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ABSTRACT
Methods of computer-assisted diagnostics that utilize deep learning techniques on
recordings of respiratory sounds have been developed to diagnose bronchial asthma.
In the course of the study an anonymous database containing audio files of respiratory
sound recordings of patients suffering from different respiratory diseases and healthy
volunteers has been accumulated and used to train the software and control its
operation. The database consists of 1,238 records of respiratory sounds of patients and
133 records of volunteers. The age of tested persons was from 18 months to 47 years.
The sound recordings were captured during calm breathing at four points: in the oral
cavity, above the trachea, at the chest, the second intercostal space on the right side,
and at the point on the back. The developed software provides binary classifications
(diagnostics) of the type: ‘‘sick/healthy’’ and ‘‘asthmatic patient/non-asthmatic patient
and healthy’’. For small test samples of 50 (control group) to 50 records (comparison
group), the diagnostic sensitivity metric of the first classifier was 88%, its specificity
metric –86% and accuracy metric –87%. The metrics for the classifier ‘‘asthmatic
patient/non-asthmatic patient and healthy’’ were 92%, 82%, and 87%, respectively. The
last model applied to analyze 941 records in asthmatic patients indicated the correct
asthma diagnosis in 93% of cases. The proposed method is distinguished by the fact
that the trained model enables diagnostics of bronchial asthma (including differential
diagnostics) with high accuracy irrespective of the patient gender and age, stage of the
disease, as well as the point of sound recording. The proposed method can be used as
an additional screening method for preclinical bronchial asthma diagnostics and serve
as a basis for developing methods of computer assisted patient condition monitoring
including remote monitoring and real-time estimation of treatment effectiveness.
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1At the time of writing this article, in
English literature devoted to machine
learning, the term ‘‘prediction’’ is gradually
being replaced by the term/neologism
‘‘inference’’. The term ‘‘inference’’ is more
accurate as it mystifies the work of artificial
neural networks to a lesser degree. Further,
in this work we will use both terms.

INTRODUCTION
Bronchial asthma (BA) is one of the most common chronic diseases in all countries
regardless of their level of development. Diagnostics of BA is based on complex examination
of patients including methods such as assessment of the lungs’ functional state, lung
auscultation by doctors as well as analysis of anamnesis and historic family health (GINA,
2022; Gaillard et al., 2021). In some cases, X-ray examination and computer tomography
are utilized to carry out differential diagnostics and exclude other lung diseases (Ash &
Diaz, 2017). One of the basic objectives of asthma treatment is prevention of severe acute
conditions that require permanent monitoring (including remote) of patient’s condition
(GINA, 2022; Gaillard et al., 2021). Fast and objective assessment of the efficiency of
medications prescribed to a patient is also important. Lung function assessment and
imaging examination are difficult to perform in certain cases of pediatric practice, especially
for children under 5 years old.Most commonly, such children cannot adequately participate
in investigations of the functional state of lungs. Results of physical examination using
lung auscultation by doctors are to a considerable degree subjective (Bahoura & Lu, 2006;
Brand et al., 2008). During auscultation, doctors diagnose the presence of pathological
respiratory sounds. However, multiple different lung diseases can be accompanied by the
same pathological respiratory sounds (GINA, 2022; Furman et al., 2020; Sovijarvi et al.,
2000). Computer-assisted analysis of breath sounds can become an additional method
of preclinical diagnostics of lung diseases, including BA in children; it can also be an
instrument for objective express diagnostics of the disease and remote monitoring of the
state of patient’s health, becoming a component of telemedicine (Furman et al., 2014;
Furman et al., 2015; Furman et al., 2021; Furman et al., 2020; Chekhovych et al., 2018 and
references therein). Computer-assisted methods of lung disease diagnostics are free of
subjectivity and enable the ability to analyze changes in respiratory sounds, which cannot
be detected by the human ear. The reviews (Chekhovych et al., 2018;Kim et al., 2021) discuss
the main methods of respiratory sound processing including methods of machine learning
and deep learning that can be used for development of computer-assisted diagnostic
software applications. In comparison with methods and models that analyze patient’s
state, the models that utilize machine learning are often less interpretable but demonstrate
higher accuracy of diagnostic predictions1 (Elmarakeby et al., 2021; Shrikumar, Greeside
& Kundaje, 2017; Murdoch et al., 2019). Despite many works devoted to development of
computer-assisted diagnostics methods, a method suitable for application in real hospital
conditions has not yet been developed (Chekhovych et al., 2018).

In this study, we have developedmethods of computer-assisted diagnostics of respiratory
diseases that utilize deep learning techniques to analyze respiratory sound recordings. In
this study the main attention is given to the development of BA diagnostics methods. When
developing these methods, we have used the database described in the next section.

Computer-assisted analysis of breath sounds was performed at Ben-Gurion University
of the Negev (Israel). Software was implemented in Python programming language
using numpy (Harris et al., 2020), librosa (McFee et al., 2021), scipy (Virtanen et al., 2020),
scikit-learn (Pedregosa et al., 2011), and PyTorch (Paszke et al., 2019) libraries as well as the
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Python standard library. All tools used to develop the software are open-source software;
they are distributed under and protected by the permissive licenses.

DATABASE
The anonymous database that we formed contains the following basic characteristics of a
person under examination: age, gender, health status information, diagnosis, links to files
of digital audio recordings of respiratory sounds, time of recording, and recording point
(see below). The database contains respiratory sound recordings of healthy volunteers and
patients with asthma and other respiratory diseases. The health status of asthmatic patients
was classified into exacerbation, well-controlled, partially controlled, and uncontrolled
asthma in accordancewith their clinical picture. Bronchial asthma in patients was diagnosed
in line with recommendations indicated in the Global Initiative for Asthma: Global strategy
for asthma management and prevention 2022 (GINA, 2022). At the time of recording, the
volunteers had no pulmonary diseases or other diseases causing pathological changes in
breath sounds.

Clinical examination of patients and respiratory sound recordings was performed at the
Regional Children’s Clinical Hospital of Perm Krai (Perm, Russia). The examinations were
carried out in accordance with the Declaration of Helsinki, adopted in June 1964 (Helsinki,
Finland), revised in October 2000 (Edinburgh, Scotland), and approved by the Ethics
Committee of the Perm State Medical University. A written consent was obtained from
the examined persons (or from their parents or guardians when children were examined)
in accordance with the Federal Law ‘‘The Fundamentals of the Legislation of the Russian
Federation on the Protection of Citizens’ Health’’ from July 22, 1993, No. 5487-1.

No volunteers or patients smoked.
The database contains 1,371 recordings of respiratory sounds of patients and healthy

volunteers aged between 18 months and 47 years. The distribution of recordings by gender,
age, and disease is presented in Tables 1–3. The ‘‘Asthma’’ section of Table 3 shows the total
number of patients with asthma at different levels of control. More than 70% of records
are for boys/men (Table 1). Most patients participating in the study were between four
and 20 years old (Table 2). In this study, the main emphasis was placed on development
of computer-assisted methods of asthma diagnostics, and there are 1,113 recordings of
asthmatic patients in the database. To verify the applicability of the proposed approach for
development of differential diagnostic methods, respiratory sounds of patients suffering
from other respiratory diseases were also recorded (Table 3). Diagnostics of these diseases
was performed using a set of generally accepted studies.

We develop two diagnostic methods: diagnostics of respiratory illnesses using
classification ‘‘sick/healthy’’ and differential diagnostics of asthma according to
classification ‘‘asthmatic patient/non-asthmatic patient and healthy’’. In the first case
the healthy volunteers can be considered as a control group. In the second case a control
group is formed by non-asthma patients and volunteers.
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Table 1 Gender distribution.

Gender Asthma Healthy Ill
(no asthma)

Total
records

F 313 52 24 389
M 800 81 101 982
Total 1,113 133 125 1,371

Table 2 Age distribution.

0–2 2–4 4–13 13–20 20+ Total

Asthma 14 8 515 516 60 1,113
Healthy 6 0 32 13 82 133
Ill (no asthma) 1 6 110 8 0 125
Total records 21 14 657 537 142 1,371

Table 3 Disease distribution.

Disease F M Total

Asthma (partially controlled) 113 307 420
Asthma (exacerbation or/and uncontrolled) 53 131 184
Asthma (well-controlled) 77 166 243
Asthma (unspecified disease control) 70 196 266
Healthy 52 81 133
Relapsing obstructive bronchitis 13 84 97
Other lung diseases 11 17 28
Total 389 982 1,371

RECORDING OF RESPIRATORY SOUNDS
Breath sounds were recorded in calm breathing at four points: near the oral cavity, above
the trachea, on the chest (the second intercostal space on the right side), and at a point
on the right side of the back (Table 4). For most of the examined subjects, including
asthmatic patients with different states of the disease; the recordings were performed at
several points. A greater part (about 60%) of recordings was performed near the trachea
(Table 4). Choice of this point was conditioned by the following: (1) airflow in the trachea
contains information about sounds in the lung as a whole; (2) noises caused by cardiac
murmurs and muscular activity are weaker here than the ones at the points on the chest
and back; (3) it enables registration of sounds both at the inbreath and the exbreath. Breath
sounds were registered without interruption for several respiratory cycles, about 25 s. The
minimum recording time was 16 s. This reduced the influence of random variations in
sound intensity on the results of analysis.

Respiratory sounds were registered and recorded using mobile phones and computer
systems for sound recordings. The files containing respiratory sound recordings created
with phones with both internal and external microphones were transferred to a cloud
storage to create an anonymous database. Computer recordings were done using developed
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Table 4 Recording site distribution.

Recording point Asthma* Healthy Ill
(no asthma)

Total
records

Second intercostal space 285 9 10 304
Chest from behind 256 0 12 268
Oral cavity 9 1 2 12
Trachea 563 123 101 787
Total 1,113 133 125 1,371

Notes.
*Asthma–number of records at all disease stages.

computer systems for respiratory sound recording (Furman et al., 2014; Furman et al.,
2015; Furman et al., 2021; Furman et al., 2020). These computer systems contain external
microphones, electronic phonendoscopes, and computer sound cards, as well as Adobe
Audition software. The computer systems used to produce the recordings and the quality of
the recordingsmeet requirements defined inReicbert et al. (2009). All systemsdemonstrated
high amplitude–frequency linearity in the range from 100 Hz to 3,000 Hz. The sampling
rate was varied from 22 kHz to 96 kHz. Recordings were made in wav, mp3, and m4a
formats. Our analysis of the recordings in different formats showed that the Fourier spectra
of the recordings slightly differ in the frequency range we are interested in. The files in mp3
and m4a formats were converted to wav format.

All recordings were performed by physicians with special training to use registration
systems and audio recording software. The physicians were also trained to visually control
the quality of the recordings (oscillograms of the recordings were shown on the computer
screen) and to analyze the visual presentation of the sound recordings. In addition to this
the recording quality was assured with the help of the developed software.

METHODS OF ANALYSIS OF RESPIRATORY SOUND
RECORDINGS
This study was carried out in accordance with the approval (approval code: 7/21, approval
date:10.02.2021) received from the local research ethics committee at the Academician E.A.
Wagner Perm State Medical University. In Tomita et al. (2019), a method of computer-
assisted diagnostics of asthma that utilizes deep learning techniques has been developed.
At the input layer, information regarding a patient, their anamnesis, results of biochemical
analyses, and functional lung testing are introduced. We are proposing a method, whose
sole input element is the audio file. The suggested method is based on visualization of
respiratory sound recordings followed by training of a DenseNet model with k-fold cross-
validation. The k-fold cross-validation approach is successfully used to analyze images (Han
et al., 2021; Rodriguez, Perez & Lozano, 2010) including in methods of computer-assisted
diagnostics based on computed tomography. As the result of creating different samples
from our database, we have developed software to perform binary classification of two
types ‘‘sick/healthy’’ and ‘‘asthmatic patient/non-asthmatic patient and healthy.’’ For the
‘‘sick/healthy’’ classification, by ‘‘sick’’ we mean that a patient was diagnosed with any
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Figure 1 High-level diagram of the respiratory sound analysis workflow.
Full-size DOI: 10.7717/peerjcs.1173/fig-1

of the respiratory diseases indicated in the ‘‘Database’’ section. The models trained to
perform the aforementioned binary classifications and their subsequent use enable not
only the diagnostics of bronchial asthma but preliminary differential diagnostics as well.
The program workflow is presented in Fig. 1.

SAMPLES AND DATA PREPROCESSING
The functionality of performing binary classification and processing of audio records is
coupled in the same piece of software. Characteristic Fourier spectrograms of respiratory
sound spectra of two asthmatic patients and a healthy volunteer are plotted in Fig. 2.
In the first stage, the database is used to filter and gather samples and groups in line
with the procedure illustrated in Fig. 3. To produce equally weighted samples from a
group containing a larger number of files, the recordings were randomly selected equal
to the number of files in the smaller group. For example, for the binary classification
‘‘sick/healthy,’’ the database contains 1,238 records of patients and 133 records of healthy
volunteers. In the groups, all 133 recordings of healthy volunteers and 133 randomly
selected recordings of patients are used. From each group, 50 recordings were randomly
allocated to be used for testing, and the remaining recordings were used for training the
model. Testing was also performed on all patient recordings that were not in any of the
training or testing samples.
The selected files are subject to preprocessing, duringwhich the opening and end portions

(2 s each) that often contain extraneous noises or/and an absent signal are removed from
the records. Extraneous or random extremes in the recorded signals are also removed, and
the digital signal representation is normalized to a range from −1 to 1. The processed files
are divided into 5-second clips with 50% overlapping. From the final 5-second clips, five
blocks for k-fold cross-validation are assembled (Fig. 3).

Note that the clips are allocated to the blocks sequentially, which ensures that clips
from the same file end up in different blocks. This ensures that each of the blocks will be
representative. The described division of recordings into clips allows us not only to unify
the analyzed records but also to increase (augment) the sample by modifying the existing
data.

The next stage is illustrated in Fig. 3: for each clip, we make three spectrograms of
mel-frequency cepstral coefficients calculated with different sliding window widths using
the discrete Fourier transformation. The window widths for the three cepstrograms are 25
ms, 100 ms, and 175 ms. The window widths were chosen empirically from the widths that

Aptekarev et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1173 6/18

https://peerj.com
https://doi.org/10.7717/peerjcs.1173/fig-1
http://dx.doi.org/10.7717/peerj-cs.1173


Figure 2 Fourier spectrograms of respiratory sound spectra in patients suffering from bronchial
asthma (A) and (C) and a healthy volunteer (B).

Full-size DOI: 10.7717/peerjcs.1173/fig-2

Random 50 records are
allocated for testing

All recordings except the
test 50 are used to create

the training data
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the results
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Figure 3 Diagram of training data preparation procedure.
Full-size DOI: 10.7717/peerjcs.1173/fig-3
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deliver the best results. These windows are consistent with the duration (from 80 ms to 250
ms Sovijarvi et al., 2000; Bahoura & Lu, 2006) of wheezing breathing of asthma patients.

Spectrograms were made using a function included in the PyTorch library
(MelSpectrogram) (Paszke et al., 2019). Use of such spectrograms for asthma diagnostics
was proposed in a number of works (Yu et al., 2013; Reichert et al., 2008; Shirazi et al.,
2012; Taplidou & Hadjileontiadis, 2007; Kim et al., 2021). In these works, the physician was
offered the choice of performing the diagnostics by visual signs of the disease available on
a spectrogram or using computer-aided analysis of amplitude–frequency dependencies.
This visual method is subjective and in certain cases, diagnostics can be difficult and lead
to an incorrect result (see Appendix). Computer-assisted analysis somewhat enhances the
accuracy of diagnostics.

TRAINING THE MODELS
To implement binary classification of the clips, we chose the DenseNet201 model originally
proposed in the article ‘‘Densely Connected Convolutional Networks’’ (Huang et al.,
2018). The choice of this model is conditioned by the following factors. On the one hand,
this model is more efficient than other models in classifying audio records (Palanisamy,
Singhania & Yao, 2020). Its architecture was successfully used for COVID-19 diagnostics
based on analysis of audio recordings (Laguarta, Hueto & Subirana, 2020). On the other
hand, for the architecture used, there are pre-trained states for classifying audio recordings
that were created by training using large databases of recordings, in particular, ESC (Piczak,
2015), that enables us to utilize the transfer learning approach. Transfer learning enables
the use of preliminary trained statistical models to train new models using only small
amounts of new data of the same type (Pratt, 1992; Han et al., 2021). To apply the method
of transfer learning for our models during initialization, we used a state of the model
pre-trained on ESC.

We use k-fold cross-validation of five blocks containing the same number of records.
The model is trained five times independently, sequentially, using four blocks for training
and using the fifth block for validation. This gives an 80/20 proportion in the distribution
of data into training/validation groups, and we end up with five independent states of
the model for testing. The diagram (Fig. 4) shows the use of blocks to form the training
and validation samples in different iterations of training. It should be noted that learning,
validation, and subsequent testing were implemented using recordings captured at all
points.

During training, each of the groups with training and validation data went through
the model 60 times in both directions (60 epochs of training). The number of epochs was
limited, in order to avoid overfitting the models.

We select the state of the model that has shown the best validation result after the
learning dynamics (increasing accuracy with each subsequent training epoch) is reduced.
This is done to simultaneously obtain high accuracy and prevent the model’s overfitting.

As an example, Fig. 5 shows the dynamics of model learning. The state reached at the
59-th training epoch for the learning/validation group was chosen as the trained model.
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Figure 4 Preparation of spectrogram for learning.
Full-size DOI: 10.7717/peerjcs.1173/fig-4
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Figure 5 Typical dynamics of training model at the example ‘‘asthmatic patient/non-asthmatic pa-
tient and healthy’’.

Full-size DOI: 10.7717/peerjcs.1173/fig-5

Figure 6 Prediction (inference) procedure.
Full-size DOI: 10.7717/peerjcs.1173/fig-6

This state was chosen based on two criteria. The first criterion is high accuracy in validation,
the second one is the later epoch (in order not to get insufficiently trained models, the
states reached at epochs with numbers greater than 40 were chosen). After the training, we
tested the models trained on each training/validation group using test data. To test, data
from the test sample was provided as the model input so that the model would perform a
prediction (inference) of the appropriate class (Fig. 6).

As an example, Table 5 shows the results of model testing for the classification of
respiratory sound recordings into ’’asthmatic patient/non-asthmatic patient and healthy’’
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Table 5 Results of model testing to classify asthmatic patient/non-asthmatic patient and healthy.

Asthma P Asthma FN No
asthma P

No
asthma FN

Sensitivity Specificity

Group 1 46 4 40 10 92% 80%
Group 2 45 5 38 12 90% 76%
Group 3 45 5 40 10 90% 80%
Group 4 46 4 40 10 92% 80%
Group 5 46 4 41 9 92% 82%

Notes.
Here, P –correct diagnostics (positive classification), FN –incorrect diagnostics (false-negative classification).

classes. Sensitivity Se and specificity Sp were used as the accuracy criteria for the model:

Se =
Tp

Tp+Fp
100%

Sp=
Th

Th+Fh
100%

whereTp andTh–numbers of correctly diagnosed patients andhealthy persons, respectively;
Fp and Fh –numbers of mistakenly diagnosed patients as healthy and healthy as ill,
respectively.

Since we use the 5-block cross-validation as a result of training, we obtain five states of
the selected model. All five model states obtained give close results. Out of them, we chose
the model that shows the best results for further use. In this example, it is model number 5.

DIAGNOSTICS
The trained models were tested using recordings contained in the sample that did not
participate in either training or validation. Testing was performed for two types of binary
classifications (diagnoses): ‘‘sick/healthy’’ and ‘‘asthmatic patient/non-asthmatic patient
and healthy,’’ using balanced test samples of 50 randomly selected recordings of each type.

Here, the method accuracy is determined by the formula:

A=
Tp+Th

Tp+Fp+Th+Fh
100%

and Youden’s index is calculated using the formula:

J =
(

Tp

Tp+Fp
+

Th

Th+Fh

)
.

In testing, the sensitivity and specificity of both classifications are almost the same as the
values obtained in training and validating the models (Tables 5 and 6).

The proposed models allow one to diagnose and classify patients as respiratory patients,
using the criterion ‘‘sick/healthy,’’ as well as ‘‘to separate’’ the asthmatic patients from the
group of non-asthmatic patients and healthy people. Consistent use of developed models
may provide the basis for differential diagnostics. We differentially diagnosed asthmatic
patients using the ‘‘asthmatic patient/non-asthmatic patient and healthy’’ classifier and
applied it to 941 records of asthmatic patients from the database, who did not participate
in training and model testing. The sensitivity of this differential diagnostics was 93%.
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Table 6 Results of predictions/inferences (diagnostics) for test samples.

Classification type Validation
accuracy

Sensitivity Specificity Accuracy Youden’s
index

Sick/healthy 96% 88% 86% 87% 0.74
Asthmatic patient/Non-asthmatic
patient and healthy

94% 92% 82% 87% 0.74

DISCUSSION AND CONCLUSION
We have shown that the proposed methods demonstrate high sensitivity and specificity for
diagnostics of bronchial asthma and can provide the basis for the development of methods
of computer-assisted differential diagnostics. The method is based on representation of
a sound recording as a spectrogram image, which is being classified as one of two classes
(binary classification) using deep learning techniques. This approach makes it possible to
determine signs of the disease (characteristic pathological changes in respiratory sounds),
which cannot be diagnosed by a human (see Appendix).

Using the proposed method, we developed two computer programs (software) to
diagnose respiratory patients and, differentially, asthmatic patients. Applied to small test
samples (groups), 50/50, the sensitivity, specificity, and accuracy were 88%, 86%, and
87%, respectively, for the ‘‘sick/healthy’’ classification. These values for the ‘‘asthmatic
patient/non-asthmatic patient and healthy’’ classifier were as follows: sensitivity for
diagnosing asthmatic disease was 92% with specificity of 82% and accuracy of 87%
(Table 5).

The achieved diagnostic indicators exceed those of traditional diagnostic methods.
Clinical auscultation is an inexpensive, safe, easy-to-perform diagnostic tool. Lung
auscultation by a physician is a subjective method with variability and depends on several
factors, including the qualifications and experience of the physician. The average percentage
of correct detections of wheezing by non-pulmonologists is 60%; this percentage for
pulmonologists is somewhat higher (Hafke-Dys et al., 2019). Note that during auscultation
a physician determines pathological sounds, such as wheezing, which can be caused by
various illnesses (GINA, 2022; Furman et al., 2020; Sovijarvi et al., 2000).

Analysis of the lungs’ functional state is recommended by the GINA (2022) to be used
for bronchial asthma diagnostics. These exams reflect documented expiratory airflow
limitation caused by the illness. For spirometry (Schneider et al., 2009) sensitivity is 29%
(when performed by high-level specialists and with active cooperation of the patient it can
reach 39.8%), and specificity of 90%. The change of peak flow in the SAPALDIA study
(Künzli et al., 1999) is characterized by the following: sensitivity of 40% and specificity of
83%; when diagnosing the disease in children (Valadares et al., 2013): sensitivity is 31%
and specificity –90%.

A method for classifying pathological respiratory sounds and models (neural networks)
built on different architectures (VGG16, VGG19, Inception V3, DenseNet201, ResNet50,
and ResNet101) was analyzed in Kim et al. (2021). The best model distinguished
pathological sounds, without performing disease diagnostics, with a reliability of 86.5%.
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The accuracy of computer-assisted diagnostics of pathological sounds and their
classification by type (wheezing, rhonchi, crackles) exceeded the accuracy of the physician’s
diagnosis. A computer-based method for diagnosing BA (Gelman et al., 2021) based on
machine learning and comparison of respiratory sounds of asthmatic patients and healthy
volunteers demonstrates similar values of sensitivity of 89.3%; reliability of 86%, accuracy
of about 88%, and Youden’s index of 0.753.

The ‘‘asthmatic patient/non-asthmatic patient and healthy’’ classifier that we developed
on a rather large database of 941 asthmatic patient recordings demonstrated high sensitivity
of 93% for differential diagnostics.

Relatively small databases were used to train, validate, and test the models. Segmentation
of audio recordings and transfer learning methods were used to increase their diagnostic
performance. Improving the quality of the models is directly related to increasing the
amount of data in the database.

In pulmonary diseases, pathological processes and the physiological changes provoked
by them are reflected in the character of respiratory sounds. The computer-assisted
diagnostics methods developed previously that utilize the Fourier spectrum analysis or
other sound wave metrics attempt to link disease diagnostics with the analysis of biological,
physiological, and clinical processes in the patient’s body (Furman et al., 2014; Furman et
al., 2015; Furman et al., 2021; Furman et al., 2020; Gelman et al., 2021). Machine learning
and deep learning methods are designed to divide data into certain categories according to
identified common attributes that cannot always be clearly matched to body processes, and
to statistically analyze the signals. This leads to the fact that the computer can distinguish
signs that are not evident to a human observer, and computer-assisted diagnostic methods
based on machine learning techniques can be more accurate than methods that identify
pathological characteristics of sounds. So, we may assume that the proposed methods can
be used not only for registration of characteristics of asthmatic pathological sounds but
also to assist in the diagnostics of asthma.

The method we developed possesses a certain universality: it classifies recordings made
at different points (second intercostal space, chest from behind, oral cavity, and trachea)
in patients at different stages of asthmatic disease (exacerbation, well-controlled, partially
controlled, and uncontrolled asthma) as well as recordings made using different devices,
including smartphones, and encoded in different formats wav, mp3, m3a. Once trained, the
software makes it possible to diagnose bronchial asthma with high reliability regardless of
the gender and age of the patient, stage of the disease, and the point at which the sounds are
recorded. This opens a way to use the proposed method in telemedicine. One of potential
areas of future development may be its adaption to asthma exacerbation diagnostics.

To conclude, the proposed method of computer diagnostics based on the analysis of
respiratory sounds enables diagnostics of bronchial asthma with high reliability irrespective
of the patient’s gender and age, stage of the disease, and the point, at which the sounds
are recorded. The method is based on visualization of audio recordings and uses deep
learning techniques for their classification. We developed methods of binary classification
of respiratory diseases, which demonstrate high sensitivity and specificity in diagnostics of
bronchial asthma.
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The methods may serve as the basis for development of differential computer-assisted
diagnostics.

Bronchial asthma diagnostics is based on a comprehensive examination of a patient,
including lung auscultation and lung function assessment. The proposed method can be
used as an additional screening method for preclinical bronchial asthma diagnostics and
serve as a basis for the development of computer-aided monitoring methods, including
remote monitoring (telemedicine) of patient’s condition and real-time assessment of
treatment effectiveness.

APPENDIX
The results of lung auscultations performed by physicians are largely subjective, depending
on the physician’s experience (Kim et al., 2021), and the human ear’s perception of
pathological sounds is limited both in frequency and in their level against other noises.
Computer methods for diagnosing pulmonary diseases are devoid of subjectivity and
make it possible to analyze the changes in respiratory sounds that cannot be detected
by a human ear. One such method is visualization imaging of respiratory sounds (Li et
al., 2016). For example, the Fourier spectrum of respiratory sounds of asthmatic patients
contains areas of frequencies in which the amplitudes of harmonics significantly exceed
the amplitudes in the spectrum of healthy people (see, for example, Fig. 4 in Furman et al.,
2014). A time-periodic manifestation of such amplification is observed. The duration of
such amplifications is about 200 ms (see, for example, Fig. 5 in Furman et al., 2014). This
makes it possible to visually distinguish between the respiratory sounds of ill and healthy
people.

However, diagnostics based on visualization of respiratory sounds has similar drawbacks:
it is subjective and limited to the perception of a human eye. To illustrate this, characteristic
Fourier spectrograms of respiratory sound spectra of two asthmatic patients and a healthy
volunteer are plotted in Fig. 2. In the first stage, the respiratory sound recordings were
represented in a time-frequency domain using a discrete Fourier transform for short
overlapping time intervals. We used a sliding window containing 2,048 recording time
points, and the window shift step was chosen to be 512 points. Further, the squares of
harmonic amplitudes as a function of time and frequency were represented in decibels.
The functions stft and amplitude_to_db from the librosa library (McFee et al., 2021) were
used to perform these operations.

Two types of spectrograms of patients can be seen clearly: spectrogram (Fig. 2A) with
clearly pronounced periodic sound amplification (an increase of harmonic amplitudes)
compared to the spectrogram of a healthy person (Fig. 2B) in the frequency range from
65 Hz to 510 Hz and also in a narrow frequency range around 2,500 Hz (Fig. 2A). In the
frequency range from 65 Hz to 510 Hz, the duration of harmonic amplitude increase is
approximately 1 s. Within these time intervals, additional short-term (∼150 ms) sound
amplifications are observed. At high frequencies (∼2,500 Hz), the duration of periodic
sound amplifications is approximately 1.2 s.
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The second type of spectrograms of patients (Fig. 2C) is characterized by periodic
amplification of sounds in the frequency range from 100 Hz to 500 Hz. The duration of
such amplifications is ∼200 msec. The same amplifications, but less pronounced, are also
observed on the spectrogram of a healthy person (Fig. 1B). Taking into account that sounds
at frequencies less than 100 Hz are mainly determined by noises of the heart and chest
muscles (Furman et al., 2014; Furman et al., 2015; Furman et al., 2021), it is very difficult
to diagnose the disease visually by the spectrogram in Fig. 1C.
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