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ABSTRACT
Background. Substation equipment temperature is difficult to achieve accurate
prediction because of its typical seasonality, periodicity and instability, complex
working environment and less available characteristic information.
Methods. To overcome these difficulties, a substation equipment temperature pre-
diction method is proposed based on multivariate information fusion, convolutional
neural network (CNN) and gated recurrent unite (GRU) in this article. Firstly, accord-
ing to the correlation analysis including linear correlation mapping, autocorrelation
function and partial autocorrelation function for substation equipment temperature
data, the feature vectors from ambient, time and space are determined, that is the
multivariate information fusion feature vector (denoted as MIFFV); secondly, the
dimension of MIFFV is reduced by principal component analysis (PCA), extract some
of the most important features and form the reduced feature vector (denoted as
RFV); then, CNN is used for deep learning to extract the relationship between RFV
and the high-dimensional space feature, and construct the high-dimensional feature
vector of multivariate time series (denoted as HDFV); finally, the high-dimensional
feature vector is used to train GRU deep learning network and predict the equipment
temperature.
Results. A substation equipment in Taizhou City, Zhejiang Province is conducted by
the method proposed in this article. Through the comparative experiment from the
two aspects of features and methods, under the two prediction performance evaluation
indexes of mean absolute percentage error (MAPE) and root mean square error
(RSME), two main conclusions are drawn: (1) MIFFV from three aspects of ambient
features, time features and space features have better prediction performance than the
single feature vector and the combined feature vector of two aspects; (2) compared with
other four related models under the same conditions, RFV is regarded as the input of
the models, the proposed model has better prediction performance.
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INTRODUCTION
The safe operation of power equipment is the focus and key to ensure the stable operation
of substation, in which substation primary equipment is the top priority; therefore, we
should attach great importance to the primary equipment of the substation, strengthen
management and control, and do a good job in the daily condition monitoring and
maintenance of the primary equipment of the substation (Wang, 2016). Equipment
temperature is an important index to measure the health of equipment, however, online
monitoring is mainly for primary equipment (Sun, 2019), and many factors will cause the
equipment temperature to rise, such as too much voltage load, an insufficiently tightened
joint connection, loose bolts at key points, oxidized and corrode conductor surface,
too much contact resistance of the contact surface, and so on. If the temperature rises
slightly, the relevant electrical equipment will be damaged and burned, which will lead
to the operation failure of the substation; more importantly, it will lead to fire and safety
accidents, resulting in huge economic losses and social impact of the substation. Therefore,
it is very important to know the temperature of each equipment in real time.

In the past, the substation was inspected and measured regularly by manual means
which is prone to casualties, and in recent years, the state grid has adopted the intelligent
inspection means for the management and monitoring of substation equipment, and
installed infrared cameras in the substation, but due to the limited storage space of the
equipment, it is generally set for one day or one hour, so sometimes the fault can not
be found in time. Through substation equipment temperature prediction, the future
temperature information is obtained in advance, and the purpose of equipment fault early
warning can be realized.

When the data source and data set have been identified, the completion of equipment
temperature prediction task mainly needs to go through two processes: feature engineering
and modeling. This article focuses on these two links to solve the problem of accurate
prediction of substation temperature.

Feature engineering mainly carries out feature selection and feature extraction. For
substation equipment temperature prediction, in addition to the complex working
environment of substation equipment, the biggest difficulty is that the information
source used for prediction is limited. The research results in this field at home and
abroad show that there are more domestic research results and less foreign research
results. The research results are mainly concentrated in domestic Huazhong University
of Science and Technology, Harbin University of technology, Zhejiang University, North
China Electric Power University and some power companies (Hao et al., 2021; Guo et al.,
2020; Kong, 2015). The research objects of substation equipment at home and abroad
mainly include high-voltage or low-voltage switchgear (Velásquez, Lara & Melgar, 2019;
Zeng et al., 2018; Bussière et al., 2017), intelligent electronic equipment (Sun et al., 2022),
disconnector (Huang et al., 2022a), bushing contact (Huang et al., 2022b), etc. At present,
most studies used historical time series as feature extraction source for rolling prediction
of equipment temperature, which typically include auto-regressive and moving average
model (ARMA) series models (AR, ARMA, ARIMA) (Baptista et al., 2018); however, the
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simple temperature trend can not accurately predict the future equipment temperature
value, resulting in the failure to accurately identify the health status of the equipment
and take precautions in advance. Some scholars are also constantly trying to find more
feature sources. Through the seasonal analysis of substation equipment temperature data,
it was found that there exists typical positive correlation between ambient temperature and
equipment temperature. Therefore, the daily maximum temperature and daily minimum
temperature are taken as ambient characteristics and equipment temperature at historical
time to form a feature vector for equipment temperature prediction (Yu et al., 2022); in
addition, by analyzing the influencing factors of temperature rise of high-voltage switchgear,
Xu, Xu & He (2016) established a temperature prediction fusion model based on load
current and ambient temperature of high-voltage switchgear by using information fusion
technology and back propagation neural networBPNNk, and achieved good prediction
performance. As is known, for primary equipment of substation main transformer, load
current and equipment monitoring belong to different departments, so it is difficult
to obtain load current information, and the daily maximum temperature and daily
minimum temperature of the ambient can not clearly reflect the real-time correlation
between the weather temperature and the equipment temperature, which will affect the
prediction performance. Temperature is a parameter with heat transfer characteristics,
and the temperature of adjacent positions in space has the effect of interaction. Based on
current research, it can be seen that the traditional substation equipment temperature
prediction method ignores the spatial relationship information of equipment in the
historical time, resulting in poor prediction accuracy. Thus, it is particularly important to
select what characteristics to characterize the temperature for prediction. So, when solving
the problem of substation equipment temperature prediction, inspired by considering
environmental perspective factor in the research results of the literature (Hou et al.,
2021a), Feature extraction information comes from three viewpoints of ambient, time and
space, and develops ambient feature vector, time feature vector and space feature vector
as multivariate information fusion feature vector in this article. Considering that Zhejiang
Province is a typical subtropical seasonal climate, the real-time weather temperature and
humidity are selected as the ambient characteristics to form the ambient feature vector;
the historical temperature time series of the monitoring points of the prediction target
is selected as the time feature vector and the temperature of all monitoring points with
space correlation for the predicted target monitoring point temperature is composed of
space feature vector. Principal component analysis (PCA) (Zhang et al., 2022) is a common
data analysis method and a linear dimensionality reduction method, whose principle is to
map high-dimensional data to low-dimensional space through a certain linear projection,
and expect the maximum amount of information (the largest variance) of the data on the
projected dimension, so as to use fewer data dimensions and retain the characteristics of
more original data points, which can be used to extract the main feature components of
data. PCA has the functions of simplifying operation, removing data noise and discovering
hidden related variables (Dai, 2021; Song & Yang, 2022), and it is adopted to reduce the
feature vector of multivariate information fusion to form the reduced feature vector, so as
to realize the feature extraction process for substation equipment temperature prediction.
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The quality of the prediction model is also the main factor affecting the prediction
performance. In the last five years, neural networks have been widely used in substation
equipment temperature prediction, such as back propagation neural network (Liu,
2012), radial basis function neural network (Wang et al., 2015), generalized regression
neural network (Kong & Zhang, 2016), adaptive neural network (Wang, 2015), neural
network optimized by swarm intelligence algorithm (Xu, Hao & Zheng, 2020), support
vector machine (SVM) and a series of other machine learning methods (Zhang et
al., 2020). In the past three years, deep learning networks have made breakthrough,
such as pedestrian trajectoryprediction (Esfahani, Song & Christensen, 2020), PM2.5
prediction (Mohammadshirazi et al., 2022), traffic speed prediction (Zheng, Chai & Katos,
2022), estimation of residual capacity for lithium-ion battery (Hou et al., 2022) and so
on (Xu, Lin & Zhu, 2020). In 2021, Hou et al. (2021b) solved the problem of temperature
prediction of switchgear equipment in substation by using long short-term memory
(LSTM) network, and achieved good results, which opens the prelude of solving the
problem of substation equipment temperature prediction with deep learning network. The
gated recurrent unit (GRU) was proposed by Gharehbaghi et al. (2022) and is an effective
variant of LSTM (Cao, Jiang & Gao, 2021; Yuan et al., 2022). In many cases, GRU and
LSTM have the same excellent results, but GRU has fewer parameters, so it is relatively
easy to train and the over fitting problem is lighter (Cao, Jiang & Gao, 2021; Yuan et al.,
2022). Therefore, GRU network is adopt to predict substation equipment temperature in
this article. Before the prediction, taking advantage of CNN’s feature extraction (Khalifani
et al., 2022), CNN network is used for deep learning to extract the relationship between
the reduced feature vector and the equipment temperature in the high-dimensional space,
and construct the high-dimensional feature vector of multivariate time series, then the
high-dimensional feature vector is used to train GRU network and predict the equipment
temperature.

RELATED WORK
Correlation analysis
Two functions of autocorrelation function and partial autocorrelation function are
adopted to analyze correlation. The autocorrelation functon and partial autocorrelation
function are described as follows. (1) As is known, autocorrelation belongs to sequence
correlation, which expresses the cross-correlation between the sequence and itself at
different moments (Chachlakis et al., 2021). The autocorrelation coefficient of the time
series is denoted as ACF, that is autocorrelation function. This article quantitatively
describes the lag autocorrelation of substation equipment temperature time series by
calculating ACF value. ACF is expressed as

∧
ρk in formula Eq. (1):

∧
ρk =

∑n−k
t=1

(
Zt −

−

Z
)(

Zt+k−
−

Z
)
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where, Zt is the equipment temperature at time t , Zt+k is the equipment temperature at

time t+k,
−

Z is the average value of equipment temperature. (2) Partial autocorrelation is
the relationship summary between the time series observation after eliminating interference
and the previous time step observation (Mestre et al., 2021). That is, consider the correlation
after removing the influence of intervention variables Zt+1,Zt+2,Zt+3,... with common
linear dependence from Zt and Zt+k , namely, under the condition of observation Zt+1,
the autocorrelation state of Zt and Zt+k so on. Partial autocorrelation function (PACF) is
expressed as Pk in formula Eq. (2):

Pk =
Cov

[(
Zt −

∧

Zt

)
,
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Zt+k

)]
√
Var

(
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where,Cov refers to the covariance at moment t ,Var refers to sample variance,
∧

Zt is sample

estimation at moment t , and
∧

Zt+k is sample estimation at moment t+k.

PCA
Principal component analysis(PCA) is a data dimension reduction method that is widely
applied in various fields (Cao, Sun & Zhao, 2022), which has the functions of simplifying
operation, removing data noise and discovering hidden related variables. Therefore, PCA
is selected to screen the input features. By calculating cumulative contribution rate of the
input features, the first few important features are selected from multiple features as the
principal components to reduce the input dimension and improve the convergence speed.

The main idea of PCA is to relinearly combine p-dimensional linearly related features
and map them into k-dimensional linearly independent features (k < p). The reacquired
k-dimensional features are principal components, which can represent the information of
the original features to the greatest extent.

It is assumed that it has pfeatures, and each feature has n observation values, then the
initial data matrix C can be obtained.

C =


c11c12 ···c1p
c21c22 ···c2p
...
...
...
...

cn1cn2 ···cnp.

 (3)

The implementation process of PAC method is realized by the following six steps:
(1) The original p characteristics are standardized to obtain the standardized feature

variables.

yj =
sj−µj

sj
,j = 1,2,...,p (4)

where, µj =
1
n
∑n

i=1cij,sj =
√

1
n
∑n

i=1
(
cij−µj

)2.
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(2) Standardize each feature element to obtain the corresponding data matrixW .

W =


w11w12 ···w1p

w21w22 ···w2p
...
...
...
...

wn1wn2 ···wnp

 (5)

where, wij =
cij−µij

sj
,i =1 ,2,...,n;j =1 ,2,...,p.

(3) According to the matrix W , the correlation coefficient matrix R=
(
rij
)
p×pof W is

calculated. Where, rij =
∑n

t=1wt1wtj
n−1 ,i,j =1 ,2,...,p.

(4) Calculate the eigenvalues of matrix R andsort them in descending order
λ1 ≥ λ2 ≥ ··· ≥ λp, and the standard orthogonalization eigenvector corresponding to
each eigenvalue is calculated u1,u2,...,up, where, µj =

[
µ1j,µ2j,...,µpj

]T
,j =1 ,2,...,p.

(5) p new feature vectors are computed with the original p standard orthogonal feature
elements, that is,
N1= u11y1+u21y2+···+up1yp
N2= u12y1+u22y2+···+up2yp
...

Np= u1py1+u2py2+···+uppyp

(6)

where, N1 refers to the first principal component; N2 is the second principal component;
Np is the p− th principal component.

(6) The contribution rate and cumulative contribution rate of each principal component
are calculated, and the calculation formula is shown in formula Eq. (7) and formula Eq.
(8) respectively.

Nj =
λj∑p
t=1λt

,j = 1,2,...,p (7)

ηi=

∑i
t=1λt∑p
t=1λt

×100%,i= 1,2,...,p. (8)

Among them, Nj is the contribution rate of the j− th principal component; ηi is the
cumulative contribution rate of the first i principal components.

CNN
CNN is the abbreviation of convolutional neural network, which is a variant of multilayer
perceptron (MLP), and it was developed by biologists Huber and Wiesel in their early
research on cat visual cortex (Aslan et al., 2022). Figure 1 shows the structure of CNN
networks. The structure of CNN is described in order, including input layer, convolution
layer, activation layer, pool layer, full connection layer and output layer. The convolution
layer is the core structure of CNN model, which is usually 1×1 matrix, 3×3 matrix and
5×5 matrix. The weights of neurons on the same feature mapping plane in CNN can
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Figure 1 CNNmodel structure diagram.
Full-size DOI: 10.7717/peerjcs.1172/fig-1

be shared locally. Therefore, CNN network supports parallel learning, which can greatly
improve the calculation speed and model prediction efficiency. The unique structure of
CNN has great advantages in the fields of machine learning, deep learning and prediction
field, which is the most widely used depth feature extraction method.

GRU network
Gate recurrent unit (GRU) is a special network structure in neural network (Ansari, Bartoš
& Lee, 2022), which has only two gate structures of reset gate and update gate, is simpler
than the three gate structure of LSTM network and has good prediction effect. These two
gating vectors can determine which data can be used as the final output. The basic structure
of GRU is shown in Fig. 2.

In Fig. 2, xt refers to the input data, that is, the high-dimensional feature vector, ht−1
refers to the output data of the previous layer, and ht refers to the output data of the current
layer. rt and zt are the outputs of reset gate and update gate, and kt is the candidate set. σ
and tanh are sigmoid activation function and tanh activation function. The mathematical
description of GRU is shown in formula Eq. (9).
zt = σ

(
Wz ·

[
ht−1,xt

]
+bz

)
rt = σ

(
Wr ·

[
ht−1,xt

]
+br

)
kt = tanh

(
Wk ·

[
rt ·ht−1,xt

]
+bk

)
ht = (1−zt ) ·ht−1+zt ·kt

. (9)

THE PROPOSED METHOD
The substation equipment temperature prediction method proposed in this article is
mainly realized by the following five steps:

(1) Correlation analysis. Linear graph correlation, autocorrelation and partial
autocorrelation analysis are carried out for the temperature data of substation equipment;

(2) Determine the feature vector of multivariate information fusion. In this article, it
includes the features from three aspects of ambient, time and space, which is denoted as
MIFFV .
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Figure 2 GRU structure diagram.
Full-size DOI: 10.7717/peerjcs.1172/fig-2

(3) Obtain the reduced feature vector. PCA is applied to reduce the dimension of
multivariate information fusion feature vector to obtain the reduced feature vector, which
denoted as RFV ;

(4) CNN is used to extract the relationship between the reduced feature vector and the
equipment temperature in the high-dimensional space, and construct the high-dimensional
feature vector of multivariate time series, which is denoted as HDFV ;

(5) HDFV is used to train GRU deep learning network and predict the equipment
temperature.

Flow chart of proposed method is shown in Fig. 3.

EXPERIMENTS AND RESULT ANALYSIS
Temperature data acquisition of substation equipment
The research object of this article is primary equipment of main transformer in a substation
from Taizhou City, Zhejiang Province. The substation adopts the intelligent inspection
system. The temperature of each monitoring point for the equipment is measured by
the infrared camera and stored in the form of multi-dimensional intelligent inspection
history curve analysis report, including the substation equipment temperature monitoring
serial number, organization, measurement position, inspection time, measured value and
description (describe the equipment status, whether it is normal or not).

Substation equipment monitoring points are distributed at 110 kV side and 220 kV side,
which includes four parts of bushing, conservator, heat sink and panorama. In this article,
the data at 220 kV side are selected for the experiment. Monitoring point information is
shown in Table 1.

The infrared camera of the equipment is set to monitor once every hour, and the data
acquisition time is 15 months from December 11, 2020 to March 10, 2022. However,
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Figure 3 Flow chart of proposed method.
Full-size DOI: 10.7717/peerjcs.1172/fig-3
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Table 1 Monitoring point information table.

Serial number Monitoring point name

1 220 kV bushing phase A contact
2 220 kV bushing phase B contact
3 220 kV bushing phase C contact
4 Conservator on 220 side
5 No. 1 heat sink on 220 side
6 No. 2 heat sink on 220 side
7 220 side equipment panorama

there are power outage maintenance and bad points in the monitoring process. Therefore,
this article adopts the method of direct elimination, and finally obtains 3,906 effective
experimental data.

The selection of data will directly affect the effectiveness of the prediction model.
According to the typical seasonal characteristics of temperature, this article selects the
data of the first 12 months in the experimental data for training, that is, 3,086 data from
December 11, 2020 to December 10, 2021, and 820 data from December 11, 2021 to March
10, 2022.

For the primary equipment of main transformer in substation, the temperature of
bushing has the greatest impact on the equipment, so the temperature of A contact from
bushing phase is selected as the prediction target for the experiment. Figure 4 shows the
thermal imaging diagram of phase A contact at 220kV side bushing on October 1, 2020.

Feature engineering
A. Data Analysis and Feature Selection
Figure 5 shows the temperature data of all monitoring points on 220 kV side from the
primary equipment of No. 2main transformer, and two conclusions can be drawn: (1)With
seasonal changes, the equipment temperature also changes significantly. The corresponding
performance of the same monitoring point in different seasons is different. The average
temperature in winter is about 20 ◦C and the average temperature in summer is about
50 ◦C. It can be seen that there is obvious correlation between equipment temperature
and environmental factors. Therefore, when predicting the equipment temperature, it
is necessary to consider the ambient temperature factor. (2) The temperature trend of
different monitoring points for the same equipment shows obvious consistency, which
means that there is typical linear correlation between the temperature of equipment space
correlation monitoring points.points for the same equipment shows obvious consistency,
which means that there is typical linear correlation between the temperature of equipment
space correlation monitoring points.

In addition, Fig. 6 shows the correlation analysis results of historical temperature time
series from phase A contact of bushing. According to the analysis results of autocorrelation
and partial autocorrelation, it can be determined that the temperature time series of phase
A contact for bushing is an unstable series. From ACF and PACF between the temperature
time series and its first-order difference series, it can be seen that they are trailing, indicating
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Figure 4 Thermal imaging of phase a contact at 220 kV side bushing on October 1, 2020.
Full-size DOI: 10.7717/peerjcs.1172/fig-4

that the historical temperature of substation equipment has strong correlation, and the
influence of past time decreases gradually with the passage of time.

In summary, the substation equipment temperature has typical seasonality, periodicity
and instability. Therefore, when predicting the equipment temperature, this article
determines that the feature vector of multivariate information fusion is composed of
the characteristics of ambient, time and space, which is recorded as MIFFV = [A,T ,S],
where, A refers to the ambient feature, T refers to the time feature and Srefers to the space
feature. The specific description is as follows:
(1) Ambient feature. In Part A, it is found that the substation equipment temperature is

greatly affected by the ambient temperature. Therefore, theweather conditions are taken
as the ambient feature in this article, which are recorded as A= [A1,A2,A3,......,Ad1],
d1 is the dimension of ambient feature. In addition, considering that Zhejiang Province
belongs to a typical subtropical monsoon climate, with low temperature and little
rain in winter, prevailing northwest wind, high temperature and rain in summer,
prevailing southeast wind and muggy, this article determines to take real-time
weather temperature and humidity as ambient characteristics to form the ambient
feature vector(A= [A1,A2], that is, set d1= 2). Because the temperature of substation

Sun et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1172 11/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1172/fig-4
http://dx.doi.org/10.7717/peerj-cs.1172


Figure 5 Temperature trend diagram of all monitoring points on 220 kV side.
Full-size DOI: 10.7717/peerjcs.1172/fig-5

equipment is set to be collected every hour, in order to obtain ambient characteristics,
Java programming is used to collect weather conditions every hour through the
weather interface of Juhe API (website: http://www.juhe.cn), and two columns of
weather temperature and humidity are selected as ambient characteristics.

(2) Time feature. According to the working experience of substation operation and
maintenance personnel and the autocorrelation and partial autocorrelation analysis
results, the time series of substation equipment temperature has strong lag correlation.
Therefore, the historical temperature time series of substation equipment is selected as
the time feature vector, which is recorded as T = [T1,T2,......,Td2]. Although the lag
correlation is relatively large, considering that this article adopts the feature vector of
multi information fusion, in order to avoid the inclination of the feature vector in the
time feature due to too many time features, the equipment temperature values of the
past three times are selected as the time feature, that is d2= 3.

(3) Space feature. The primary equipment ofNo. 2main transformer is taken as the research
object. For such substation equipment, including 110 kV and 220 kV sides, and both
sides are relatively independent, the article selects the temperature of phase A contact
for bushing on 220 kV side as the prediction target for the experiment. Therefore the
temperature of all monitoring points with space correlation with phase A contact for
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Figure 6 ACF and PACF analysis of equipment temperature time series.
Full-size DOI: 10.7717/peerjcs.1172/fig-6

bushing is composed of space feature vector, which is recorded as S= [S1,S2,......,Sd3].
The names of all monitoring points are recorded in Table 1. There are seven infrared
temperature monitoring points on the 220 kV side, that is, in addition to the bushing
phase A contact, there are six spatial correlation monitoring points, namely bushing
B-phase contact, bushing c-phase contact, conservator, No. 1 heat sink, No. 2 heat sink
temperature and 220 kV side panoramic temperature. Therefore, set d3= 6.

B. Feature extraction—reduced feature vector based on PCA
There are 11 characteristics in MIFFV of multivariate information fusion composed of
three aspects of ambient, time and space, which can comprehensively characterize the
temperature. While, too much input data can not improve prediction accuracy, but
it is easier to produce information redundancy. Therefore, PCA is adopted to reduce
the dimension. In general, the eigenvector composed of eigenvalues with cumulative
contribution rate of 85%–95% is used as the principal component. Through many
experiments, it is verified that the effect of the eigenvalue prediction is the best when
the cumulative contribution rate reaches 98%, therefore, the principal components are
taken as the reduced feature vector (denoted as RFV ) under 98% cumulative contribution
rate in this article. In the experimental process, PCA dimensionality reduction mapping
matrix is shown in Fig. 7, and the feature contribution rate pie chart is shown in Fig. 8.
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Figure 7 PCA dimensionality reductionmapping matrix.
Full-size DOI: 10.7717/peerjcs.1172/fig-7

Figure 8 Feature contribution rate pie chart.
Full-size DOI: 10.7717/peerjcs.1172/fig-8

C. Feature extraction—depth feature mining based on CNN
Before establishing the prediction model, take advantage of CNN feature extraction,
apply it to deep learning, and extract the relationship between reduced feature vector and
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Figure 9 The prediction results for test set based on CNN-GRU.
Full-size DOI: 10.7717/peerjcs.1172/fig-9

equipment temperature in high-dimensional space; that is, the reduced feature vector RFV
obtained by PCA is taken as input data of CNN model, RFV of low dimension is mapped
to high dimension space, and the high-dimensional feature vector of multivariate time
series is constructed, which is HDFV , and it is the output of the CNN model.

Temperature prediction of substation equipment
Deep learning network based on CNN and GRU (CNN-GRU) is adopted to predict the
phase A contact of bushing, where, CNN filter size is 10; the training cycle is 24 times per
round, 60 rounds in total, and the total number of iterations is 1,440; the learning rate is
0.005 and the error threshold is 0.001.

The prediction results for test set based on CNN-GRU are shown in Fig. 9, and the testing
relative error is shown in Fig. 9. From the above results, it can be summed up that the
temperature prediction effect of bushing phase A contact based on CNN-GRU network is
good, the relative error remains between ±0.2, and there is a relatively large error between
the sample 450 and 500 in the test set from Fig. 10. The results show that because too many
missing points and bad points are eliminated during this period, resulting in the model not
obtaining a perfect model for a period of time. In the future, when dealing with missing
points, it can be considered using fuzzy c-means clustering and other methods to complete
the data to improve the prediction performance of the model.
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Figure 10 The testing relative error based on CNN-GRU.
Full-size DOI: 10.7717/peerjcs.1172/fig-10

PREDICTION PERFORMANCE TEST AND RESULT
ANALYSIS
Evaluation index of predictive performance
(1) MAPE

MAPE refers to mean absolute percentage error, which is expressed by the formula Eq.
(10):

MAPE =
100%
n

n∑
i=1

∣∣∣∣∣
∧
y i−yi
yi

∣∣∣∣∣ (10)

where, yi is true value of equipment temperature, and
∧
y i is the predicted value of equipment

temperature. The range of MAPE belongs to (0,+∞), MAPE value of 0% means perfect
model, and MAPE value greater than 100% indicates relatively poor model. (2) RMSE

RMSE refers to root mean square error, which is expressed by the formula Eq. (11):

RMSE =

√√√√1
n

n∑
i=1

(
∧
yi−yi

)2
(11)

where, yi and
∧
y i means the same with the formula (10); the range of RMSE is (0,+∞), and

the error is positively correlated with RMSE value. When the predicted value is exactly the
same as the actual value, it is equal to 0.
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Table 2 Prediction performance comparison of CNN-GRU network under different feature vectors.

Feature vector MAPE RMSE

A 19.65 244.84
T 12.58 212.14
S 18.52 245.05
MIFFV 6.98 122.12
RFV (MIFFV+PCA) 5.48 95.54

Table 3 Prediction performance comparison results of different models.

Model MAPE RMSE

BPNN 5.98 101.47
WaveNN (morlet) 7.93 120.93
LSTM 6.50 131.55
CNN-LSTM 6.26 100.17
CNN-GRU 5.48 95.54

Comparative experiments
Aiming at verifying the effectiveness of this method, comparative experiments from two
aspects are carried out in this article:

(1) The prediction performance under different characteristics is compared.
Comparative features include only time feature T , only ambient feature A, only spatial
feature S, multivariate information fusion feature vector MIFFV andthe reduced feature
vector RFV , and CNN-GRU network is adopt as the prediction model to predict the
temperature of phase A contact. The comparison results are listed in Table 2.

(2) The prediction performance of different models is compared under the same
conditions. The reduced feature vector RFV proposed in this article is taken as the input
data, and CNN-GRU network is compared with four other network models of BPNN
(back propagation neural network), WaveNN (wavelet neural network, in which the
Morlet wavelet is adopt), LSTM (long short term networks) and CNN-LSTM. During the
comparative experiments, the parameters such as iteration times, learning rate and error
threshold are the same in all prediction models. Prediction results of different models are
compared in Table 3.

Analysis of prediction results
According to the above comparative experiments, this article analyzes the prediction results
from multiple angles and draws the following conclusions from the statistical results from
Tables 2 and 3:
(1) CNN-GRU was applied to the prediction performance comparison experiment under

different feature conditions, and the results showed that the multi-source information
fusion feature vector constructed from the three aspects of ambient, time and space
is better than the single feature prediction effect, in which MAPE and RMSE were
reduced by one order of magnitude; that is,MIFFV includes rich information than the
A,T and S feature;
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(2) The reduced feature vector RFV composed of principal components extracted after
PCA dimensionality reduction had better prediction performance thanMIFFV (MAPE
is decreased from 6.98 to 5.48, and RMSE is decreased from 122.12 to 95.54), which
shows that feature extraction plays a significant role in the prediction process, and
the feature engineering scheme proposed in this article has the best effect on the
temperature prediction of substation equipment.

(3) Compared with CNN-LSTM, CNN-GRU had better performance, which shows that
althoughGRUwith two gating structures are simpler than LSTM three gating structures,
GRU has better effect in temperature prediction of substation equipment;

(4) CNN-LSTM had better effect than LSTM, which shows that CNN can mine the
characteristics of equipment temperature depth when it is used for high-dimensional
feature extraction, and provides a guarantee for the prediction model to achieve better
prediction effect;

(5) The depth networkmodels of LSTM,CNN-LSTMandCNN-GRUhad better prediction
effect than the shallow networks of BPNN and WaveNN shallow networks, which
shows that the deep learning network has obvious advantages in the field of prediction
compared with the shallow networks in traditional machine learning.

CONCLUSIONS
In the process of substation equipment temperature prediction, the prediction effect
is not ideal due to less information sources; the problem is solved from the two links
of feature engineering and prediction modeling. In the aspect of feature engineering,
linear graph correlation, autocorrelation and partial autocorrelation function analysis are
applied to establish the feature vector of multi-source information fusion from the three
aspects of environment, time and space. After PAC dimension reduction, the principal
component is obtained as the reduced feature vector. Finally, the equipment temperature is
predicted through CNN-GRU double-layer depth network model, in which CNN realizes
depth feature extraction. The effectiveness of this method is fully proved by comparative
experiments from two aspects of different feature vectors and different prediction models.
However, in practice, it is usually necessary to obtain the equipment temperature at
more times in advance, so the next goal is to realize the multi-step accurate prediction of
substation equipment temperature.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Ying Wang is employed by Economic and Technological Research Institute of State
Grid Heilongjiang Electric Power Co. Ltd. Zhaohong Bing is employed by Computing
Technology Institute of East China. The authors declare there are no competing interests.

Sun et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1172 18/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1172


Author Contributions
• Lijie Sun conceived and designed the experiments, prepared figures and/or tables, data
acquisition, supervision, and approved the final draft.
• Chunxue Liu performed the experiments, prepared figures and/or tables, and approved
the final draft.
• Ying Wang analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.
• Zhaohong Bing performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1172#supplemental-information.

REFERENCES
Ansari MS, Bartoš V, Lee B. 2022. GRU-based deep learning approach for network

intrusion alert prediction. Future Generation Computer Systems 128:235–247
DOI 10.1016/j.future.2021.09.040.

Aslan N, Koca GO, Kobat MA, Dogan S. 2022.Multi-classification deep CNN model
for diagnosing COVID-19 using iterative neighborhood component analysis and
iterative ReliefF feature selection techniques with X-ray images. Chemometrics and
Intelligent Laboratory Systems 224:104539 DOI 10.1016/j.chemolab.2022.104539.

Baptista M, Sankararaman S, deMedeiros IP, Nascimento Jr C, Prendinger H,
Henriques EMP. 2018. Forecasting fault events for predictive maintenance using
data-driven techniques and ARMA modeling. Computers & Industrial Engineering
115:41–53 DOI 10.1016/j.cie.2017.10.033.

BussièreW, Rochette D, Clain S, Andréa P, Renard JB. 2017. Pressure drop mea-
surements for woven metal mesh screens used in electrical safety switchgears.
International Journal of Heat and Fluid Flow 65:60–72
DOI 10.1016/j.ijheatfluidflow.2017.02.008.

Cao H, Sun P, Zhao L. 2022. PCA-SVMmethod with sliding window for online fault
diagnosis of a small pressurized water reactor. Annals of Nuclear Energy 171:109036
DOI 10.1016/j.anucene.2022.109036.

Cao K, JiangM, Gao S. 2021. Spectrum availability prediction based on RCS-GRU
model. Physical Communication 49:101479 DOI 10.1016/j.phycom.2021.101479.

Chachlakis DG, Zhou T, Ahmad F, Markopoulos PP. 2021.MinimumMean-Squared-
Error autocorrelation processing in coprime arrays. Digital Signal Processing
114:103034 DOI 10.1016/j.dsp.2021.103034.

Sun et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1172 19/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1172#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1172#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1172#supplemental-information
http://dx.doi.org/10.1016/j.future.2021.09.040
http://dx.doi.org/10.1016/j.chemolab.2022.104539
http://dx.doi.org/10.1016/j.cie.2017.10.033
http://dx.doi.org/10.1016/j.ijheatfluidflow.2017.02.008
http://dx.doi.org/10.1016/j.anucene.2022.109036
http://dx.doi.org/10.1016/j.phycom.2021.101479
http://dx.doi.org/10.1016/j.dsp.2021.103034
http://dx.doi.org/10.7717/peerj-cs.1172


Dai S. 2021. Quantum cryptanalysis on a multivariate cryptosystem based on clipped
hopfield neural network. IEEE Transactions on Neural Networks and Learning Systems
33(9):5080–5084 DOI 10.1109/TNNLS.2021.3059434.

Esfahani HN, Song Z, Christensen K. 2020. A deep neural network approach for
pedestrian trajectory prediction considering heterogeneity. In: 99th annual meeting
of the Transportation Research Board. Washington, D.C., USA.

Gharehbaghi A, Ghasemlounia R, Ahmadi F, Albaji M. 2022. Groundwater level
prediction with meteorologically sensitive Gated Recurrent Unit (GRU) neural
networks. Journal of Hydrology 612:128262.

GuoWQ, Dong Y, Li QH, ZhangMM,Wang LX. 2020. Application of PSO-BP neural
network in temperature prediction of switchgear equipment. Journal of Shanxi
University of Science and Technology 38(01):149–153.

Hao XH, Yang ZJ, Hao Y, Han ZX, Ma H, Zhang DX. 2021.Medium and long term
prediction method of wind power based on improved gm-arma combination model.
Electrotechnical 7:11–13.

Hou J, Chen FW, Li PH, Zzhu HQ. 2021a. Gray-box parsimonious subspace identifi-
cation of Hammerstein-type systems. IEEE Transactions on Industrial Electronics
68(10):9941–9951 DOI 10.1109/TIE.2020.3026286.

Hou JW,WuWCH, Li LF, Tong X, Hu RJ, WuWB, CaiWZH,Wang HL. 2022.
Estimation of remaining capacity of lithium-ion batteries based on X-ray computed
tomography. Journal of Energy Storage 55:105369 DOI 10.1016/j.est.2022.105369.

Hou YY, Zheng ER, GuoWQ, Li JW, Dong Y. 2021b. Prediction of switchgear equip-
ment based on long-term and short-term memory cyclic neural network. Journal of
Shaanxi University of Science and Technology 39(4):148–155.

Huang KQ, Zheng RF, Qu FF, Liu YF, Lu XB, Huang X. 2022a. Phase failure analysis of
110 kV GIS disconnector. Sichuan Electric Power Technology 45(01):87–90.

HuangMH, Jiang T, Dong JJ, Wang K, Zhao HSH. 2022b.High voltage bushing
temperature prediction of box transformer based on LSTM. Electrical Measurement
and Instrument 04(06):1–7.

Khalifani S, Darvishzadeh R, Azad N, Rahmani RS. 2022. Prediction of sunflower grain
yield under normal and salinity stress by RBF, MLP and, CNN models. Industrial
Crops and Products 189:115762 DOI 10.1016/j.indcrop.2022.115762.

Kong XH. 2015. Design of substation equipment temperature early warning system.
Master’s thesis, Control Engineering, Jinan University, Guangzhou, China.

Kong XH, Zhang HF. 2016. Substation equipment temperature prediction based on
Optimized Generalized Regression Neural Network. China Power 49(09):54–59.

Liu ZL. 2012. Research on temperature monitoring and early warning management
system of electromechanical equipment based on BP neural network. Master’s thesis,
Management Science and Engineering, Taiyuan University of Technology, Taiyuan,
Shanxi, China.

Sun et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1172 20/22

https://peerj.com
http://dx.doi.org/10.1109/TNNLS.2021.3059434
http://dx.doi.org/10.1109/TIE.2020.3026286
http://dx.doi.org/10.1016/j.est.2022.105369
http://dx.doi.org/10.1016/j.indcrop.2022.115762
http://dx.doi.org/10.7717/peerj-cs.1172


Mestre G, Portela J, Rice G, San Roque AM, Alonso E. 2021. Functional time se-
ries model identification and diagnosis by means of auto- and partial auto-
correlation analysis. Computational Statistics & Data Analysis 155:107108
DOI 10.1016/j.csda.2020.107108.

Mohammadshirazi A, Kalkhorani VA, Humes J, Speno B, Rike J, Ramnath R, Clark
JD. 2022. Predicting airborne pollutant concentrations and events in a commercial
building using low-cost pollutant sensors and machine learning: a case study.
Building and Environment 213:108833 DOI 10.1016/j.buildenv.

Song HF, YangWW. 2022. GSCCTL: a general semi-supervised scene classifi-
cation method for remote sensing images based on clustering and trans-
fer learning. International Journal of Remote Sensing 43(15–16):5976–6000
DOI 10.1080/01431161.2021.2019851.

Sun HH. 2019. Research on emergency capacity evaluation of large-area power outage
based on scenario construction. Master’s thesis, Safety Engineering, Capital Univer-
sity of Economics and Business, Beijing, China.

Sun LJ, Chen S, Zhu JF, Li JH. 2022. Substation equipment temperature prediction
method considering local spatio-temporal relationship. Scientific Programming
2022:4414093 DOI 10.1155/1970/4414093.

Velásquez RMA, Lara JVM,Melgar A. 2019. Reliability model for switchgear
failure analysis applied to ageing. Engineering Failure Analysis 101:36–60
DOI 10.1016/j.engfailanal.2019.03.004.

Wang CQ, Yang CH, Sun YT, Zhang TQ, Xu YP. 2015. Infrared temperature prediction
method of substation equipment based on improved RBFNN. Electrical Application
34(23):6669–6674.

Wang T. 2015. Research on substation equipment temperature prediction system based
on adaptive neural network algorithm. Information and Computer 24:51–54.

Wang T. 2016. Research on temperature prediction and fault early warning of substation
electrical equipment. M.S. thesis, Department of Industrial and Manufacturing
System Engineering Huazhong Science and Technology University, Wuhan, China.

Xu GJ, Xu C, He J. 2016. Research on temperature early warning of high voltage
switchgear based on information fusion technology. Electrotechnical 10:18–20.

Xu XF, Hao J, Zheng Y. 2020.Multi-objective artificial bee colony algorithm for multi-
stage resource leveling problem in sharing logistics network. Computers & Industrial
Engineering 142(4):106338 DOI 10.1016/j.cie.2020.106338.

Xu XF, Lin ZR, Zhu J. 2020. DVRPLS with variable neighborhood region in refined oil
distribution. Annals of Operations Research 309:663–687
DOI 10.1007/s10479-020-03780-9.

Yu T, Gan Q, Feng G, Han G. 2022. A new fuzzy cognitive maps classifier based on cap-
sule network. Knowledge-Based Systems 250:108950 DOI 10.1016/j.knosys.2022.108950.

Yuan Q, Ma CH, Liu JL, Gui HQ, Li MY, Swang HL. 2022. Correlation analysis-
based thermal error control with ITSA-GRU-A model and cloud-edge-physical
collaboration framework. Advanced Engineering Informatics 54:101759
DOI 10.1016/j.aei.2022.101759.

Sun et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1172 21/22

https://peerj.com
http://dx.doi.org/10.1016/j.csda.2020.107108
http://dx.doi.org/10.1016/j.buildenv
http://dx.doi.org/10.1080/01431161.2021.2019851
http://dx.doi.org/10.1155/1970/4414093
http://dx.doi.org/10.1016/j.engfailanal.2019.03.004
http://dx.doi.org/10.1016/j.cie.2020.106338
http://dx.doi.org/10.1007/s10479-020-03780-9
http://dx.doi.org/10.1016/j.knosys.2022.108950
http://dx.doi.org/10.1016/j.aei.2022.101759
http://dx.doi.org/10.7717/peerj-cs.1172


Zeng JY, Chen GY, Hou H, BoW, Zeng QY. 2018. Risk assessment of switchgears in
distribution system considering environmental dependency. Procedia Computer
Science 130:1140–1145 DOI 10.1016/j.procs.2018.04.157.

Zhang H, Srinivasan R, Yang X, Ahrentzen S, Coker ES, Alwisy A. 2022. Factors
influencing indoor air pollution in buildings using PCA-LMBP neural network:
a case study of a university campus. Building and Environment 225:109643
DOI 10.1016/j.buildenv.2022.109643.

Zhang HY, Zhang DL, Zhao Y,Wang Z. 2020. Temperature prediction of switchgear
based on least squares support vector machine optimized by PCA and GA algorithm.
Electrical Applications 39(02):59–63.

Zheng G, ChaiWK, Katos V. 2022. A dynamic spatial–temporal deep learning frame-
work for traffic speed prediction on large-scale road networks. Expert Systems with
Applications 195:116585 DOI 10.1016/j.eswa.2022.116585.

Sun et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1172 22/22

https://peerj.com
http://dx.doi.org/10.1016/j.procs.2018.04.157
http://dx.doi.org/10.1016/j.buildenv.2022.109643
http://dx.doi.org/10.1016/j.eswa.2022.116585
http://dx.doi.org/10.7717/peerj-cs.1172

