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ABSTRACT
Shotgun metagenomics of microbial communities reveal information about strains

of relevance for applications in medicine, biotechnology and ecology. Recovering

their genomes is a crucial but very challenging step due to the complexity of

the underlying biological system and technical factors. Microbial communities

are heterogeneous, with oftentimes hundreds of present genomes deriving from

different species or strains, all at varying abundances and with different degrees

of similarity to each other and reference data. We present a versatile probabilistic

model for genome recovery and analysis, which aggregates three types of

information that are commonly used for genome recovery from metagenomes.

As potential applications we showcase metagenome contig classification, genome

sample enrichment and genome bin comparisons. The open source implementation

MGLEX is available via the Python Package Index and on GitHub and can be

embedded into metagenome analysis workflows and programs.

Subjects Bioinformatics, Computational Biology, Data Science

Keywords Binning, Metagenomics

INTRODUCTION
Shotgun sequencing of DNA extracted from a microbial community recovers genomic

data from different community members while bypassing the need to obtain pure

isolate cultures. It thus enables novel insights into ecosystems, especially for those

genomes which are inaccessible by cultivation techniques and isolate sequencing.

However, current metagenome assemblies are oftentimes highly fragmented, including

unassembled reads, and require further processing to separate data according to the

underlying genomes. Assembled sequences, called contigs, that originate from the same

genome are placed together in this process, which is known as metagenome binning

(Tyson et al., 2004; Dröge & McHardy, 2012) and for which many programs have

been developed. Some are trained on reference sequences, using contig k-mer

frequencies or sequence similarities as sources of information (McHardy et al., 2007;

Dröge, Gregor & McHardy, 2014; Wood & Salzberg, 2014; Gregor et al., 2016), which can

be adapted to specific ecosystems. Others cluster the contigs into genome bins, using

contig k-mer frequencies and read coverage (Chatterji et al., 2008; Kislyuk et al., 2009;

Wu et al., 2014; Nielsen et al., 2014; Imelfort et al., 2014; Alneberg et al., 2014; Kang

et al., 2015; Lu et al., 2017).

Recently, oftentimes multiple biological or technical samples of the same environment

are sequenced to produce distinct genome copy numbers across samples, sometimes
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using different sequencing protocols and technologies, such as Illumina and PacBio

sequencing (Hagen et al., 2016). Genome copies are reflected by corresponding

read coverage variation in the assemblies which allows to resolve samples with

many genomes. The combination of experimental techniques helps to overcome

platform-specific shortcomings such as short reads or high error rates in the data analysis.

However, reconstructing high-quality bins of individual strains remains difficult

without very high numbers of replicates. Often, genome reconstruction may improve

by manual intervention and iterative analysis (Fig. 1) or additional sequencing

experiments.

Genome bins can be constructed by consideration of genome-wide sequence

properties. Currently, oftentimes the following types of information are considered:

� Read contig coverage: sequencing read coverage of assembled contigs, which reflects the

genome copy number (organismal abundance) in the community. Abundances can

vary across biological or technical replicates, and co-vary for contigs from the same

genome, supplying more information to resolve individual genomes (Baran &

Halperin, 2012; Albertsen et al., 2013).

� Nucleotide sequence composition: the frequencies of short nucleotide subsequences of

length k called k-mers. The genomes of different species have a characteristic k-mer

spectrum (Karlin, Mrazek & Campbell, 1997; McHardy et al., 2007).

� Sequence similarity to reference sequences: a proxy for the phylogenetic relationship

to species which have already been sequenced. The similarity is usually inferred by

alignment to a reference collection and can be expressed using taxonomy

(McHardy et al., 2007).

Contigs

Read Libraries

Reference Genome Sequences

(B) enrich

(C) select

(D) refine

Reduced Contigs

Genome Bins

(A) (re-)cluster or (re-)classify

Reduced Genome Bins

Figure 1 Genome reconstruction workflow. To recover genomes from environmental sequencing data,

the illustrated processes can be iterated. Different programs can be run for each process and iteration.

MGLEX can be applied in all steps: (A) to classify contigs or to cluster by embedding the probabilistic

model into an iterative procedure; (B) to enrich a metagenome for a target genome to reduce its size

and to filter out irrelevant sequence data; (C) to select contigs of existing bins based on likelihoods and

p-values and to repeat the binning process with a reduced dataset; (D) to refine existing bins, for instance

to merge bins as suggested by bin analysis.
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Probabilities represent a convenient and efficient way to represent and combine

information that is uncertain by nature. Here, we:

� Propose a probabilistic aggregate model for binning based on three commonly used

information sources, which can easily be extended to include new features.

� Outline the features and submodels for each information type. As the feature types

listed above derive from distinct processes, we define for each of them independently

a suitable probabilistic submodel.

� Showcase several applications related to the binning problem.

A model with data-specific structure poses an advantage for genome recovery in

metagenomes because it uses data more efficiently for fragmented assemblies with short

contigs or a low number of samples for differential coverage binning. Being probabilistic,

it generates probabilities instead of hard labels so that a contig can be assigned to

several, related genome bins and the uncertainty can easily be assessed. The models can be

applied in different ways, not just classification, which we show in our application

examples. Most importantly, there is a rich repertoire of higher-level procedures based on

probabilistic models, including expectation maximization (EM) and Markov chain

Monte Carlo (MCMC)methods for clustering without or with few prior knowledge of the

modeled genomes.

We focus on defining explicit probabilistic models for each feature type and

their combination into an aggregate model. In contrast, binning methods often

concatenate and transform features (Chatterji et al., 2008; Imelfort et al., 2014;

Alneberg et al., 2014) before clustering. Specific models for the individual data types

can be better tailored to the data generation process and will therefore generally

enable a better use of information and a more robust fit of the aggregate model while

requiring fewer data. We propose a flexible model with regard to both the included

features and the feature extraction methods. There already exist parametric likelihood

models in the context of clustering, for a limited set of features. For instance,

Kislyuk et al. (2009) use a model for nucleotide composition and Wu et al. (2014)

integrated distance-based probabilities for 4-mers and absolute contig coverage using

a Poisson model. We extend and generalize this work so that the model can be used

in different contexts such as classification, clustering, genome enrichment and

binning analysis. Importantly, we are not providing an automatic solution to binning

but present a flexible framework to target problems associated with binning. This

functionality can be used in custom workflows or programs for the steps illustrated

in Fig. 1. As input, the model incorporates genome abundance, nucleotide composition

and additionally sequence similarity (via taxonomic annotation). The latter is

common as taxonomic binning output (Dröge, Gregor & McHardy, 2014; Wood &

Salzberg, 2014; Gregor et al., 2016) and for quality assessment but has rarely been

systematically used as features in binning (Chatterji et al., 2008; Lu et al., 2017).

We show that taxonomic annotation is valuable information that can improve

binning considerably.
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METHODS
Classification models
Classification is a common concept in machine learning. Usually, such algorithms use

training data for different classes to construct a model which then contains the condensed

information about the important properties that distinguish the data of the classes.

In probabilistic modeling, we describe these properties as parameters of likelihood

functions, often written as v. After v has been determined by training, the model can be

applied to assign novel data to the modeled classes. In our application, classes are

genomes, or bins, and the data are nucleotide sequences like contigs. Thus, contigs can be

assigned to genomes bins but we need to provide training sequences for the genomes.

Such data can be selected by different means, depending on the experimental and

algorithmic context. One can screen metagenomes for genes which are unique to clades,

or which can be annotated by phylogenetic approaches, and use the corresponding

sequence data for training (Gregor et al., 2016). Independent assemblies or reference

genomes can also serve as training data for genome bins (Brady & Salzberg, 2009;

Patil et al., 2011; Gregor et al., 2016). Another direct application is to learn from existing

genome bins, which were derived by any means, and then to (re)assign contigs to

these bins. This is useful for short contigs which are often excluded from binning and

analysis due to their high variability. Finally, probabilistic models can be embedded

into iterative clustering algorithms with random initialization.

Aggregate model
Let 1 � i � D be an index referring to D contigs resulting from a shotgun metagenomic

experiment. In the following we will present a generative probabilistic aggregate model

that consists of components, indexed by 1 � k � M, which are generative probabilistic

models in their own right, yielding probabilities Pk(contigi) that contigi belongs to a

particular genome. Each of the components k reflects a particular feature such as:

� A weight wi (contig length)

� Sample abundance feature vectors ai and ri, one entry per sample

� A compositional feature vector ci, one entry per compositional feature (e.g., a k-mer)

� A taxonomic feature vector ti, one entry per taxon

We define the individual feature vectors in the corresponding sections. As mentioned

before, each of the M features gives rise to a probability Pk(contigi | genome) that

contigi belongs to a specific genome by means of its component model. Those

probabilities are then collected into an aggregate model that transforms those feature

specific probabilities Pk(i | genome) into an overall probability P(i | genome) that contig i

is associated with the genome. In the following, we describe how we construct this

model with respect to the individual submodels Pk(i | genome), the feature representation

of the contigs and how we determine the optimal set of parameters from training

sequences.
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For the ith contig, we define a joint likelihood for genome bin g (Eq. (1), the

probabilities written as a function of the genome parameters), which is a weighted

product over M independent component likelihood functions, or submodels, for the

different feature types. For the kth submodel, Qk is the corresponding parameter

vector, Fik the feature vector of the ith contig and ak defines the contribution of the

respective submodel or feature type. b is a free scaling parameter to adjust the

smoothness of the aggregate likelihood distribution over the genome

bins (bin posterior).

LðQg j FiÞ ¼
YM
k¼1

LðQgk j F ikÞ�k

 !�

(1)

We assume statistical independence of the feature subtypes and multiply likelihood

values from the corresponding submodels. This is a simplified but reasonable assumption:

e.g., the species abundance in a community can be altered by external factors without

impacting the nucleotide composition of the genome or its taxonomic position. Also,

there is no direct relation between a genome’s k-mer distribution and taxonomic

annotation via reference sequences.

All model parameters, Qg, a and b, are learned from training sequences. We will

explain later, how the weight parameters a and b are chosen and begin with a description

of the four component likelihood functions, one for each feature type.

In the following, we denote the jth position in a vector xi with xi,j. To simplify notation,

we also define the sum or fraction of two vectors of the same dimension as the

positional sum or fraction and write the length of vector x as len(x).

Absolute abundance
We derive the average number of reads covering each contig position from assembler

output or by mapping the reads back onto contigs. This mean coverage is a proxy for

the genome abundance in the sample because it is roughly proportional to the genome

copy number. A careful library preparation causes the copy numbers of genomes to

vary differently over samples, so that each genome has a distinct relative read

distribution. Depending on the amount of reads in each sample being associated with

every genome, we obtain for every contig a coverage vector ai where len(ai) is the number

of samples. Therefore, if more sample replicates are provided, contigs from different

genomes are generally better separable since every additional replicate adds an entry to the

feature vectors.

Random sequencing followed by perfect read assembly theoretically produces

positional read counts which are Poisson distributed, as described in Lander & Waterman

(1988). In Eq. (2), we derived a similar likelihood using mean coverage values (see

Supplemental Information for details). The likelihood function is a normalized

product over the independent Poisson functions P�j(ai,j) for each sample. The expectation

parameter �j represents the genome copy number in the jth sample.
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Lðv j aiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYlenðaiÞ
j¼1

P�j ðai;jÞ
lenðaiÞ

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYlenðaiÞ
j¼1

�
ai;j
j

ai;j!
e��j

lenðaiÞ

vuut (2)

The Poisson explicitly accounts for low and zero counts, unlike a Gaussian model.

Low counts are often observed for undersequenced and rare taxa. Note that ai,j is

independent of v. We derived the model likelihood function from the joint Poisson over

all contig positions by approximating the first data-term with mean coverage values

(Supplemental Information).

The maximum likelihood estimate (MLE) for v on training data is the weighted

average of mean coverage values for each sample in the training data (Supplemental

Information).

v̂ ¼
PN
i¼1

wiai

PN
i¼1

wi

(3)

Relative abundance
In particular for shorter contigs, the absolute read coverage is often overestimated.

Basically, the Lander–Waterman assumptions (Lander & Waterman, 1988) are violated

if reads do not map to their original locations due to sequencing errors or if they “stack”

on certain genome regions because they are ambiguous (i.e., for repeats or conserved

genes), rendering the Poisson model less appropriate. The Poisson, when constrained on

the total sum of coverages in all samples, leads to a binomial distribution as shown by

Przyborowski & Wilenski (1940). Therefore, we model differential abundance over

different samples using a binomial in which the parameters represent a relative

distribution of genome reads over the samples. For instance, if a particular genome

had the same copy number in a total of two samples, the genome’s parameter vector

v would simply be [0.5,0.5]. As for absolute abundance, the model becomes more

powerful with a higher number of samples. Using relative frequencies as model

parameters instead of absolute coverages, however, has the advantage that any constant

coverage factor cancels in the division term. For example, if a genome has two similar

gene copies which are collapsed during assembly, twice as many reads will map onto

the assembled gene in every sample but the relative read frequencies over samples will

stay unaffected. This makes the binomial less sensitive to read mapping artifacts

but requires two or more samples because one degree of freedom (DF) is lost by

the division.

The contig features ri are the mean coverages in each sample, which is identical to ai in

the absolute abundance model, and the model’s parameter vector v holds the relative read

frequencies in the samples, as explained before. In Eq. (4), we ask: how likely is the

observed mean contig coverage ri,j in sample j given the genome’s relative read frequency �j
of the sample and the contig’s total coverage Ri for all samples. The corresponding
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likelihood is calculated as a normalized product over the binomials BRi,�j
(ri,j) for

every sample.

Lðv j riÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYlenðriÞ
j¼1

BRi;�j ðri;jÞ
lenðriÞ

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYlenðriÞ
j¼1

Ri

ri;j

� �
�
ri;j
j 1� �j
� � Ri�ri;jð ÞlenðriÞ

vuut (4)

Ri is the sum of the abundance vector ri. Because both Ri and ri can contain real

numbers, we need to generalize the binomial coefficient to positive real numbers via the

gamma function C.

n

k

� �
¼ �ðnþ 1Þ�ðk þ 1Þ

�ðn� k þ 1Þ (5)

Because the binomial coefficient is a constant factor and independent of v, it can be

omitted in ML classification (when comparing between different genomes) or be retained

upon parameter updates. As for the Poisson, the model accounts for low and zero counts

(by the binomial coefficient). We derived the likelihood function from the joint

distribution over all contig positions by approximating the binomial data-termwith mean

coverage values (see Supplemental Information).

The MLE v̂ for the model parameters on training sequence data corresponds to the

amount of read data (base pairs) in each sample divided by the total number of base

pairs in all samples. We express this as a weighted sum of contig mean coverage values

(see Supplemental Information).

v̂ ¼
PN
i¼1

wiri

PN
i¼1

wiRi

(6)

It is obvious that absolute and relative abundance models are not independent

when the identical input vectors (here ai = ri) are used. However, we can instead apply the

Poisson model to the total coverage Ri (summed over all samples) because this sum

also follows a Poisson distribution. To illustrate the total abundance, this compares to

mixing the samples before sequencing so that the resolution of individual samples is lost.

The binomial, in contrast, only captures the relative distribution of reads over the samples

(one DF is lost in the ratio transform). This way, we can combine both absolute and

relative abundance submodels in the aggregate model.

Nucleotide composition
Microbial genomes have a distinct “genomic fingerprint” (Karlin, Mrazek & Campbell,

1997) which is typically determined by means of k-mers. Each contig has a relative

frequency vector ci for all possible k-mers of size k. The nature of shotgun sequencing
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demands that each k-mer is counted equally to its reverse complement because the

orientation of the sequenced strand is typically unknown. With increasing k, the

feature space grows exponentially and becomes sparse. Thus, it is common to select

k from 4 to 6 (Teeling et al., 2004; McHardy et al., 2007; Kislyuk et al., 2009). Here, we

simply use 5-mers (lenðciÞ ¼ 45

2
¼ 512) but other choices can be made.

For its simplicity and effectiveness, we chose a likelihood model assuming statistical

independence of features so that the likelihood function in Eq. (7) becomes a simple

product over observation probabilities (or a linear model when transforming into a

log-likelihood). Though k-mers are not independent due to their overlaps and reverse

complementarity (Kislyuk et al., 2009), the model has been successfully applied to k-mers

(Wang et al., 2007), and we can replace k-mers in our model with better-suited

compositional features. A genome’s background distribution v is a vector which holds the

probabilities to observe each k-mer and the vector ci does the same for the ith contig. The

composition likelihood for a contig is a weighted and normalized product over the

background frequencies.

Lðv j ciÞ ¼
YlenðciÞ
i¼1

�cii (7)

The genome parameter vector v̂ that maximizes the likelihood on training sequence

data can be estimated by a weighted average of feature counts (Supplemental

Information).

v̂ ¼
PN
i¼1

wici

PN
i¼1

wi

(8)

Similarity to reference
We can compare contigs to reference sequences, for instance by local alignment. Two

contigs that align to closely related taxa are more likely to derive from the same genome

than sequences which align to distant clades. We convert this indirect relationship to

explicit taxonomic features which we can compare without direct consideration of

reference sequences. A taxon is a hierarchy of nested classes which can be written as a

tree path, for example, the species Escherichia coli could be written as “Bacteria,

Gammaproteobacteria, Enterobacteriaceae, and E. coli”.

We assume that distinct regions of a contig, such as genes, can be annotated with

different taxa. Each taxon has a corresponding weight which in our examples is a positive

alignment score. The weighted taxa define a spectrum over the taxonomy for every contig

and genome. It is not necessary that the alignment reference be complete or include the

respective species genome but all spectra must be equally biased. Since each contig is

represented by a hierarchy of L numeric weights, we incorporated these features into our

multi-layer model. First, each contig’s taxon weights are transformed to a set of sparse
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feature vectors ti = {ti,l | 1 � l � L}, one for each taxonomic level, by inheriting and

accumulating scores for higher-level taxa (see Table 1; Fig. 2).

Each vector ti,l contains the scores for all Tl possible taxa at level l. A genome is

represented by a similar set of vectors v = {vl | 1 � l � L} with identical dimensions,

but here, entries represent relative frequencies on the particular level l, for instance a

distribution over all family taxa. The corresponding likelihood model corresponds to a

set of simple frequency models, one for each layer. The full likelihood is a product of

the level likelihoods.

Lðv j tiÞ ¼
YL
l¼1

YTl

j¼1

�
ti;l;j
l;j (9)

For simplicity, we assume that layer likelihoods are independent which is not quite true

but effective. The MLE for each vl is then derived from training sequences similar to the

simple frequency model (Supplemental Information).

Table 1 Calculating the contig features ti for a simplified taxonomy.

Node Taxon Level l Index j Score ti,l,j

a Bacteria 1 1 0 7

b Gammaproteobacteria 2 1 0 6

c Betaproteobacteria 2 2 1 1

d Enterobacteriaceae 3 1 0 5

e Yersiniaceae 3 2 1 1

f E. vulneris 4 1 1 1

g E. coli 4 2 3 3

h Yersinia sp. 4 3 1 1

Note:
There are five original integer alignment scores for nodes (c), (e), (f), (g), and (h) which are summed up at higher levels
to calculate the feature vectors ti,l. The corresponding tree structure is shown in Fig. 2.

hf g

d e

b c

a Domain (level 1)

Class (level 2)

Family (level 3)

Species (level 4)

Figure 2 Taxonomy for Table 1 which is simplified to four levels and eight nodes. A full taxonomy

may consist of thousands of nodes.

v̂l ¼
PN
i¼1

ti;l

PTl

j¼1

PN
i¼1

ti;l

(10)
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Inference of weight parameters
The aggregate likelihood for a contig in Eq. (1) is a weighted product of submodel

likelihoods. The weights in vector a balance the contributions, assuming that they must

not be equal. When we write the likelihood in logarithmic form (Eq. (11)), we see that

each weight ak sets the variance or width of the contigs’ submodel log-likelihood

distribution. We want to estimate ak in a way which is not affected by the original

submodel variance because the corresponding normalization exponent is somewhat

arbitrary. For example, we normalized the nucleotide composition likelihood as a single

feature and the abundance likelihoods as a single sample to limit the range of the

likelihood values, because we simply cannot say how much each feature type counts.

lðQ j FiÞ ¼ �
XM
k¼1

�klðQk j F i;kÞ (11)

For any modeled genome, each of the M submodels produces a distinct log-likelihood

distribution of contig data. Based on the origin of the contigs, which is known for model

training, the distribution can be split into two parts, the actual genome (positive class)

and all other genomes (negative class), as illustrated in Fig. 3. The positive distribution is

roughly unimodal and close to zero whereas the negative distribution, which represents

many genomes at once, is diverse and yields strongly negative values. Intuitively, we want

to select a such that the positive class is well separated from the negative class in the

aggregate log-likelihood function in Eq. (11).

Because a cannot be determined by likelihood maximization, the contributions are

balanced in a robust way by setting a to the inverse standard deviation of the genome

(positive class) log-likelihood distributions. More precisely, we calculate the average

standard deviation over all genomes weighted by the amount of contig data (bp) for

each genome and calculate ak as the inverse of this value. This scales down submodels

with a high average variance. When we normalize the standard deviation of genome

log-likelihood distributions in all submodels before summation, we assume that a high

variance means uncertainty. This form of weight estimation requires that for at least

some of the genomes, a sufficient number of sequences must be available to estimate

the standard deviation. In some instances, it might be necessary to split long contigs into

smaller sequences to generate a sufficient number of data points for estimation.

Parameter b in Eq. (11) is only relevant for soft classification but not in the context

of ML classification or p-values. It can best be viewed as a sharpening or smoothing

parameter of the bin posterior distribution (the probability of a genome or bin given the

contig). b is estimated by minimization of the training or test error, as in our simulation.

Data simulation
We simulated reads of a complex microbial community from 400 publicly available

genomes (Supplemental Information and Table S1). These comprised 295 unique and

44 species with each two or three strain genomes to mimic strain heterogeneity.
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Our aim was to create a difficult benchmark dataset under controlled settings, minimizing

potential biases introduced by specific software. We sampled abundances from a

lognormal distribution because it has been described as a realistic model (Schloss &

Handelsman, 2006). We then simulated a primary community which was then subject to

environmental changes resulting in exponential growth of 25% of the community

members at growth rates which where chosen uniformly at random between one and

ten whereas the other genome abundances remained unchanged. We applied this

procedure three times to the primary community which resulted in one primary and three

secondary artificial community abundances profiles. With these, we generated 150 bp

long Illumina HiSeq reads using the ART simulator (Huang et al., 2012) and chose a yield

of 15 Gb per sample. The exact amount of read data for all four samples after

simulation was 59.47 Gb. To avoid any bias caused by specific metagenome assembly

software and to assure a constant contig length, we divided the original genome sequences

into non-overlapping artificial contigs of 1 kb length and selected a random 500 kb of

each genome to which we mapped the simulated reads using Bowtie2 (Langmead &

Salzberg, 2012). By the exclusion of some genome reference, we imitated incomplete

genome assemblies when mapping reads, which affects the coverage values. Finally, we

subsampled 300 kb contigs per genome with non-zero read coverage in at least one of

the samples to form the demonstration dataset (120 Mb), which has 400 genomes

(including related strains), four samples and contigs of size 1 kb. Due to the short

contigs and few samples, this is a challenging dataset for complete genome recovery

(Nielsen et al., 2014) but suitable to demonstrate the functioning of our model with

limited data. For each contig we derived 5-mer frequencies, taxonomic annotation

(removing species-level genomes from the reference sequence data) and average read

coverage per sample, as described in Supplemental Information.
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Figure 3 Procedure for determination of ak for each submodel. The figure shows a schematic for a

single genome and two submodels. The genome’s contig log-likelihood distribution (A and B) is scaled

to a standard deviation of one (C and D) before adding the term in the aggregate model in Eq. (11).
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RESULTS
Maximum likelihood classification
We evaluated the performance of the model when classifying contigs to the genome

with the highest likelihood, a procedure called maximum likelihood (ML) classification.

We applied a form of three-fold cross-validation, dividing the simulated data set into

three equally-sized parts with 100 kb from every genome. We used only 100 kb (training

data) of every genome to infer the model parameters and the other 200 kb (test data)

to measure the classification error. A total of 100 kb was used for training because it is

often difficult to identify sufficient training data in metagenome analysis. For each

combination of submodels, we calculated the mean squared error (MSE) and mean

pairwise coclustering (MPC) probability for the predicted (ML) probability matrices

(Supplemental Information), averaged over the three test data partitions. We included the

MPC as it can easily be interpreted: for instance, a value of 0.5 indicates that on average

50% of all contig pairs of a genome end up in the same bin after classification. Table 2

shows that the model integrates information from each data source such that the inclusion

of additional submodels resulted in a better MPC and also MSE, with a single exception

when combining absolute and relative abdundance models which resulted in a marginal

increase of the MSE. We also found that taxonomic annotation represents the most

powerful information type in our simulation. For comparson, we added scores for NBC

(Rosen, Reichenberger & Rosenfeld, 2011), a classifier based on nucleotide composition

with in-sample training using 5-mers and 15-mers, and centrifuge (Kim et al., 2016), a

similarity-based classifier both with in-sample and reference data. These programs were

given the same information as the corresponding submodels and they rank close to these.

In a further step, we investigated how the presence of very similar genomes impacted

the performance of the model. We first collapsed strains from the same species by merging

the corresponding columns in the classification likelihood matrix, retaining the entry

with the highest likelihood, and then computed the resulting coclustering performance

increase �MPCML. Considering assignment on species instead of strain level showed a

larger�MPCML for nucleotide composition and taxonomic annotation than for absolute

and relative abundance. This is expected, because both do not distinguish among strains,

whereas genome abundance does in some, but not all cases.

Soft assignment
The contig length of 1 kb in our simulation is considerably shorter, and therefore harder

to classify, than sequences which can be produced by current assembly methods or by

some cutting-edge sequencing platforms (Goodwin, McPherson & McCombie, 2016).

In practice, longer contigs can be classified with higher accuracy than short ones, as

more information is provided as a basis for assignment. For instance, a more robust

coverage mean, a k-mer spectrum derived from more counts or more local alignments to

reference genomes can be inferred from longer sequences. However, as short contigs

remain frequent in current metagenome assemblies, 1 kb is sometimes considered a

minimum useful contig length (Alneberg et al., 2014). To account for the natural
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uncertainty when assigning short contigs, one can calculate the posterior probabilities

over the genomes (see Supplemental Information), which results in partial assignments of

each contig to the genomes. This can reflect situations in which a particular contig is

associated with multiple genomes, for instance in case of misassemblies or the presence of

homologous regions across genomes.

The free model parameter b in Eq. (1), which is identical in all genome models,

smoothens or sharpens the posterior distribution: b = 0 produces a uniform posterior

and with very high b, the posterior approaches the sharp ML solution. We determined

b by optimizing the MSE on both training and test data, shown in Fig. 4. As expected, the

classification training error was smaller than the test error because the submodel

parameters were optimized with respect to the training data. Because the minima are

close to each other, the full aggregate model seems robust to overfitting of b on training

data. The comparison of soft vs. hard assignment shows that the former has a smaller

average test classification MSE of ∼0.28 (the illustrated minimum in Fig. 4) compared to

the latter (ML) assignment MSE of ∼0.33 in Table 2. Thus, soft assignment seems more

suitable to classify 1 kb contigs, which tend to produce similar likelihoods under more

than one genome model.

Table 2 Cross-validation performance of ML classification for all possible combinations of

submodels.

Submodels MPCML �MPCML MSEML

Centrifuge (in-sample) 0.01 0.01 0.51

NBC (15-mers) 0.02 +0.00 0.66

AbAb 0.03 +0.00 0.58

ReAb 0.08 +0.02 0.61

Centrifuge (reference) 0.13 +0.03 0.45

AbAb + ReAb 0.21 +0.04 0.59

NuCo 0.30 +0.06 0.52

NBC (5-mers) 0.34 +0.06 0.48

ReAb + NuCo 0.41 +0.07 0.48

AbAb + NuCo 0.43 +0.08 0.50

TaAn 0.46 +0.09 0.41

AbAb + ReAb + NuCo 0.52 +0.09 0.44

NuCo + TaAn 0.52 +0.09 0.40

AbAb + TaAn 0.54 +0.09 0.39

AbAb + NuCo + TaAn 0.60 +0.10 0.37

ReAb + TaAn 0.60 +0.10 0.36

ReAb + NuCo + TaAn 0.64 +0.11 0.34

AbAb + ReAb + TaAn 0.65 +0.10 0.35

AbAb + ReAb + NuCo + TaAn 0.68 +0.11 0.33

Notes:
We calculated the mean pairwise coclustering (MPC), the strain to species MPC improvement (�MPCML) and the mean
squared error (MSE). NBC (v1.1) and Centrifuge (v.1.0.3b) are external classifiers added for comparison. Best values are
in bold and worst in italic. AbAb, absolute total abundance; ReAb, relative abundance; NuCo, nucleotide composition;
TaAn, taxonomic annotation.
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Genome enrichment
Enrichment is commonly known as an experimental technique to increase the

concentration of a target substance relative to others in a probe. Thus, an enriched

metagenome still contains a mixture of different genomes, but the target genome will be

present at much higher frequency than before. This allows a more focused analysis of

the contigs or an application of methods which seem prohibitive for the full data by

runtime or memory considerations. In the following, we demonstrate how to filter

metagenome contigs by p-value to enrich in silico for specific genomes. Often, classifiers

model an exhaustive list of alternative genomes but in practice it is difficult to recognize

all species or strains in a metagenome with appropriate training data. When we only

look at individual likelihoods, for instance the maximum among the genomes, this can be

misleading if the contig comes from amissing genome. For better judgment, a p-value tells

us how frequent or extreme the actual likelihood is for each genome. Many if not all

binning methods lack explicit significance calculations. We can take advantage of the

fact that the classification model compresses all features into a genome likelihood and

generate a null (log-)likelihood distribution on training data for each genome. Therefore,

we can associate empirical p-values with each newly classified contig and can, for

sufficiently small p-values, reject the null hypothesis that the contig belongs to the

respective genome. Since this is a form of binary classification, there is the risk to reject

a good contig which we measure as sensitivity.

We enriched a metagenome by first training a genome model and then calculating the

p-values of remaining contigs using this model. Contigs with higher p-values than the

chosen critical value were discarded. The higher this cutoff is, the smaller the enriched

sample becomes, but also the target genome will be less complete. We calculated the

reduced sample size as a function of the p-value cutoff for our simulation (Fig. 5).
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Figure 4 Model training (err) and test error (Err) as a function of b for the complete aggregate

model including all submodels and feature types. The solid curve shows the average and the

colored shading the standard deviation of the three partitions in cross-validation. The corresponding

optimal values for b are marked by black dots and vertical lines. The minimum average training error is

0.238 (b = 2.85) and test error is 0.279 at b = 1.65.
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Selecting a p-value threshold of 2.5% shrinks the test data on average down to 5% of

the original size. Instead of an empirical p-value, we could also use a parametrized

distribution or select a critical log-likelihood value by manual inspection of the log-

likelihood distribution (see Fig. 3 for an example of such a distribution). This example

shows that generally a large part of a metagenome dataset can be discarded while retaining

most of the target genome sequence data.

Bin analysis
The model can be used to analyze bins of metagenome contigs, regardless of the

method that was used to infer these bins. Specifically, one can measure the similarity of

two bins in terms of the contig likelihood instead of, for instance, an average euclidean

distance based on the contig or genome k-mer and abundance vectors. We compare

bins to investigate the relation between the given data, represented by the features in the

model, and their grouping into genome bins. For instance, one could ask whether the

creation of two genome bins is sufficiently backed up by the contig data or whether they

should be merged into a single bin. For readability, we write the likelihood of a contig

in bin A to:

Lð�A j contig iÞ ¼ Lið�AÞ ¼ Lð�AÞ ¼ LA

To compare two specific bins, we select the corresponding pair of columns in the

classification likelihood matrix and calculate two mixture likelihoods for each contig

(rows), L̂, using the MLE of the parameters for both bins and Lswap under the hypothesis

that we swap the model parameters of both bins. The partial assignment weights �̂A and

�̂B, called responsibilities, are estimated by normalization of the two bin likelihoods.

L̂ ¼ �̂ALA þ �̂BLB ¼ LA

LA þ LB

� �
LA þ LB

LA þ LB

� �
LB ¼ L2A þ L2B

LA þ LB
(12)
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Figure 5 Genome enrichment for 400 genomes with three-fold cross-validation. For each genome, we

measured the test sample size relative to the full dataset after filtering by a p-value cutoff and sum-

ming over the three data partitions. The solid line shows the resulting average sample size over all

400 genomes. The variability between genomes is shown as quantiles in red. Both axes are logarithmic to

show the relevant details for lower p-values cutoffs. The corresponding sensitivity, shown in Fig. S1, is

approximately a linear function of the p-value.
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Lswap ¼ �̂ALB þ �̂BLA ¼ LA

LA þ LB

� �
LB þ LB

LA þ LB

� �
LA ¼ 2LALB

LA þ LB
(13)

For example, if �̂A and �̂B assign one third of a contig to the first, less likely bin and two

thirds to the second, more likely bin using the optimal parameters, then Lswap would

simply exchange the contributions in the mixture likelihood so that one third are

assigned to the more likely and two thirds to the less likely bin. The ratio Lswap=L̂ ranges

from 0 to 1 and can be seen as a percentage similarity. We form a joint relative

likelihood for all N contigs, weighting each contig by its optimal mixture likelihood L̂ and

normalizing over these likelihood values.

SðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YN
i¼1

2Lið�AÞLið�BÞ
L2i ð�AÞ þ L2i ð�BÞ
� �L2

i
ð�AÞþL2

i
ð�B Þ

Li ð�AÞþLið�B ÞZ

vuuut (14)

normalized by the total joint mixture likelihood

Z ¼
XN
i¼1

L2i ð�AÞ þ L2i ð�BÞ
Lið�AÞ þ Lið�BÞ (15)

The quantity in Eq. (14) ranges from 0 to 1, reaching one when the two bin models

produce identical likelihood values. We can therefore interpret the ratio as a percentage

similarity between any two bins. A connection to the Kullback–Leibler divergence can

be constructed (Supplemental Information).

To demonstrate the application, we trained the model on our simulated genomes,

assuming they were bins, and created trees (Fig. 6) for a randomly drawn subset of

50 of the 400 genomes using the probabilistic bin distances -log(S) (Eq. (14)). We

computed the distances twice, first with only nucleotide composition and taxonomic

annotation submodels and second with the full feature set to compare the bin resolution.

The submodel parameters were inferred using the full dataset and b using three-fold

crossvalidation. We then applied average linkage clustering to build balanced and rooted

trees with equal distance from leave to root for visual inspection. The first tree loosely

reflects phylogenetic structure corresponding to the input features. However, many

similarities over 50% (outermost ring) show that model and data lack the support for

separating these bins. In contrast, the fully informed tree, which additionally includes

information about contig coverages, separates the genomes bins, such that only closely

related strains remain ambiguous. This analysis shows again that the use of additional

features improves the resolution of individual genomes and, specifically, that abundance

separates similar genomes. Most importantly, we show that our model provides a

measure of support for a genome binning. We know the taxa of the genome bins in

Dröge et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.117 16/23

http://dx.doi.org/10.7717/peerj-cs.117/supp-1
http://dx.doi.org/10.7717/peerj-cs.117
https://peerj.com/computer-science/


irekrab 
muiretcaborci

M

Is
op

te
ric

ol
a 

va
ria

bi
lis

M
et

ha
no

br
ev

ib
ac

te
r 

sm
ith

ii

al
ph

a 
pr

ot
eo

ba
ct

er
iu

m

C
lo

st
rid

iu
m

 c
ar

bo
xi

di
vo

ra
ns

A
na

er
oc

oc
cu

s 
hy

dr
og

en
al

is

W
ol

ba
ch

ia
 e

nd
os

ym
bi

on
t

O
ce

an
ob

ac
ill

us
 k

im
ch

ii

Ba
ci

llu
s 

th
ur

in
gi

en
si

s

La
ch

no
sp

ira
ce

ae
 o

ra
l

Ac
in

et
ob

ac
te

r g
en

om
os

p.

alp
ha

 p
ro

te
ob

ac
te

riu
m

M
es

of
lav

iba
cte

r z
ea

xa
n.

Hae
mop

hil
us

 so
mnu

s

Leuco
nosto

c c
itre

um

Lacto
bacill

us r
euteri

Stre
ptococcus interm

edius

Streptococcus anginosus
Kingella kingae

Lactobacillus casei
Vibrio gazogenes

Vibrio nigripulchritudoVibrio nigripulchritudoChlamydia trachomatis
Acinetobacter schindleri

Shewanella frigidimarina

Simonsiella muelleri

Aggregatibacter actinomyc.

Glaciecola

Streptococcus suis

Bacillus subtilis

Shigella flexneri

Lactobacillus delbrueckii

Pyrobaculum aerophilum

Azospirillum

Porphyromonas gingivalis

Thermotoga

M
ethyloversatilis universalis

Thioalkalivibrio

Rhodopseudom
onas palustris

G
ordonia effusa

Brucella abortus

D
esulfurivibrio alkaliphilus

P
seudom

onas

Thauera linaloolentis

C
ollim

onas fungivorans
X

anthom
onas axonopodis

C
and. A

ccum
ulibacter phosphatis

B
ordetella bronchiseptica

B
urkholderia

sun
mos sulihpo

mea
H M

et
ha

no
br

ev
ib

ac
te

r 
sm

ith
ii

M
ic

ro
ba

ct
er

iu
m

 b
ar

ke
ri

Is
op

te
ric

ol
a 

va
ria

bi
lis

C
an

d.
 A

cc
um

ul
ib

ac
te

r 
ph

os
ph

at
is

S
hi

ge
lla

 fl
ex

ne
ri

D
es

ul
fu

riv
ib

rio
 a

lk
al

ip
hi

lu
s

Th
io

al
ka

liv
ib

rio

Bo
rd

et
el

la
 b

ro
nc

hi
se

pt
ic

a

Bu
rk

ho
ld

er
ia

Th
au

er
a 

lin
al

oo
le

nt
is

M
et

hy
lov

er
sa

tili
s u

niv
er

sa
lis

Rho
do

ps
eu

do
m

on
as

 p
alu

str
is

Pse
ud

om
on

as

Gordonia effu
sa

Bruce
lla abortu

s

Collim
onas fungivorans

Xanthomonas axonopodis

Lachnospiraceae oral

Bacillus thuringiensis

Chlamydia trachomatis

Kingella kingae

Simonsiella muelleri

alpha proteobacterium

Lactobacillus casei

Anaerococcus hydrogenalis
alpha proteobacteriumClostridium carboxidivoransWolbachia endosymbiont

Aggregatibacter actinomyc.

Acinetobacter genomosp.

Pyrobaculum aerophilum

Glaciecola
Acinetobacter schindleri

Lactobacillus delbrueckii

Azospirillum

Vibrio gazogenes

Vibrio nigripulchritudo

Vibrio nigripulchritudo

O
ceanobacillus kim

chii

Streptococcus anginosus

Leuconostoc citreum

S
treptococcus interm

edius

M
esoflavibacter zeaxan.

S
treptococcus suis

Lactobacillus reuteri

S
hew

anella frigidim
arina

B
acillus subtilis

P
orphyrom

onas gingivalis

T
herm

otoga

1

0.5

0.1

0.01

1e-04
1e-05

1e-07

1e-10

1e-13

1e-03

1

0.5

0.1

0.01

1e-04
1e-05

1e-07

1e-10

1e-13

1e-03

bin
similarity

Figure 6 Average linkage clustering of a random subset of 50 out of 400 genomes using probabilistic distances -log(S) (Eq. (14)) to

demonstrate the ability of the model to measure bin resolution. This example compares the left (blue) tree, which was constructed only with

nucleotide composition and taxonomic annotations, with the right (red) tree, which uses all available features. The tip labels were shortened to fit

into the figure. The similarity axis is scaled as log(1-log(S)) to focus on values near one. Bins which are more than 50% similar branch in the

outermost ring whereas highly dissimilar bins branch close to the center. We created the trees by applying the R function hclust(method =

“average”) to MGLEX output.
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this example but for real metagenomes, such an analysis can reveal binning problems and

help to refine the bins as in Fig. 1D.

Genome bin refinement
We applied the model to show one of its current use cases on more realistic data.

We downloaded the medium complexity dataset from https://www.cami-challenge.org.

This dataset is quite complex (232 genomes, two sample replicates). We also retrieved

the results of two highest-performing automatic binning programs, MaxBin and

Metawatt, in the CAMI challenge evaluation (Sczyrba et al., 2017). We took the simplest

possible approach: we trained MLGEX on the genome bins derived by these methods and

classified the contigs to the bins with the highest likelihood, thus ignoring all details of

contig splitting, b or p-value calculation and the possibility of changing the number of

genome bins. When contigs were assigned to multiple bins with equal probability, we

attributed them to the first bin in the list because the CAMI evaluation framework did

not allow sharing contigs between bins. In our evaluation, we only used information

provided to the contestants by the time of the challenge. We report the results for two

settings for each method using the recall, the fraction of overall assigned contigs (bp), and

the adjusted rand index (ARI) as defined in Sczyrba et al. (2017). Both measures are

dependent so that usually a tradeoff between them is chosen. In the first experiment,

we swapped contigs which were originially assigned between bins. In the second

experiment, all available contigs were assigned, thus maximizing the recall. Table 3 shows

that MGLEX bin refinement improved the genome bins in terms of the ARI for both sets

of genome bins when fixing the recall, and increased in both measures for Metawatt

but not MaxBin when assigning all contigs including the originally unassigned. This is

likely due to the fact that MaxBin has fewer but relatively complete bins to which the

other contigs cannot correctly be recruited. Further improvement would involve

dissecting and merging bins within and among methods, for which MGLEX likelihoods

can be considered.

Table 3 Genome bin refinement for CAMI medium complexity dataset with 232 genomes and two

samples.

Binner Variant Bin count Recall (bp) ARI

Metawatt Unmodified 285 0.94 0.75

Metawatt MGLEX swapped contigs 285 0.94 0.82

Metawatt MGLEX all contigs 285 1.00 0.77

MaxBin Unmodified 125 0.82 0.90

MaxBin MGLEX swapped contigs 125 0.82 0.92

MaxBin MGLEX all contigs 125 1.00 0.76

Note:
The recall is the fraction of overall assigned contigs (bp). The adjusted rand index (ARI) is a measure of binning
precision. The unmodified genome bins are the submissions to the CAMI challenge using the corresponding
unsupervised binning methods Metawatt and MaxBin. MGLEX swapped contigs: contigs in original genome bins
reassigned to the bin with highest MGLEX likelihood. MGLEX all contigs: all contigs (with originally uncontained)
assigned to the bin with highest MGLEX likelihood. The lowest scores are written in italic and highest in bold.
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Implementation
We provide a Python package called MGLEX, which includes the described model. Simple

text input facilitates the integration of external programs for feature extraction like k-mer

counting or read mapping, which are not included. MGLEX can process millions of

sequences with vectorized arithmetics using NumPy (Van der Walt, Colbert &

Varoquaux, 2011) and includes a command line interface to the main functionality, such

as model training, classification, p-value and error calculations. It is open source (GPLv3)

and freely available via the Python Package Index (https://pypi.python.org/pypi/mglex/)

and on GitHub (https://www.github.com/hzi-bifo/mglex/).

DISCUSSION
We describe an aggregate likelihood model for the reconstruction of genome bins from

metagenome data sets and show its value for several applications. The model can learn

from and classify nucleotide sequences from metagenomes. It provides likelihoods and

posterior bin probabilities for existing genome bins, as well as p-values, which can be

used to enrich a metagenome dataset with a target genome. The model can also be used to

quantify bin similarity. It builds on four different submodels that make use of different

information sources in metagenomics; namely, absolute and relative contig coverage,

nucleotide composition and previous taxonomic assignments. By its modular design,

the model can easily be extended to include additional information sources. This

modularity also helps in interpretation and computations. The former, because different

features can be analyzed separately and the latter, because submodels can be trained

independently and in parallel.

In comparison to previously described parametric binning methods, our model

incorporates two new types of features. The first is relative differential coverage, for which,

to our knowledge, this is the first attempt to use binomials to account for systematic

bias in the read mapping for different genome regions. As such, the binomial submodel

represents the parametric equivalent of covariance distance clustering. The second new

type is taxonomic annotation, which substantially improved the classification results in

our simulation. Taxonomic annotations, as used in the model and in our simulation,

were not correct up to the species level and need not be, as seen in the classification

results. We only require the same annotation method be applied to all sequences.

In comparison to previous methods, our aggregate model has weight parameters to

combine the different feature types and allows tuning the bin posterior distribution by

selection of an optimal smoothing parameter b.
We showed that probabilistic models represent a good choice to handle metagenomes

with short contigs or few sample replicates, because they make soft, not hard decisions,

and because they can be applied in numerous ways. When the individual submodels

are trained, genome bin properties are compressed into fewer model parameters, such as

mean values, which are mostly robust to outliers and therefore tolerate a certain

fraction of bin pollution. This property allows to reassign contigs to bins, which we

demonstrated in the “Genome bin refinement” section. Measuring the performance of the

individual submodels and their corresponding features on short simulated contigs
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(Table 2), we find that they discriminate genomes or species pan-genomes by varying

degrees. Genome abundance represents, in our simulation with four samples, the weakest

single feature type, which will likely become more powerful with increasing sample

numbers. Notably, genomes of individual strains are more difficult to distinguish than

species level pangenomes using any of the features. In practice, if not using idealized

assemblies as in our current evaluation, strain resolution poses a problem to metagenome

assembly, which is currently not resolved in a satisfactory manner (Sczyrba et al., 2017).

The current MGLEX model is somewhat crude because it makes many simplifying

assumptions in the submodel definitions. For instance, the multi-layer model for

taxonomic annotation assumes that the probabilities in different layers are independent,

the series of binomials for relative abundance should be replaced by a multinomial to

account for the parameter dependencies or the absolute abdundance Poisson model

should incorporate overdispersion to model the data more appropriately. Exploiting this

room for improvement can lead to further improvement in the performance while the

overall framework and usage of MGLEX stay unchanged. When we devised our model, we

had an embedding into more complex routines in mind. In the future, the model can be

used in inference procedures such as EM or MCMC to infer or improve an

existing genome binning. Thus, MGLEX provides a software package for use in other

programs. However, it also represents a powerful stand-alone tool for the adept user in its

current form.

Currently, MGLEX does not yet have support for multiple processors and only

provides the basic functionality presented here. However, training and classification can

easily be implemented in parallel because they are expressed as matrix multiplications. The

model requires sufficient training data to robustly estimate the submodel weights a using

the standard deviation of the empirical log-likelihood distributions and requires linked

sequences to estimate b using error minimization. Therefore, in situations with a limited

number of contigs per genome bin, we advise the generation of linked training sequences of

a certain length, as in our simulation; for instance, by splitting assembled contigs. The

optimal length for splitting may depend on the overall fragmentation of the metagenome.

Our open-source Python package MGLEX provides a flexible framework for

metagenome analysis and binning which we intent to develop further together with the

metagenomics research community. It can be used as a library to write new binning

applications or to implement custom workflows, for example to supplement existing

binning strategies. It can build upon a present metagenome binning by taking

assignments to bins as input and deriving likelihoods and p-values that allow for

critical inspection of the contig assignments. Based on the likelihood, MGLEX can

calculate bin similarities to provide insight into the structure of data and community.

Finally, genome enrichment of metagenomes can improve the recovery of particular

genomes in large datasets.
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