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ABSTRACT
Stemming is supposed to improve the average performance of an information retrieval
system, but in practice, past experimental results show that this is not always the case. In
this article, we propose a selective approach to stemming that decideswhether stemming
should be applied or not on a query basis. Our method aims at minimizing the risk of
failure caused by stemming in retrieving semantically-related documents. The proposed
work mainly contributes to the IR literature by proposing an application of selective
stemming and a set of new features that derived from the term frequency distributions
of the systems in selection. The method based on the approach leverages both some
of the query performance predictors and the derived features and a machine learning
technique. It is comprehensively evaluated using three rule-based stemmers and eight
query sets corresponding to four document collections from the standard TREC and
NTCIR datasets. The document collections, except for one, include Web documents
ranging from 25 million to 733 million. The results of the experiments show that the
method is capable of making accurate selections that increase the robustness of the
system and minimize the risk of failure (i.e., per query performance losses) across
queries. The results also show that the method attains a systematically higher average
retrieval performance than the single systems for most query sets.

Subjects Data Mining and Machine Learning, Data Science, World Wide Web and Web Science
Keywords Selective information retrieval, Selective stemming, Robustness

INTRODUCTION
Stemming serves two purposes in the context of Information Retrieval (IR): (i) reducing the
index size and (ii) recall enhancement in the document lists retrieved for queries. Mapping
actual query terms to their base forms reduces the amount of unique terms in any given
collection and as a result it proportionally reduces the size of the index. In this respect,
stemming serves well and there is no counter factual issue reported in the IR literature. On
the other hand, this process also increases the relative frequency of terms within a document
by unifying morphological variants of the terms and hence it is supposed that it increases
the level of recall in the document lists retrieved by IR systems to any given query. However,
this unification process may unify morphologically related but semantically unrelated two
terms into a single base form. In such a case, stemming causes those documents which are
semantically unrelated to a given query to become, unexpectedly, a part of the document
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list retrieved for that query. That’s why stemming harms the performance for some queries
by reducing the level of recall in the document lists retrieved for the queries.

It has been a long-standing debate whether stemming contributes to the effectiveness
of an IR system (Harman, 1991; Krovetz, 1993; Alotaibi & Gupta, 2018). On this account,
Harman (1991) shows that stemming does not affect average retrieval performance but
rather, it affects both positively and negatively to an almost equal number of queries and
hence the average remains the same. However, in contrast, the works of Krovetz (1993)
and Hull (1996) provide evidence that counts against those negative empirical findings
and relate them to the system and the query sets examined in the work of Harman (1991).
In this respect, it can be said that stemming may or may not contribute to the retrieval
effectiveness of an IR system depending on the query that the system responds to.

In this paper, to decide whether stemming should be applied to any given query,
a selective approach is proposed. The approach is based on k-Nearest neighbors binary
classifier and it employs a base set of existing pre-retrieval query performance features from
the IR literature, including inverse document frequency (IDF), query scope (He & Ounis,
2004a), and average similarity between collection and query (AvgSCQ) (Zhao, Scholer
& Tsegay, 2008). In addition, a set of new features that are derived from the frequency
distributions of query terms is introduced in this paper and used for the binary classifier
(Section ‘Proposed selective approach to stemming’). The proposed selective approach
follows the common IR practice, where BM25 (Robertson & Zaragoza, 2009) is used as the
term weighting model and rule-based stemmers.

It is expected that an IR system fulfill every information need of users at an acceptable
level of satisfaction. Such a system refers to a robust system that evenly distributes its
total (average) effectiveness on every query. If a system applies stemming and its average
performance remains unchanged (the results of the work of Harman), it is highly likely
that the system increases performance for some queries and decreases performance for
some other queries: that is, the system diverges from being robust. Such situations lead
to high variation in performance across queries, and hence harms the robustness of IR
systems. The proposed selective approach is a remedy to this problem and it is capable
of providing robustness in retrieval effectiveness for the IR systems employing stemming
(Section ‘Evaluation of the Selective Approach to Stemming’). By alleviating the problem,
the performance of an IR system can be improved more than the expected performance
of the system in which stemming is naively applied. In this perspective, the paper makes a
contribution to the IR literature by considering the importance of the selective application
of stemming in IR systems.

In particular, we address the following research questions:

RQ1 To what degree the proposed selective approach is accurate in predicting the queries
that stemming should (not) be applied to?

RQ2 Does the proposed selective approach contribute to the robustness in retrieval
effectiveness of the IR systems that employ stemming?

In summary, the work presented in this paper contributes to the literature by proposing
a selective approach to stemming. The work aims at minimizing the risk of failure in
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retrieving semantically related documents to the employed stemming algorithm for any
given query. We have achieved this aim by accurately predicting whether stemming should
be applied to a given query using a machine-learning technique. We have used a set of
query performance predictors from the literature and new features for this purpose. Also,
the risk-sensitive analysis shows that the proposed work increases the robustness of an IR
system by minimizing the performance fluctuation across queries caused by a failure in
applying stemming to the IR system. According to the experimental results, the proposed
selective method not only increases the overall retrieval performance in most cases but also
contributes to the robustness of the IR system together. The selective method validates its
contribution to the robustness of the IR system according to the performed experiments on
diverse sets of queries and generalizes to the rule-based stemming algorithms. Considering
the contribution, aim, and used method together, the proposed paper includes pioneering
work to our best knowledge.

The rest of the article is organized as follows. The motivation of this work is provided
in Section ‘Motivation’. The section ‘Related Works’ reviews the related works about
selective IR, stemming, and selective stemming. Differences between the proposed work
from prior work are also presented in the section. Details of the proposed work are given
in Section ‘Proposed Selective Approach to Stemming’. The experimental evaluations are
performed on a wide range of standard set of queries from TREC and NTCIR (Section
‘Experimental Setup’). The used document collections of the corresponding query sets
are based on Web corpora that includes ClueWeb09-B, ClueWeb12-B13, GOV2, and, also
Wall Street Journal (WSJ) newspaper articles in TIPSTER collection is used. On the query
sets, the evaluation results (Section ‘Evaluation of the Selective Approach to Stemming’)
show that our selective method is on average more effective and robust than the considered
single systems that are participated in selection procedure for most of the query sets and
stemming algorithms. Implications of this work are discussed in Section ‘Implications’
from theoretical and practical perspective.

MOTIVATION
The factors of per query performance variability between retrieval strategies are extensively
studied at the reliable information access workshop for robust retrieval (Harman & Buckley,
2004; Buckley, 2004). To identify those factors, Buckley (2004) collates the reasons why IR
systems fail for individual queries into ten categories of which stemming is a category
identified as general technical failures. On this account, Harman (1991) says that queries
are affected by stemming positively or negatively:

‘‘Although individual queries were affected by stemming, the number of queries with
improved performance tended to equal the number with poorer performance, thereby
resulting in little overall change for the entire test collection.’’

For instance, an IR system in which stemming is applied has produced a score of 0.1568
for the query poker tournaments (TREC Web Track 2009 QueryID:17), while the system
without stemming has produced a score of 0.4132 for that query. However, applying
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Figure 1 The NTCIR-13WWW-1 track for 100 queries, that the per query performance score differ-
ence between BM25 with stemming (STEM) and BM25 without stemming (NOSTEM), where stemming
algorithms is Krovetz stemmer.

Full-size DOI: 10.7717/peerjcs.1175/fig-1

stemming to the query mothers day songs (TREC Web Track 2011 QueryID:132) has
provided higher performance than without applying stemming in the IR system.

On the other hand, Buckley (2004, 2009) says that it may bemore important to determine
what strategies should be applied to which queries, rather than developing new IR strategies.
In this context, stemming can be applied in a selective, binary classification manner, in
such a way to improve the robustness of an IR system, so as to alleviate the performance
variability across queries. Thus, a selective approach to stemming can avoid the issue
mentioned in the work of Harman (1991) to a certain degree.

Figure 1 shows, for 100 queries from theNTCIR-13WWW-1 track (Luo et al., 2017), that
the within query difference in performance score between the run BM25 with stemming
(STEM) and the run BM25 without stemming (NOSTEM), where stemming algorithms is
Krovetz stemmer (Krovetz, 1993). The x-axis of the figure shows the query number, and
the y-axis is the score difference between the two runs for the corresponding query. On
the left side of the figure, the queries within which NOSTEM has higher scores than STEM
are shown (37%), and on right side the queries within which STEM > NOSTEM (39%).
The queries on which STEM = NOSTEM are shown in the middle of the figure (24%).
On average, the BM25 run with stemming, STEM has an nDCG@20 score of 0.3709 and
the run NOSTEM 0.3755. Here, the difference between two average nDCG@20 scores
can statistically be attributed to chance fluctuation (p-value = 0.70 for the paired t -test).
Considering the observed difference in average performance scores, it would appear that,
even for a recent official evaluation effort, NTCIR-13 WWW-1 track, queries are affected
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by stemming positively or negatively as mentioned in the work of Harman (1991). This
suggests that Harman’s argument still keeps its strength.

In this context, it can be said that, following the Buckley’s argument, determining in
advance which queries should be stemmed, that is, selective stemming, would be a solution.
Note that here, a perfect selective approach to stemming, an oraclemethod could achieve an
nDCG@20 score of 0.4041 on average, which is statistically better in retrieval performance
than both STEM (p-value = 0.0004) and NOSTEM (p-value = 0.00002). In conclusion,
the aim of this study is to minimize the risk of failure by improving the robustness of
an IR system by automatically deciding whether stemming should be applied to a given
query.

RELATED WORKS
Selective IR is addressed by applying a particular retrieval strategy to the given query. These
strategies are used in the pre-retrieval to post-retrieval phases of the IR system, depending
on the applied technique. This section primarily presents studies on selective IR applied
in phases of an IR system. Then, we review the stemming algorithms in the literature by
grouping them into rule-based and corpus-based. Selective approaches to stemming in IR
systems is reviewed in the next section. The last section gives the differences from prior
work.

Selective IR
Selective approaches can be applied to any phase of an IR system, as each phase usually
encompasses different techniques that can be selected. Indexing a document collection is the
first phase of the IR system in which a selective approach has the potential to be applied.
Large-scale document collections are partitioned into several topically homogeneous
groups named shards. Searching is only executed on a few shards that are postulated to
involve relevant documents for a given query, which is called selective search. This strategy
aims to reduce the retrieval cost for the query by using only a small piece of collections and
preserving retrieval effectiveness as possible as that of an exhaustive search. In this respect,
resource selection algorithms and techniques to select shards are proposed (Kulkarni &
Callan, 2015; Kim et al., 2016; Kim et al., 2017). Each sub-component of IR systems affects
the retrieval performance on a query basis. Considering the studies, it is seen that this
research area is rich in literature.

As part of an IR system, term weighting models affect per query performance variance,
and queries do not benefit equally from term weighting models. Therefore, selective
approaches to term weighting model selection (He & Ounis, 2003; He & Ounis, 2004b;
Arslan & Dinçer, 2019) are presented to alleviate performance degradation across term
weighting models.

For another part of an IR system, the selective approach to Learning-to-Rank (LTR),
which reranks retrieved documents with a learned model, is presented (Peng, Macdonald
& Ounis, 2010; Balasubramanian & Allan, 2010; Ghanbari & Shakery, 2019). As in the term
weighting models, different queries take advantage of each ranking function differently
and selective methods are studied to decide appropriate function on a per query basis. In
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addition, the researchers in the work (Tonellotto, Macdonald & Ounis, 2013) proposed a
selective pruning framework. Their work determines if the result list of the query should
be pruned aggressively.

Query expansion techniques append new terms to the query to increase the recall of
an IR system by matching more documents. However, it is not always the case that any
query makes use of the appended terms in terms of retrieval effectiveness. Hence, selective
approaches to query expansion are proposed to determine whether it should be applied
(Amati, Carpineto & Romano, 2004; Cronen-Townsend, Zhou & Croft, 2004; Hauff et al.,
2010) and also to select the terms being added to the query (Cao et al., 2008; Saleh &
Pecina, 2019).

Optimization of an IR system configuration that seeks to maximize the performance of
the IR system by predicting appropriate techniques is a research area in IR. The studies
in this area (Bigot, Dejean & Mothe, 2015; Deveaud et al., 2018; Mothe & Ullah, 2021) aim
to predict the most appropriate combination of the IR system components ranging from
indexing to document ranking. The common point of these studies is to deal with all parts
of the system in its entirety.

Stemming
Stemming is a remedy for vocabulary mismatch, and the application of stemming to an
IR system takes place in the pre-retrieval phase. Being an important recall enhancement
tool for the preprocessing phase of an IR system has made stemming a rich place in the
literature. In this context, stemming methods can be broadly classified into two groups:
(i) rule-based stemming methods and (ii) corpus-based stemming methods. Rule-based
stemmers such as Lovins stemmer (Lovins, 1968), Krovetz stemmer (Krovetz, 1993), Porter
stemmer (Porter, 1997), and Paice/Husk stemmer (Paice, 1990) transform terms to their
morphological roots using language-specific rules. Specifying the rules in a particular
language needs expertise in that language. In addition, several linguistic resources can be
used in developing a rule-based stemmer. Once the rule is created for a language, it can be
used in any corpus without additional processing, making it ease of use. For different kind
of languages (i.e., Arabic (Al Kharashi & Al Sughaiyer, 2002; Abuata & Al-Omari, 2015),
Croatian (Ljubešić, Boras & Kubelka, 2007), Urdu (Gupta, Joshi & Mathur, 2013), Bengali
(Sarkar & Bandyopadhyay, 2008; Mahmud et al., 2014), Marathi (Patil & Patil, 2017)),
rule-based stemming approaches are presented in literature. Similar to the rule-based
method, removing suffixes or prefixes like pluralization handling is a stemming technique.
On the other hand, corpus-based stemmers construct the conflation sets, involving the
morphological variants of terms, from a given corpus without requiring any linguistic
knowledge. Lexicon analysis with string processing, character n-gram based analysis,
co-occurrence of words, and context analysis on a given corpus are common techniques in
corpus-based stemming. Lexicon analysis based stemmers group the related words in the
corpus words. This strategy is usually performed by the operations such as finding suffixes,
suffix stripping, string distance, etc., (Oard, Levow & Cabezas, 2001; Goldsmith, 2001; Paik
et al., 2011). In the character n-gram based method, adjacent characters in a length of n
from the words in a corpus are considered to have less frequency whereas the variants have
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higher frequencies (McNamee & Mayfield, 2004; Ahmed & Nrnberger, 2009; Pande, Tamta
& Dhami, 2018). Also, various studies on corpus-based stemming using co-occurrence
analysis and machine learning techniques are presented (Paik, Pal & Parui, 2011; Paik et
al., 2013; Brychcn & Konopk, 2015). These methods analyze the co-occurrence or context
of the basis form of the words in a corpus. In this regards, lexical and co-occurrence
similarities are usually applied to discover morphologically related words. For instance,
the work of Singh & Gupta (2019) also employed suffix pair frequency and graph-based
clustering besides lexical and co-occurrence similarity in order to construct the conflation
sets. In another work, researchers applied Hidden Markov Model to produce stems of the
words (Bölücü & Can, 2019).

A recently proposedmethod by Singh & Bhowmick (2022) uses neural network to predict
co-occurrence similarity between a query term and its potential morphological variant.
Potential or candidate variants are initially determined by using lexical similarity of the
words in the corpus.

Selective stemming
From the perspective of selective stemming, several studies are presented to decide whether
stemming should be applied to an IR system on a per query basis. In the works of
Harman (1987, 1991), the selection process was carried out on the basis of two criteria,
query length, and term importance. However, the results of the experiments provided
no evidence indicating significant improvement in retrieval effectiveness on average. In
another work of Harman (1991), the selection was simply based on a threshold: that
is, if the query length is shorter than ten terms, stemming is applied; otherwise, no-
stemming is applied. Machine learning based selection methods was also proposed in the
work of Chin et al. (2010). The method in the work employs Support Vector Regression
models built on the query features to select an appropriate text normalization technique
among stemming, depluralization, and without any text normalization. On the other
hand, advanced optimization algorithms are also used for selective stemming. In this
context, a selective approach to stemming based on a genetic algorithm leveraging query
performance predictors is used as well (Wood, 2013). In addition to selecting a stemming
method, there are different works on selective stemming. Stemming may be applied to
an IR system at run time by expanding the query with the morphological variants of
its query terms. Thereby, the method that select the morphological variants from the
set of candidate variants for a given query is a selective approach to stemming (Croft
& Xu, 1995; Peng et al., 2007; Cao, Robertson & Nie, 2008). Particularly, in the work of
Tudhope (https://cs.uwaterloo.ca/research/tr/1996/31/cs-96-31.pdf), query expansion was
accomplished bymeans of a filtering strategy that filters out thosemorphological variants of
the query terms that have not the same semantic meaning. This query expansion technique
was examined using TREC-4 Ad Hoc task queries, and the results of the experiments show
that it improves the accuracy of the stemming algorithm in use. Similarly, in the work of
Cao, Robertson & Nie (2008), a query expansion technique that expands the query on the
basis of the expected effect of individual variants on retrieval effectiveness was introduced.
The study also adopted a further technique that uses the language model to decide the
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morphological variants of query terms that best fit the query context. The results of the
experiments show a significant improvement over the not stemmed system in retrieval
effectiveness on GOV2 Web Track and several TREC Ad Hoc track queries. However,
the methods in the experiments couldn’t show the same performance as the traditional
stemming method that expands the query with all morphological variants of the query
terms. The similarity between the query term and its morphological variants may be
determined by word embeddings. Word embedding is a vectorial representation of a term
so as to measure contextual similarity between given terms. String similarity and contextual
similarity are employed to select morphological variants (Basu et al., 2017). The researchers
in the work (Roy et al., 2017) used local and global word embeddings tomeasure contextual
similarity within term variants and filter them to create final clusters. Furthermore, in the
same line of research, the selection of the term variants based on the language models was
also investigated in the work of Peng et al. (2007) utilizing an occurrence analysis of query
term variants on the corresponding document collection.

Differences from prior work
The selective stemming method presented in this paper considerably extends previous
works (Harman, 1987; Harman, 1991; Chin et al., 2010; Wood, 2013) in which we follow
the same research line. One of the limitations of these works is the size of the query sets: the
number of tested queries is relatively smaller than the query sets that have been brought
to the literature in total recently. Another limitation is the decision methods: even if some
of the works build a machine learning model, the features used in the model must be able
to discriminate the queries as possible. Features in the works usually could not cover the
term frequency distribution yielded by an IR system where stemming is applied. However,
stemming does not behave collection and document frequencies of the terms in a corpus
similarly since the frequencies of some terms would substantially increase from the others.

Our proposedmethod is a binary classifier that leverages the not only query performance
predictor features but also the derived features from the fluctuation in an increase of the
term frequencies for the systems with and without stemming. To our best knowledge,
the proposed work in this paper is a pioneering work that quantifies the inter-relation
of within query term specificity (Spärck Jones, 1972; Robertson, 2004; Church & Gale,
1999) and derives query features from that information. Those features usually leverage
the differences in term specificity for both with and without stemming. This method is
evaluated on a diverse set of standard IR test collections using out-of-the-box retrieval
configuration. The test collections used in the experiments involve eight query sets related
to four comprehensive document collections that broadly include Web documents and
also newspaper journals. In addition, we perform a risk-sensitive evaluation to determine
the robustness of the proposed selective stemming method. This evaluation indicates that
the average performance enhancement by the method is spread to the queries.
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PROPOSED SELECTIVE APPROACH TO STEMMING
The pioneering works on selective approach to stemming are the works of Harman (1987,
1991). Those works employ only one selection criterion to make the binary decision (i.e.,
stemming vs. no-stemming). That selection criterion is the length of queries measured in
terms of non-common terms, i.e., the number of non-common query terms. Stemming
is basically applied to those queries of which the length is less than ten terms. Similarly,
in the work of Wood (2013), a selective approach to stemming is also introduced on the
basis of a binary decision process. The decision relies on a genetic algorithm utilizing query
performance predictors, including inverse document frequency, inverse collection term
frequency, average collection query scope, etc. However, the results of the experiments
presented in the mentioned works show that the introduced selective approaches provide
little or no improvement on the average retrieval effectiveness of the systemwith stemming.
The proposed work in this paper is also a binary classifier for a selective approach to
stemming, and it is based on a supervised classification technique known as the k-Nearest
neighbor classifier. The classifier employs a set of query performance predictors introduced
in the IR literature and a new set of features derived from differences in the term frequencies
of the systems participating in the selection.

The frequency distribution of a query term on a given document collection would
generally change depending on whether or not stemming is applied to that term. In this
study, we assume that the difference in term frequency distribution obtained after applying
stemming to a query term can be used as a criterion to decide whether stemming should
be applied or not. Therefore, in our study, the features presented in the literature and
produced based on our assumptions are used. The query performance predictors that
are borrowed from the literature are of pre-retrieval type (Carmel & Yom-Tov, 2010),
including minimum IDF ratio over maximum IDF ratio (gamma), query scope (omega)
(He & Ounis, 2004a), maximum IDF and AvgSCQ (Zhao, Scholer & Tsegay, 2008). In
addition to those four features, we introduce the following six features derived from the
frequency distributions of query terms, given as follows:

• AvgIncDF: Stemming increases the document frequency (DF) of a particular term by
unifying the posting lists of its morphological variants in IR systems. The increase may
not be the same degree for all terms in the query. This feature basically measures the
average increase in document frequency for a given query, as in Eq. (1).

1
|q|

|q|∑
i=1

DFiStem−DFiNoStem
DFiNoStem

. (1)

In the equation |q| is the number of query terms in the given query.
• MaxWeightedIncDF: Inverse document frequency measures the term specificity of a
term in a document collection (Spärck Jones, 1972; Robertson, 2004). It can be supposed
that an importance value calculated by multiplying the increase in the document
frequency and term specificity would be an indicator tomeasure the retrieval effectiveness
of applying stemming to the query terms. The maximum importance value among the
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calculated values for each query term is used as a feature, as given in Eq. (2).

Max
{
Idf1NoStem×

DF1Stem−DF1NoStem
DF1NoStem

,...,IdfnNoStem×
DFnStem−DFnNoStem

DFnNoStem

}
. (2)

In the equation, n is the number of terms in the query.
• CorrIctfRank: After stemming is applied, in a query, term specificity such as inverse
document frequency (Idf ) or inverse collection term frequency (Ictf ) for a given query
term may relatively change according to the other terms in that query. We apply this
observation as a feature (it takes 0 or 1) measuring the correlation between the ranks of
the term positions of the query terms. Two lists including term positions are constructed
for both stemming and no-stemming and they are sorted by term specificity (i.e., Ictf ).
Here, we use the Spearman rank correlation and we assume that they are correlated if
the correlation coefficient value is greater than 0.7.
• Mst-Lst-Change: After applying stemming, the least specific or the most specific term
in a given query may change. Those changes are used as a feature. If a change occurs on
the least specific or the most specific term, it takes 1; otherwise, 0.
• Chi2-DF-TF: When stemming is applied to the given query, document frequency and
collection term frequency of the query terms may be affected more than other terms. We
use p-value of the Pearson’s chi-square goodness-of-fit test to see this effect and employ
it as a feature. First, we construct two lists involving document and collection term
frequencies of the given query terms for both stemming and no-stemming, preserving
the term positions. Since the chi-square goodness-of-fit test requires discrete values,
a binning strategy, the Freedman-Diaconis rule, is employed to those frequencies to
obtain a finite number of bins and groups of the terms. Thus, p-value of the chi-square
goodness-of-fit test is obtained with using two lists and employed as a feature.
• ModifiedSCS: This feature is modified version of the simplified query clarity score
proposed in the literature (Cronen-Townsend, Zhou & Croft, 2002; He & Ounis, 2004a).∑
Q

Pml(w|Q) · ln(
Pml(w|Q)

Pcoll(stem(w))
). (3)

In Eq. (3), Pml(w|Q) is the maximum likelihood of the query model as in the proposed
definition in the literature. It is given by qtf /ql , where qtf is the frequency of a query term
in the query and ql is the query length. Pcoll(stem(w)) is the collection model. Whereas
it is defined by Pcoll(w), which is given by tfcoll/tokencoll , in the literature, it is modified
by tfcoll/tfcoll(stem(w)), where tfcoll , tokencoll , and tfcoll(stem(w)) are the collection term
frequency, the number of total terms in the collection, and the collection term frequency
of a stemmed query term respectively. The value of tfcoll(stem(w)) can be calculated by
summing collection term frequencies of the terms in the conflation set of the query term
at running time.

The labels used in the classifier are derived from retrieval performance scores of both
no-stemming (NoStem) and used stemming algorithm in selection. The labeling process
using the retrieval performance scores of the queries proceeds as follows: If the retrieval
performance score of the query in stemming is higher than the score in no-stemming, the
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label of the query is assigned as ‘‘1’’ for stemming; otherwise, ‘‘0’’ for NoStem. Furthermore,
the queries with the same retrieval performance score for both no-stemming and stemming,
tie queries, are discarded in the training phase. The remaining queries are used to build the
training model. Consequently, the proposed classifier decides whether or not stemming
should be applied for a given query.

EXPERIMENTAL SETUP
This section details the setup of the search engine tool and document collections in use.
We have used an open-source search engine tool to perform retrieval experiments (Section
‘Experimental system’). In addition, the experiments are carried out using large-scale
document collections and their corresponding query sets (Section ‘Benchmark collections’).
The proposed selective approach is evaluated with the normalized Discounted Cumulative
Gain (nDCG) (Järvelin & Kekäläinen, 2000; Järvelin & Kekäläinen, 2002) for the top 20
documents in the result list. Since the user naturally expects highly relevant documents
to be at the top of the result list, especially for the Web collections, the evaluation metric
meets this expectation by assigning more scores to the top-ranked relevant documents
during the evaluation process. The ‘Baselines’ section describes state-of-the-art baseline
methods compared and evaluated in this work.

Experimental system
The IR community addresses the reproducibility of IR experiments and encourages
the authors to conduct their experiments following the adopted standards as much
as possible (Arguello et al., 2016; Lin et al., 2016; Voorhees, Rajput & Soboroff, 2016). In
this respect, details of the experimental system are given for reproducibility of the
performed experiments. Source codes of the experiments are made publicly available on
GitHub repositories (https://bitbucket.org/gokhanc/lucene-clueweb-retrieval/src/master/)
(https://github.com/gokhanc90/matlabIRexperiments).

We use Apache Lucene (Białecki, Muir & Ingersoll, 2012), an open-source search engine
platform that is developed for commercial purposes, to perform IR experiments in this
study. Although widespread use in the industry is also gradually accelerating its use
in academic research (Azzopardi et al., 2017). Indexing HyperText Markup Language
(HTML) documents with Lucene, the documents are stripped from their HTML tags using
jsoup (https://jsoup.org/) library so as to get plain text blocks of a given HTML document.
The final text block to be indexed is obtained by combining the title and body text blocks
extracted by the jsoup library into one unstructured text block. The combined text block
is processed with StandardTokinezer and LowerCaseFilter of Apache Lucene without
employing stemming and stopword removal in the indexing process.

Instead of keeping indexes separately for each stemming algorithm in this study, the
query time stemming approach (Peng et al., 2007;Cao, Robertson & Nie, 2008) is utilized by
means of applying SynonymGraphFilterFactory of Apache Lucene to the corresponding
documents and the given queries. To perform this functionality, query time stemming, the
search tool requires a set of morphological variants of the words to be stemmed. For this
purpose, morphological variants of each query term, generated by the concerned stemming
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Table 1 Description and number of queries for Tracks according to document collections in the ex-
periments.

Collection Track Label in experiment Number of queries

WSJ Ad Hoc 1,2 & 3 WSJ 150
GOV2 Terabyte 2004, 2005 & 2006 GOV2 149

Million Query 2007 MQ07 1,524
Million Query 2008 MQ08 564

CW09B Million Query 2009 MQ09 562
Web 2009, 2010, 2011 & 2012 CW09B 197

CW12B Web 2013 & 2014
Tasks 2015 & 2016

CW12B 185

We Want Web 13 & 14 NTCIR 180

algorithm, are provided to the system. As a result, the IR system retrieves the documents for
a given query according to a particular stemming algorithm over a single index in Apache
Lucene. In addition to the stemming procedure mentioned, BM25 term weighting model
in Terrier software (http://terrier.org/) is adapted to Lucene (https://lucene.apache.org/)
version 7.7.0 platform.

Benchmark collections
The ClueWeb09 collection includes about 1 billion Web documents collected between
January and February 2009. The Category B subset of the collection includes about 50
million English Web pages. This subset has been used in TREC Web Tracks ran through
2009 to 2012 (CW09B) and the Million Query Track 2009 (MQ09). The ClueWeb12
collection includes about 733 million English Web documents collected between February
10, 2012 and May 10, 2012. Uniformly extracted 7% sample of the collection is named
Category B13. This collection, ClueWeb12-B13, has been used in TREC Web and Tasks
Tracks 2013-2016 (CW12B) and the NTCIR (Luo et al., 2017; Mao et al., 2019) We Want
Web Tracks 13&14&15 (NTCIR). The GOV2 (Clarke, Craswell & Soboroff, 2004) collection
involves about 25 million Web documents from the .gov domain. TREC Terabyte Tracks
2004-2006 (GOV2), Million Query Tracks 2007 (MQ07), and 2008 (MQ08) have been
conducted using GOV2. Wall Street Journal collection contains about 173 thousand
newspaper articles in the TIPSTER collection of disk 1 & 2. This collection has been used in
TREC 1-2-3 Ad Hoc Tasks. The experimental evaluations are carried out on a wide range
of standard TREC datasets and their corresponding tracks. The number of queries for each
track is summarized in Table 1.

Baselines
The proposed method decides whether stemming should be applied or not on a query
basis. Thereby, two systems participating in this selection are our baselines. NoStem refers
to the system in which any stemming method is not applied, and it is the mandatory
system involved in the selection. Another one is the system in which one of the KStem
(Krovetz, 1993), Porter (Porter, 1980), and Lovins (Lovins, 1968) stemming algorithms is
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Table 2 The table presents the nDCG@20 scores of the systems for the query set collections. The highest scores are indicated in boldface. The
italicized scores are the values that NoStem has the best score against the scores of selective method and the corresponding stemmer.

Collection # Queries NoStem KStem SelKStem NoStem Lovins SelLovins NoStem Porter SelPorter

CW09B 197 0.1606 0.1523 0.1640N ,B 0.1606 0.1460 0.1634B 0.1606 0.1497 0.1563
CW12B 185 0.0781 0.0858 0.0872N 0.0781 0.0807 0.0849N 0.0781 0.0872 0.0874N

NTCIR 178 0.2946 0.2956 0.3051N ,B 0.2946 0.2681 0.2934B 0.2946 0.2839 0.2972B

GOV2 149 0.3486 0.3697 0.3707N 0.3486 0.3670 0.3611 0.3486 0.3839 0.3885N

WSJ 148 0.3313 0.3661 0.3576N 0.3313 0.3485 0.3417N 0.3313 0.3684 0.3657N

MQ07 1520 0.2253 0.2313 0.2321N 0.2253 0.2227 0.2264 0.2253 0.2366 0.2315N

MQ08 562 0.2623 0.2607 0.2631 0.2623 0.2431 0.2586B 0.2623 0.2631 0.2609
MQ09 562 0.2508 0.2543 0.2546 0.2508 0.2433 0.2479 0.2508 0.2552 0.2549

applied. Hereby, we have performed the experiments by the combinations of NoStem and
stemming algorithms: NoStem-KStem, NoStem-Porter, and NoStem-Lovins.

EVALUATION OF THE SELECTIVE APPROACH TO
STEMMING
The proposed selective approach to stemming is evaluated by employing common IR
practice. To accomplish the practice, BM25 term weighting model (Robertson & Zaragoza,
2009), which is an out-of-the-box option in many IR works, is used in the evaluation
of the retrieval effectiveness. Furthermore, the stop-word removal process is not utilized
during indexing the documents. The proposed selective approach uses k-Nearest neighbors
classification algorithm to decide whether stemming should be applied, where k is chosen
as 11 and Minkowski distance with exponent value set to 3 is used to find the closest
neighbors. Leave-one-out cross-validation method is employed to evaluate the classifier so
that each query is used as a test query during the evaluation process (Arlot & Celisse, 2010).

Retrieval results
Table 2 lists the average nDCG@20 scores of the systems for the query set collections. The
proposed method is named by appending the prefix Sel keyword to its baseline stemming
algorithm. The highest scores are indicated in boldface. The highlighted scores are the
values that NoStem has the best score against the scores of selective method and the
corresponding stemmer. The collections of query sets and the number of queries in those
sets are given in the first and second columns respectively. We have discarded the queries
where at least one of its terms is not found in the document collection. For example, the
term tetacycline (TREC 2008 Million Query Track Query ID:16625) does not occur in the
GOV2 dataset. The remaining columns show the performance scores of the systems and
selective method. B refers that the performance difference between the proposed method
and the baseline stemmer is statistically significant with a p-value o f < 0.1. Similarly, N
denotes that the performance difference between the proposed method and NoStem is
statistically significant with the same p-value.

NoStem has the highest scores for NTCIR, MQ08, and MQ09 collections in Lovins, and
for CW09B collection in Porter. The proposed method with KStem produces the highest
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scores on average for each corresponding collection of query sets exceptWSJ. Furthermore,
it produces a statistically significant improvement in average performance over NoStem
for the collections CW09B, CW12B, NTCIR, GOV2, WSJ, MQ07, and significant over
KStem for the CW09B and NTCIR collections. However, the proposed method yields
higher performance scores than its baseline stemmer (Lovins) except for GOV2 and
WSJ collections. The improvements are statistically significantly higher than its baseline
stemmer for CW09B, NTCIR, and MQ08 while it is significantly higher than NoStem for
CW12B and WSJ. The proposed method with Porter yields the highest scores for CW12B,
NTCIR, and GOV2. For the collections CW12B, GOV2, WSJ, and MQ07, the performance
of the selective method is statistically significantly higher than NoStem and significantly
higher than baseline stemmer for NTCIR.

The most important conclusion from Table 2 is that the selective approach attains a
systematically higher average retrieval performance than the single systems for most query
sets. Another important result is that the approach does not produce a significantly worse
performance score than any single system, even if various collections of query sets are used.
On the other hand, selective method could not succeed for WSJ collection. All stemming
algorithms produce the highest score for this collection. The reason for this situation can
be explained by interpreting Tables 3 and 4. Table 3 lists the average length of the distinct
terms in the queries for each query set. It can be easily seen that average length of the terms
are close to each other. Table 4 lists the average length of the distinct terms in the corpus
of the document collections. WSJ document collection and its corresponding query set Ad
Hoc Tracks have close term length on average but other document collections have higher
average term length than their corresponding query sets. One of the differences between
WSJ and other document collections is that WSJ is a newspaper collection while others
include Web documents. Other difference is the number of distinct terms in corpus. WSJ
includes quite a few distinct terms compared to other corpus. Therefore, considering the
scarcity of documents and the number of distinct terms in the WSJ corpus, it benefits from
stemming algorithms alleviating the mismatching problem since more documents can be
scored, and more relevant documents can be accessed. Since other corpora contain a large
number of documents, it can be considered that this problem will arise less frequently.
When stemming is applied, it is usually expected that irrelevant documents will be included
in the result list in a collection with so many documents, and this will hurt performance
in some queries. This argument can be made as an inference from the highlighted cases
in Table 2. For instance, NoStem has the highest scores for the query set CW09B against
Porter and for the query sets NTCIR, MQ08, and MQ09 against Lovins.

Figure 2 shows the multiple comparisons after Friedman’s test for NoStem, selective
method, and baseline stemmers. It tests column effects (i.e., stemming algorithms, selective
method, and NoStem) after adjusting for possible row effects (i.e., queries). The test is
appropriate for the multiple comparisons of results of IR experiments since the compared
methods are under study and queries do not have any interaction with each other.
Tukey’s honestly significant difference criterion (Tukey’s HSD) is employed for multiple
comparisons. The figure only shows CW09B and CW12B collections and the remaining
collections are given in appendix Section ‘Multiple comparisons’. For CW09B, it appears
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Table 3 Average character length of the distinct terms in the queries.

Tracks Sum of distinct
term length

# Distinct terms
in queries

Average

Web 2009, 2010, 2011 & 2012 2,457 419 5.86
Web 2013 & 2014, Tasks 2015 & 2016 2,705 456 5.93
Terabyte 2004, 2005 & 2006 2,791 413 6.76
Million Query 2007 18,616 2,824 6.59
Million Query 2008 9,408 1,475 6.38
Million Query 2009 7,113 1,140 6.24
We Want Web 13 & 14 2,458 396 6.21
Ad Hoc 1,2 & 3 3,159 447 7.07

Table 4 Average character length of the distinct terms in the corpus of the document collections.

Corpus of
document collection

Sum of distinct
term length

# Distinct terms
in corpus

Average

WSJ 1,651,354 212,146 7.78
GOV2 95,309,991 10,440,851 9.13
CW09B 443,897,471 44,114,780 10.06
CW12B 556,007,008 52,065,545 10.68

that the selective method is statistically different from all its base stemmers, but we could
not observe the case for other query sets. The selective method with Porter in several cases,
such as GOV2 and WSJ, is significantly different from NoStem. Another important point
is that the selective method is significantly no worse than the baselines in the experiments,
which consisted of the combinations of eight query sets and three stemming algorithms.

The classifier accuracy of each collection is listed in Table 5. The table contains
the correctly predicted and actual number of queries for NoStem and each stemming
algorithm. The number of queries with the same performance scores for both NoStem
and corresponding stemming is in the Tie column. It is inquired in RQ1 to what degree
the proposed selective approach is accurate in predicting the queries that stemming
should (not) be applied. The proposed classifier for selective stemming produces moderate
accuracy scores for predicting whether or not stemming should be applied. However, the
accuracy results only show the classifier performance by ignoring the differences between
retrieval scores of the selections. Therefore, the average retrieval system performance score
and classifier accuracy needs to be considered together. Thus, Table 2, plots in risk-sensitive
analysis (Fig. 3), and plots in per query performance analysis (Figs. 4, 5) show the positive
effects of this classifier on the average performance of the retrieval systems by means of
the performance evaluation metric for CW09B and CW12B query sets. In addition, the
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Figure 2 Multiple comparisons based on performance scores of the stemmers in IR systems for
CW09B and CW12B.
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Figure 3. TRisk comparisons of proposed method and baseline stemmers against NoStem for α
parameter from 0 to 5.

For the increasing values of α , we observe that selective method maintains the robustness for the query482

sets. We observe that the minimum TRisk value among the query sets is -10.03 for the KStem baseline,483

but it is -4.98 for selective method. The similar results are valid for Lovins and Porter baselines. The484

selective method has a minimum T Risk value of -7.82, while the baseline Lovins has a minimum value of485

-12.61. Furthermore, similar results can be obtained for the baseline Porter: the selective method and the486

baseline have minimum values of -6.78 and -10.30 respectively. Consequently, the proposed method has487

minimized the risk of failure in IR system, and those results indicate the contribution of this study.488
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Figure 3 (A–B) TRisk comparisons of proposed method and baseline stemmers against NoStem for α

parameter from 0 to 5.
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Table 5 The classifier accuracy of the selective approach is presented for each stemmer separately.

Collection True predicted Actual Tie Accuracy (%)

NoStem KStem NoStem KStem

CW09B 50 17 64 37 96 66
CW12B 20 33 38 45 102 64
NTCIR 28 49 60 67 51 61
GOV2 19 56 52 75 22 59
WSJ 20 47 49 72 27 55
MQ07 223 165 366 343 811 55
MQ08 91 61 154 132 276 53
MQ09 89 67 149 136 277 55

Collection True predicted Actual Tie Accuracy (%)

NoStem Lovins NoStem Lovins

CW09B 72 12 83 45 69 66
CW12B 21 34 53 52 80 52
NTCIR 62 19 87 60 31 55
GOV2 15 50 51 74 24 52
WSJ 4 43 42 60 46 46
MQ07 250 182 444 385 691 52
MQ08 156 38 201 136 225 58
MQ09 113 55 189 145 228 50

Collection True predicted Actual Tie Accuracy (%)

NoStem Porter NoStem Porter

CW09B 59 13 75 48 74 59
CW12B 22 38 47 57 81 58
NTCIR 40 44 75 71 32 58
GOV2 16 71 51 86 12 64
WSJ 19 59 50 80 18 60
MQ07 185 244 392 430 698 52
MQ08 96 71 176 162 224 49
MQ09 97 78 181 155 226 52

importance of those features in selective stemming is discussed in Section ‘Feature analysis’
by presenting in Fig. 6.

We have attached the figures of the remaining query sets to the Section ‘Appendix’ to
keep the reading flow. The plots for the statistical test are given in Fig. 7. The related plots
to the risk-sensitive and per query performance analysis are presented in Figs. 8 and 9,
respectively. Finally, feature importance plots are presented in Fig. 10.

Risk-sensitive analysis
In a risk-sensitive evaluation for the robustness of an IR system, the term risk refers to the
risk of retrieval effectiveness of an IR system for a given particular query worse than the
effectiveness of a baseline system for that query; otherwise, it refers to reward. A control
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Per query performance analysis489

Per query performance analysis is performed to reveal the number of queries that benefit from or are490

hurt by the proposed method. Figures 4 and 5 show the nDCG@20 score differences on query basis491

for CW09B and CW12B query sets, sorted in ascending order. The remaining figures of query sets492

are appended to the Appendix . Each subfigure has three plots: each of them is produced for NoStem493

vs. Selective(Sel), and NoStem vs. each base stemmer is placed together in corresponding plot. For494

instance, in the first plot in Fig. 4, performance differences between NoStem and KStem, and between495

NoStem and SelKStem are plotted using line graph. Similarly, the second and third plots are for Lovins496

and Porter, respectively. The axis-y in the plot represents the performance difference for each queries.497

The high values in axis-y indicate a high-performance difference between systems in terms of retrieval498

effectiveness.499

The score of the retrieval effectiveness of each query in the proposed method is one of the scores500

14/29PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77128:1:1:NEW 28 Oct 2022)

Manuscript to be reviewedComputer Science

Figure 4 Per query performance differences for CW09B.
Full-size DOI: 10.7717/peerjcs.1175/fig-4

CW09B

Number of Queries

D
if
f.
 i
n
 n

D
C

G
@

2
0

0 50 100 150 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

NoStem > Sel and Stem

Sel and Stem > NoStem

NoStem vs KStem

NoStem vs SelKStem

0 50 100 150 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

NoStem > Sel and Stem

Sel and Stem > NoStem

NoStem vs Lovins

NoStem vs SelLovins

0 50 100 150 200
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

NoStem > Sel and Stem

Sel and Stem > NoStem

NoStem vs Porter

NoStem vs SelPorter

Figure 4. Per query performance differences for CW09B

CW12B

Number of Queries

D
if
f.
 i
n
 n

D
C

G
@

2
0

0 50 100 150
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

NoStem > Sel and Stem

Sel and Stem > NoStem

NoStem vs KStem

NoStem vs SelKStem

0 50 100 150
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

NoStem > Sel and Stem

Sel and Stem > NoStem

NoStem vs Lovins

NoStem vs SelLovins

0 50 100 150
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

NoStem > Sel and Stem

Sel and Stem > NoStem

NoStem vs Porter

NoStem vs SelPorter

Figure 5. Per query performance differences for CW12B

Per query performance analysis489

Per query performance analysis is performed to reveal the number of queries that benefit from or are490

hurt by the proposed method. Figures 4 and 5 show the nDCG@20 score differences on query basis491

for CW09B and CW12B query sets, sorted in ascending order. The remaining figures of query sets492

are appended to the Appendix . Each subfigure has three plots: each of them is produced for NoStem493

vs. Selective(Sel), and NoStem vs. each base stemmer is placed together in corresponding plot. For494

instance, in the first plot in Fig. 4, performance differences between NoStem and KStem, and between495

NoStem and SelKStem are plotted using line graph. Similarly, the second and third plots are for Lovins496

and Porter, respectively. The axis-y in the plot represents the performance difference for each queries.497

The high values in axis-y indicate a high-performance difference between systems in terms of retrieval498

effectiveness.499

The score of the retrieval effectiveness of each query in the proposed method is one of the scores500
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Figure 5 Per query performance differences for CW12B.
Full-size DOI: 10.7717/peerjcs.1175/fig-5

parameter α > 0 penalizes the system with respect to the risk-reward trade-off giving more
weight to the risk, and where α= 0 refers to the risk and reward having equal weight. To
measure the robustness of the selective approach, we utilize TRisk (Dinçer, Macdonald &
Ounis, 2014) risk-sensitive evaluation measure. TRisk is a measure based on hypothesis
testing with the identification of queries that commit a significance level of risk. This risk
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Figure 6. Feature importance according to the ablation study
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the selective method decreases the number of queries that are negatively affected by the stemming. In Fig.503

4, a 25 percent decrease in the amount of negatively affected queries by stemming for KStem is shown504

when selective stemming is applied. This is also observed in 36 percent and 30 percent for Lovins and505

Porter respectively. The percentages for Fig. 5 are an 11 percent decrease for KStem and Porter and a506

12 percent decrease for Lovins. In addition, the reason for the average performance improvement with507

the proposed method is not due to successful predictions in a few queries but to successful predictions508

across queries in general. For instance, a 0.0117 improvement in performance effectiveness is produced509

by selective stemming against KStem; at the same time, the percentage of negatively affected queries510

reduces to 25 percent for CW09B. Moreover, the method alleviates a deterioration in performance by511

accurately predicting as possible the queries placed in the most left part of the plots. The reduction of512
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implications of the risk-sensitive analysis.514

The results of proposed selective method are slightly worse for query sets of Million Query Tracks515

as listed in Table 2 than the IR system that Porter is applied. Part of the reason of this situation is to516

not accurately make prediction for a few queries where performance differences between stemming and517

no-stemming are the largest. For example, the Porter plots in Fig. 9f shows that selective method could518

not accurately predict those a few queries. This error in prediction is most likely due to machine learning519

method since the machine learning methods only learn from given sample of data. Thereby, the average520

performance of the system is affected by this situation. However, this does not harm the robustness of the521

proposed method, but rather maintains the robustness by minimizing the risk of failure across queries.522

Feature analysis523

Feature analysis investigates to what degree each feature contributes to performance. Our proposed work524

takes advantage of several features used in binary classifiers for selective stemming. The features have525

been used in 24 experiments (a combination of eight query sets and three stemming algorithms), so in this526

section, we have examined the impact of the features on IR effectiveness. Here, the investigation aims527

to discover the most and the least important features and rank them in terms of the contribution to the528

performance improvement of the proposed work.529

In conducting feature analysis experiments, we have employed an ablation study. This evaluation530

ranks the features according to their importance. The features are sequentially removed from the feature531
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Figure 6 (A–B) Feature importance according to the ablation study.
Full-size DOI: 10.7717/peerjcs.1175/fig-6

measurement makes use of the linear transformation of t statistic used in the Student’s
t -test. The threshold values for TRisk are −2 and +2. An IR system with TRisk <−2 at
α= 0 is under a risk. For an IR system with TRisk > 0, the system is counted in favor of
reward. The performance of the system is considered statistically significantly better than
the baseline if the values TRisk> 2.

RQ2 inquires the contribution of the proposed selective approach with respect to
robustness in retrieval effectiveness of the IR systems that employ stemming. In this
respect, Fig. 3 shows the robustness of the proposed selective approach against single
systems in TRisk risk-sensitive evaluation metric. In the figure, we have presented CW09B
and CW12B results together and the remaining query sets are appended to the Appendix.
The plots in the figures compare the robustness of selective method and its baseline
stemmers against NoStem. The proposed method is more robust than the system in
which the baseline stemming algorithm is applied. This improvement in robustness has
been achieved for almost all experiments. For the increasing values of α, we observe that
selectivemethodmaintains the robustness for the query sets.We observe that theminimum
TRisk value among the query sets is −10.03 for the KStem baseline, but it is −4.98 for
selective method. The similar results are valid for Lovins and Porter baselines. The selective
method has a minimum TRisk value of −7.82, while the baseline Lovins has a minimum
value of −12.61. Furthermore, similar results can be obtained for the baseline Porter: the
selective method and the baseline have minimum values of−6.78 and−10.30 respectively.
Consequently, the proposed method has minimized the risk of failure in IR system, and
those results indicate the contribution of this study.
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Per query performance analysis
Per query performance analysis is performed to reveal the number of queries that benefit
from or are hurt by the proposed method. Figures 4 and 5 show the nDCG@20 score
differences on query basis for CW09B and CW12B query sets, sorted in ascending order.
The remaining figures of query sets are appended to the Appendix. Each subfigure has
three plots: each of them is produced for NoStem vs. Selective(Sel), and NoStem vs. each
base stemmer is placed together in corresponding plot. For instance, in the first plot in
Fig. 4, performance differences between NoStem and KStem, and between NoStem and
SelKStem are plotted using line graph. Similarly, the second and third plots are for Lovins
and Porter, respectively. The axis-y in the plot represents the performance difference for
each queries. The high values in axis-y indicate a high-performance difference between
systems in terms of retrieval effectiveness.

The score of the retrieval effectiveness of each query in the proposed method is one
of the scores produced by the participating systems. This is the reason for the increase
in the tie queries (performance differences are equal to 0), which is the middle part of
the graphics. According to the plots, it is seen that the selective method decreases the
number of queries that are negatively affected by the stemming. In Fig. 4, a 25 percent
decrease in the amount of negatively affected queries by stemming for KStem is shown
when selective stemming is applied. This is also observed in 36 percent and 30 percent
for Lovins and Porter respectively. The percentages for Fig. 5 are an 11 percent decrease
for KStem and Porter and a 12 percent decrease for Lovins. In addition, the reason for
the average performance improvement with the proposed method is not due to successful
predictions in a few queries but to successful predictions across queries in general. For
instance, a 0.0117 improvement in performance effectiveness is produced by selective
stemming against KStem; at the same time, the percentage of negatively affected queries
reduces to 25 percent for CW09B. Moreover, the method alleviates a deterioration in
performance by accurately predicting as possible the queries placed in the most left part of
the plots. The reduction of the areas in the lower left part of the plots reveals minimizing
the risk of failure, and it also confirms the implications of the risk-sensitive analysis.

The results of proposed selective method are slightly worse for query sets of Million
Query Tracks as listed in Table 2 than the IR system that Porter is applied. Part of the reason
of this situation is to not accurately make prediction for a few queries where performance
differences between stemming and no-stemming are the largest. For example, the Porter
plots in Fig 9F shows that selective method could not accurately predict those a few queries.
This error in prediction is most likely due to machine learning method since the machine
learning methods only learn from given sample of data. Thereby, the average performance
of the system is affected by this situation. However, this does not harm the robustness of
the proposed method, but rather maintains the robustness by minimizing the risk of failure
across queries.
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Feature analysis
Feature analysis investigates to what degree each feature contributes to performance. Our
proposed work takes advantage of several features used in binary classifiers for selective
stemming. The features have been used in 24 experiments (a combination of eight query
sets and three stemming algorithms), so in this section, we have examined the impact of
the features on IR effectiveness. Here, the investigation aims to discover the most and the
least important features and rank them in terms of the contribution to the performance
improvement of the proposed work.

In conducting feature analysis experiments, we have employed an ablation study. This
evaluation ranks the features according to their importance. The features are sequentially
removed from the feature set. For each iteration, the classifier model is trained, and the
average performance of the IR system is obtained. Finally, the performances of the IR system
obtained by each reduced feature set are the importance of the corresponding removed
feature. When the features are sorted in ascending order according to their importance,
the first feature is the most important feature. Because the classifier model trained by the
feature set without this feature produces the lowest performance score. Figure 6 shows the
plots for CW09B and CW12B query sets and each stemming algorithm. The plots for other
query sets are given in Appendix. Feature labels are on the y-axis, and their importance
scores are given on the x-axis in the plots. Also, the features are presented in ascending
order according to their importance, but the last row in each plot (label IncludeAll) stands
for the performance score obtained by the complete feature set. Each feature provides a
different degree of contribution to the experiments. For instance, while feature MaxIDF is
the most important feature for CW09B with KStem, it is one of the least important features
for Porter, and also removing it improves the performance of the IR system more than
the IR system using the complete feature set. Table 6 summarizes the plots according to
the importance of the features. The table includes the average and median ranking of each
feature in experiments. We can make several inferences from the table. In terms of most
important and least important features, MaxIDF and AvgIncDF are the candidate features
respectively. The average ranks of the features are around the fifth rank out of ten features.
If we had a feature around the second rank on average, we could conclude that it is the
core feature. Similarly, if we had a feature around the ninth rank on average, we could
conclude that it can be removed from the feature set or it is the least important feature.
However, according to our conducting experiments, the most important implication is
that the features are of almost equal importance since they are around the fifth rank. The
table supports that the features provide the robustness and performance improvements of
the selective IR systems. In addition, removing some features from the feature set improves
the retrieval scores as seen in Fig. 6. Those features are different for each experiments.
For instance, removing MaxIDF from the feature set for the experiment conducted on
the KStem baseline decreases the performance, but it improves for Porter baseline on
CW09B. This is a typical situation because each stemming algorithm changes the term
and document frequencies of the terms in a corpus to a different degree. Hence, the terms
have different frequency distributions on the corpus. The frequency fluctuations affect
the features and their importance in each experiment because machine learning methods
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Table 6 The average andmedian of the ranks in the feature importance experiments are presented.

Feature Average Median

MaxIDF 4.6 4
MeanSCQ 4.6 4
CorrIctfRank 5.2 5
Chi2-DF-TF 5.5 6
Mst-Lst-Change 5.5 6
ModifiedSCS 5.6 6
Omega 5.7 6
MaxWeightedIncDF 5.8 6
Gamma 6 6
AvgIncDF 6.5 6

learn from data. Hence, each corpus and its terms are individual according to the applied
stemming algorithm. The effect may be positive or negative for retrieval performance.
However, when all the features are generalized to the experiments, it is seen that each
feature contributes to the selective approach.

IMPLICATIONS
Theoretical implications
In a selective stemming approach, predicting the selection is solely not enough for evaluating
IR system performance. To robust IR system, accurately predicting the selections for the
given queries that occur high performance differences between participating systems is
crucial. Even if the classifier accuracy is moderate, accurately predicting such queries
improve retrieval robustness and performance. Binary classifier has a potential to alleviate
the per query performance degradation problem by using the features obtained with term
frequency distributions of participating systems. The used classifier appears to achieve this
aim by determining useful neighbor queries in decision process. Thereby, the selective
approach to stemming minimizes the risk of failure caused by applying stemming to an
IR system, and also, according to the experimental results, in most cases, the selective
method systematically improves the effectiveness of the systems participating in selection.
In most cases, the selective method also systematically improves the effectiveness of the
systems participating in selection according to the experimental results. In addition, the
proposed work enriches existing literature on selective stemming in terms of improving
the robustness and performance of an IR system by predicting to apply stemming to
the given query. Also, various features are derived from differences in the term frequency
distributions of the systems participating in the selection for this purpose. The contribution
of those features to selective stemming is empirically presented.

Practical implications
The proposed selective approach to stemming is convenient to employ an IR system.
Because the method works on a document index in which stemming is not applied, and
stemming is performed at query time by supplying a conflation set of morphological
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variants. For instance, document frequencies of the term to be stemmed can be calculated
by the posting lists of its morphological variants. Thereby, the classifier features can be
calculated at index time or offline, and selective stemming on a query basis is possible
to employ in an IR system. Especially for the large-scale Web collections (CW09B and
CW12B), the method is reasonably robust against performance fluctuation across queries.
The proposed method achieves satisfactory selection, improves the robustness, and, in
most cases, acquires a higher average retrieval performance than the single systems.

CONCLUSIONS
We proposed a method for the selective application of stemming on a per query basis
in order to alleviate the robustness and effectiveness deteriorations caused by the queries
that are harmed by stemming. The proposed selective approach to stemming was a binary
classifier to decide whether stemming should be applied to a given query. The classifier used
a rule-based stemmer and pre-retrieval query performance prediction features gathered
from the literature. In addition the features in literature, a set of features derived from
the frequency distributions of query terms with and without stemming applied is used.
The features used in the experiments play a role in different levels of improving retrieval
effectiveness according to the query sets. However, on average, features contribute to the
retrieval effectiveness of selective stemming in almost equal proportion. Experimental
results show that our selective approach is successful at avoiding the risk posed by the
queries that are adversely affected by stemming. It is obtained by accurately predicting
the application of stemming to the given query. Furthermore, our selective approach is
more effective than a single system in which stemming is systematically applied to all
queries. This suggests that our proposed selective approach to stemming is both robust
and effective. In our following research, we will focus on the classifiers and features to
improve the results of this work. We plan to investigate and derive the features that can
discriminate queries affected by stemming. Also, we will test advanced machine-learning
techniques and pre-trained language models for this purpose.
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APPENDIX
Multiple Comparisons
See Fig. 7.

APPENDIX616
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Figure 7. Multiple comparisons based on performance scores of the stemmers in IR systems for NTCIR,
GOV2, WSJ, MQ07, MQ08, and MQ09
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Figure 7 Multiple comparisons based on performance scores of the stemmers in IR systems for NT-
CIR, GOV2,WSJ, MQ07, MQ08, andMQ09.

Full-size DOI: 10.7717/peerjcs.1175/fig-7
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Robustness
See Fig. 8.

NTCIR

0 1 2 3 4 5
alpha

-6

-5

-4

-3

-2

-1

0

1

2

3

R
ob

us
tn

es
s

NoStem vs KStem
NoStem vs SelKStem

0 1 2 3 4 5
alpha

-6

-5

-4

-3

-2

-1

0

1

2

3

R
ob

us
tn

es
s

NoStem vs Lovins
NoStem vs SelLovins

0 1 2 3 4 5
alpha

-6

-5

-4

-3

-2

-1

0

1

2

3

R
ob

us
tn

es
s

NoStem vs Porter
NoStem vs SelPorter

(a) TRisk comparisons of proposed method and baseline stemmers against NoStem for NTCIR
GOV2

0 1 2 3 4 5
alpha

-4

-3

-2

-1

0

1

2

3

4

R
ob

us
tn

es
s

NoStem vs KStem
NoStem vs SelKStem

0 1 2 3 4 5
alpha

-4

-3

-2

-1

0

1

2

3

4

R
ob

us
tn

es
s

NoStem vs Lovins
NoStem vs SelLovins

0 1 2 3 4 5
alpha

-4

-3

-2

-1

0

1

2

3

4

R
ob

us
tn

es
s

NoStem vs Porter
NoStem vs SelPorter

(b) TRisk comparisons of proposed method and baseline stemmers against NoStem for GOV2
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(c) TRisk comparisons of proposed method and baseline stemmers against NoStem for WSJ
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(f) TRisk comparisons of proposed method and baseline stemmers against NoStem for MQ09

Figure 8 Continued.
Full-size DOI: 10.7717/peerjcs.1175/fig-8a
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(f) TRisk comparisons of proposed method and baseline stemmers against NoStem for MQ09

Figure 8 (A–F) TRisk comparisons of proposed method and baseline stemmers against NoStem for α

parameter from 0 to 5.
Full-size DOI: 10.7717/peerjcs.1175/fig-8a
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Per Query Performance Differences
See Fig. 9.

Figure 9 Continued.
Full-size DOI: 10.7717/peerjcs.1175/fig-9a
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Figure 9 (A–F) Per query performance differences.
Full-size DOI: 10.7717/peerjcs.1175/fig-9b
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Feature Importance
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Figure 10 Continued.
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Figure 10. Feature importance according to the ablation study
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