH

Best 2,994.4245 2,994.4245 2,994.4245 2,994.4245

Worst 2,994.4245 2,994.4245 2,994.4245 2,994.4245

Median 2,994.4245 2,994.4245 2,994.4245 2,994.4245

Mean 2,994.4245 2,994.4245 2,994.4244 2,994.4245

Std 6.1883E−08 4.6412e−13 2.7723E−12 4.5475E−13

Feasible rate% 100 100 100 100
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teeth is calculated for an automatic planetary transmission system. The problem is
formulated as follows:

min f ðxÞ ¼ max ik � i0kj j; k ¼ f1; 2;…;Rg
i1 ¼ N6

N4
; i01 ¼ 3:11; i2 ¼ N6ðN1N3 þ N2N4Þ

N1N3ðN6 � N4Þ ; i0R ¼ �3:11

IR ¼ �N2N6

N1N3
; i02 ¼ 1:84; x ¼ fp;N6;N5;N4;N3;N2;N1;m2;m1g

s:t: g1ðxÞ ¼ m3ðN6 þ 2:5Þ � Dmax � 0
g2ðxÞ ¼ m1ðN1 þ N2Þ þm1ðN2 þ 2Þ � Dmax � 0
g3ðxÞ ¼ m3ðN4 þ N5Þ þm3ðN2 þ 2Þ � Dmax � 0

g4ðxÞ ¼ m1ðN1 þ N2Þ �m3ðN6 � N3Þj j �m1 �m3 � 0
g5ðxÞ ¼ �ðN1 þ N2Þ sinðp=pÞ þ N2 þ 2þ d22 � 0
g6ðxÞ ¼ �ðN6 � N3Þ sinðp=pÞ þ N3 þ 2þ d33 � 0
g7ðxÞ ¼ �ðN4 þ N5Þ sinðp=pÞ þ N3 þ 2þ d33 � 0

g8ðxÞ ¼ ðN3 þ N5 þ 2þ d35Þ2 � ðN6 � N3Þ2 � ðN4 þ N5Þ2

þ 2ðN6 � N3ÞðN4 þ N5Þ cos
�
2p
p
� b

�
� 0

g9ðxÞ ¼ N4 � N6 þ 2N5 þ 2d56 þ 4 � 0
g10ðxÞ ¼ 2N3 � N6 þ N4 þ 2d34 þ 4 � 0

h1ðxÞ ¼ N6 � N4

p
¼ integer

d22 ¼ d33 ¼ d55 ¼ d35 ¼ d56 ¼ 0:5

b ¼ cos�1ððN4 þ N5Þ2 þ ðN6 � N3Þ2 � ðN3 þ N5Þ2Þ
2ðN6 � N3ÞðN4 þ N5Þ ;Dmax ¼ 220

p ¼ ð3; 4; 5Þ
m1 ¼ ð1:75; 2:0; 2:25; 2:5; 2:75; 3:0Þ
m3 ¼ ð1:75; 2:0; 2:25; 2:5; 2:75; 3:0Þ

17 � N1 � 96; 14 � N2 � 54; 14 � N3 � 51
17 � N4 � 46; 14 � N5 � 51; 48 � N6 � 124

Ni ¼ integer

Table 8 reports the results on the planetary gear train design optimization problem.
CPSO outperformed SASS, COLSHADE and sCMAgES. CPSO yielded a best value of
0.5256, whereas the best values for SASS, COLSHADE and sCMAgES are 0.5258, 0.5258
and 0.5260, respectively. CPSO has a significantly small worst std value, which
demonstrates the stability of the CPSO algorithm in solving such problems. All data in

Table 8 The results of planetary gear train design optimization problem.

Prob. CPSO SASS sCMAgES COLSHADH

Best 0.5256 0.5258 0.5260 0.5258

Worst 0.5406 3.5217 0.5438 0.7467

Median 0.5300 0.6456 0.5300 0.5300

Mean 0.5317 1.0015 0.5308 0.5410

Std 3.9412E−03 7.2518E−01 4.3484E−03 4.2573E−02

Feasible rate% 100 80 100 100
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Table 8 indicate that CPSO is superior to its competitors in this problem. The results found
by CPSO are superior to those of the other three algorithms.

CONCLUSIONS
A PSO algorithm based on an improved Deb criterion, referred to as CPSO, was proposed
for solving COPs. We developed a strategy for updating the current swarm using an
‘excellent’ infeasible solution set to address incomplete utilization of infeasible information
in the existing Deb criterion, and the DE strategy was used to update the optimal particle
set to improve the global convergence of the algorithm. We verified the effectiveness of the
proposed algorithm by comparing numerical results obtained by the CPSO algorithm to
those obtained using PSO+Deb+DE and PSO+Ideb. The numerical results show that PSO
incorporated with Deb and DE effectively solved 22 test functions from CEC2006. Finally,
comparing the performance of the CPSO algorithm to that of other algorithms
demonstrated the effectiveness and stability of the proposed algorithm for solving the
considered 13 functions and three real-world constraint optimization problems.

In future research, we will mainly focus on two aspects. First, effective operation
strategies will be designed to solve more complex constrained optimization problems, such
as multiobjective constrained optimization problems and mixed-integer constrained
optimization problems. Second, more effective and targeted operators will be designed to
form an operator pool, enabling the CPSO algorithm to solve more real-world problems
such as data clustering, engineering optimization and image segmentation.
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