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ABSTRACT

Background. Agriculture plays a vital role in the country’s economy and human

society. Rice production ismainly focused on financial improvements as it is demanding

worldwide. Protecting the rice field from pests during seedling and after production is

becoming a challenging research problem. Identifying the pest at the right time is crucial

so that the measures to prevent rice crops from pests can be taken by considering its

stage. In this article, a new deep learning-based pest detection model is proposed. The

proposed system can detect two types of rice pests (stem borer and Hispa) using an

unmanned aerial vehicle (UAV).

Methodology. The image is captured in real time by a camera mounted on the UAV

and then processed by filtering, labeling, and segmentation-based technique of color

thresholding to convert the image into greyscale for extracting the region of interest.

This article provides a rice pests dataset and a comparative analysis of existing pre-

trainedmodels. The proposed approachYO-CNNrecommended in this study considers

the results of the previous model because a smaller network was regarded to be

better than a bigger one. Using additional layers has the advantage of preventing

memorization, and it provides more precise results than existing techniques.

Results. The main contribution of the research is implementing a new modified deep

learningmodel namedYolo-convolution neural network (YO-CNN) to obtain a precise

output of up to 0.980 accuracies. It can be used to reduce ricewastage during production

bymonitoring the pests regularly. This technique can be used further for target spraying

that saves applicators (fertilizer water and pesticide) and reduces the adverse effect of

improper use of applicators on the environment and human beings.

Subjects Bioinformatics, Algorithms and Analysis of Algorithms, Artificial Intelligence, Com-

puter Vision, Robotics

Keywords Remote sensing, Deep learning, Smart agriculture, Rice production, Stem Borer, Hispa

INTRODUCTION

Pakistan is considered a major rice producer in rice-producing and exporting countries.

The Islamic Republic of Pakistan ranked 10th number producing 7 million tons of rice
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each year, and it contributes to 1.3% of rice exports in the international market, but

the production rate is reducing each year due to late prediction of problems arising in

crops (Abbas, 2022). Rice production controls the complete production and consumption

of crops worldwide. In Pakistan, rice is considered the leading food, and its yield is about

2,70.6 tons of rice has been permitted for commercialism (Memon, 2013). The use of

technology in agriculture plays a vital role in making farming precise.

Precision agriculture plays a significant part in agricultural areas for sustainability (Bon-

giovanni & Lowenberg-Deboer, 2004; Hunt & Daughtry, 2018), and since the 1980s, remote

sensing has become an important element of these efforts (Mulla, 2013). Remote sensing is

very important in themanagement of soil (Ali et al., 2015;Carrão et al., 2016), management

of pests (Kelly & Guo, 2007; Acharya & Thapa, 2015), detection of weeds (Peña et al., 2013;

Thorp & Tian, 2004; Lamb & Brown, 2001; López-Granados & Jurado-Expósito, 2006),

surveying (Roslimz et al., 2021), monitoring (Fernandez-Carrillo et al., 2020) vegetation

health, and vigor (Berni et al., 2009). Technology and agriculture are some of the best

combinations that give financial benefits and improve the economy.

In the financial year 2019 alone, there was a reduction of 3.3; this is primarily because of

the stem borer and Hispa in the rice crops, which are the reason for the massive damage.

Figure 1 displays the sorts of common pests in rice crops, including stem borer and its

categories and Hispa. The Hispa inflicted extreme yield losses on the crop yearly, and stem

borers frequently damaged crops from the seedling stage to maturity (Islam, 1975). Stem

borer attacks at different stages and leaves its attack symptoms. In any case, caused by the

larvae that bore the canes to feed themselves with the corresponding inner tissues. Stem

borer includes different categories of attack in the circular path, affecting the rice yield by

>70% (Rubia et al., 1989).

Hispa is an insect that is about 5 mm in measurement. Its foods by rasping the leaf

surface, which results in the appearance of white lines on the leaf’s surface. The female

Hispa lays eggs in these rubbings, and the growth of this pest lasts to increase at a speedy

rate. If it is not recognized in time, by postponing the use of pesticides, Hispa can attack and

eliminate fields of rice crops within three weeks (Elkhalfia, 2021). Rice Hispa plights the side

of leaf edges’ leaving only the lower shell. It conjointly underpasses through the leaf tissues,

and plants decrease dynamically, Once the damage is severe. The unwanted plants (weeds)

in and near rice crops are grown by the farmer as a substitute to avoid damage from pests.

The severe damage mainly occurs on pre-moon soon or initially during the rainy season

and leaves the precipitation, most minor daytime-nighttime temperature differential for a

variety of days, and a high RH square measure promotes the insect’s growth. Hispa usually

attacks in rainfed and irrigated land environments and spread quickly in vegetative periods

of rice during the summer season, which causes a loss of 35–65%, and a loss of 100% occurs

when transplanted after the flood (Burhan et al., 2020).

Monitoring these pests and identifying the infected location using remote sensing is

introduced, which helps to precisely monitor and identify the infected location. The data

or images captured by remote sensing are geolocated and georeferenced, which helps

highlight the infected site so that desired operations can perform over there. The remote

sensing of rice-growing areas not only contributes to the precise mapping of rice areas
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Figure 1 Rice pets: (A) stem borer; (B) Hipsa.

Full-size DOI: 10.7717/peerjcs.1167/fig-1

and the assessment of the dynamics in rice-growing regions but also can contribute to

reap prediction modeling. Moreover, the analyses of plant diseases, the assessment of

rice-based gas (methane) emission because of vegetation submersion, the investigation

of erosion-control-adapted agricultural systems, and the assessment of system services in

rice-growing areas can be handled (Kuenzer & Knauer, 2013).

UAVs is developed early in the last century, but in the last decade, drowns are rapidly

growing in different sizes, shapes, capacities, and capabilities (Colomina & Molina, 2014).

UAVs are widely used in precision agriculture (Shahbazi, Theau & Menard, 2014; Shao,

2012; Roslimher crop et al., 2021). In current periods, remote sensing techniques are gaining

much attention, which helps in gaining useful information regarding forest and agriculture

management and also helps in increasing the volume and growth of farms (Lyons, 1966).

In the recent decade, with the expansion of sensors, computers, and computational

techniques, the pertinence of remote sensing in agriculture used to extract aerial data (Asner

et al., 2005) and satellite imagery data (Thakur, Swamy & Nain, 2014), which leads to

estimating volume and different calculations of the forest, agriculture indexes, and also

the unusual changings for crops results in pests, and diseases (Lu, 2006; Koch, 2010; Singh,

2017).

Pests (rice stem borer (RSB) and Hispa) are the yearly source of substantial financial

losses. Control efforts rely heavily on chemical insecticides, which leads to severe problems

such as insecticide resistance, environmental pollution, and food safety issues. Therefore,

developing alternative pest control methods is an important task. Therefore, this research

was intended to evaluate the yield production loss on rice due to stem borer and Hispa
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infestation, which may support the development of a productive strategy for managing the

significant pests of rice.

For the above-stated purpose, an automatic intelligent system is required to identify and

classify pests. The use of remote sensing and algorithms helps manage agricultural land free

from pests and can also control at a very early stage. Remote sensing delivers the crucial

methodology and technology to monitor, map, and observe rice-growing ecologies over

huge areas, at frequent time intervals, to understand rice-growing areas under a diversity

of features. AI algorithms along with remote sensing contribute a lot in many fields and

now their use in the agriculture area is becoming popular. Authors in Zhang et al. (2019)

planned spectral collections to support the classification of cultivated land area, in Guo et

al. (2022), monitoring and identifying the nutritional status and condition of growth in

maize crops. Authors in Biffi et al. (2021) detect apple fruit using deep learning techniques.

The use of algorithms like Support Vector Machine (SVM), K-mean clustering, and

other algorithms related to image processing can extract features manually but has a lot

of limitations (Phadikar, 2008). These techniques may only work well to detect images

within the training data set and fail when introduced to images outside the trained

dataset (Mahle, 2016). Deep learning is gaining attention for the detection of pests (Mahle,

2016; Pethybridge & Nelson, 2015; Stewart & McDonald, 2014; Bock et al., 2009; Bai et al.,

2017), Pests in cucumbers (Zhang et al., 2017a), and pests in citrus trees (Dorj, Lee & Yun,

2017) additionally feature extraction and image segmentation of crop pests and diseases

are recognized and detected by many algorithms (Zhang et al., 2017b; Du et al., 2016;

Atole, 2018; Ren et al., 2016). So, deep learning algorithms and remote sensing are being

conducted for pest detection in rice crops. In this article, the comparison of deep learning

models is provided to ease the selection of the efficient technique for further proceedings.

To summarize, the contributions in this article are: (1) we build a data set for rice pests;

(2) we provide a comparative analysis of algorithms to identify the efficient algorithm,

which further helped us to achieve and modify the algorithm for achieving precise output;

(3) The modified YO-CNN; (4) The set of image detection metrics is proposed, which is

based on deep learning classifier.

MATERIALS & METHODS

This section provides the methodology for the rice pest detection technique and is further

divided into three sub-sections, including (a) image datasets, (b) data preprocessing, and

(c) data/image augmentation. An overview of the methodology used in the research is

presented in Fig. 2. Data is collected from UAVs, and external sources are prepared for

training to detect pests from rice crops. The image is segmented, augmented, and annotated

before training. Firstly, we trained data on pre-trained models and analyzed their results

by comparing the accuracy of the pre-trained model, leading us towards implementing a

modified CNN-based model, which provides a more precise detection than other models

with 0.980 accuracies.
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Figure 2 Flow diagram of methodology.

Full-size DOI: 10.7717/peerjcs.1167/fig-2

Datasets description

The dataset collected during the research comprises images of rice pest lesions, collected

in Tando Muhammad Khan, Sindh, Pakistan, between June and August 2021 (Khan,

2023). The dataset consists of rice plants infected by rice Stem borer (Islam, 1975) and

Hispa (Burhan et al., 2020). These images are captured by the UAV DJI Phantom 4 Pro

with a predefined flight path see Fig. 3. The UAV flew autonomously over the rice field at
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Figure 3 Data collection using UAV.

Full-size DOI: 10.7717/peerjcs.1167/fig-3

a height of 35 m in an area of 40 acres. The image collection is focused on occurrences of

infestation.

Using UAV technology for monitoring and identifying pests in rice crops is an

economical solution in terms of time and cost as well as less human effort with minimized

errors. The specifications of the UAV in the research for aerial inspection are presented in

Table 1.

The dataset comprises external datasets and real images of Stem Borer and Hispa (Roul,

2021; Kaggle, 2022), which shows the precise features of pests as shown in Fig. 4.

The collection of datasets continues for about two days. The dataset includes ground

reality and external sources (Roul, 2021; Kaggle, 2022). The farmers know the local name of

pests, so the first issue is the language barrier as the farmers do not know the English name

of the pests. They use local names or terms for pests. So, the involvement of a specialist in

this field or agronomist helped a lot to communicate with the farmers and assign a tag or

label the images by indicating the names of pests. The details of the data set, which consists

of training and testing data sets, are provided below in Table 2. The data set is divided

based on the number of pests in the images. 2,600 are for training which is 80% of the data,

and 400 images are considered for testing images which is almost 20% of the data while

considering pests in the image.

Since the drone imageries were taken from natural rice crop fields, a variation of

surroundings can be visualized in the images. Some images consist of more than one leaf;

some have soil, and also fingers can be pictured in some images shown in Fig. 5. The

collected data are in raw form, and training requires pre-processing. So, in the following

sub-section, the pre-processing procedure is explained in detail.
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Table 1 UAV specifications for collecting data.

Parameters Specification

Weight 1,388 g

Battery Capacity 5,870 mAh

Battery Type LiPo 4S

Flying altitude 35 m

Speed 3.4 m/s

Missions time 83 min and 37 s

Total No. of flights 8

Camera 1’’ CMOS Effective pixels:

Mechanical Shutter Speed 8 - 1/2,000 s

Electronic Shutter Speed 8 - 1/8,000 s

Image types JPEG, DNG (RAW), JPEG

Key points 96,988,666

Tie points 3,996,109

Figure 4 Data set with clear features: (A) stem borer; (B) Hispa.

Full-size DOI: 10.7717/peerjcs.1167/fig-4

Table 2 Statistical imagery data for training and testing the models.

Dataset of Rice Pests (RSB) and (H) No. of images

Images used in training 2,600

Images used in testing 400

Total 3,000

Data pre-processing

The annotation area of the rice stem borer and Hispa are shown in Fig. 6. The annotation

includes clear images that provide a clear vision of the features of pests so that the model

will be highly efficient in accurately recognizing pest types.

After annotation, the image processing technique is applied for the segmentation of the

leaf and also for the removal of shadow and background to specify the interested area.
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Figure 5 Pests with the original background: (A) stem borer, (B) Hispa, (c) stem borer.

Full-size DOI: 10.7717/peerjcs.1167/fig-5

Figure 6 Annotation area selected in the red box for training.

Full-size DOI: 10.7717/peerjcs.1167/fig-6

Hence, the application of image processing methods for leaf segmentation and removal

of shadow and background focuses on the area of interest. The techniques of log transform

and Power Law (Gamma) Transform, which are the sub-categorization of Intensity Scaling,

were applied for background removal. Figure 7 expresses a comparative analysis of the

Intensity scaling techniques. Though these methods remained deficient in the case of the

utilization of the Power Low (Gamma) Transform, the complete image would be wiped

off. Log transform, on another hand, controls intensity which enhances the sharpness and

power of the image but can only be applied within the range of 0 to 255.

Equation (1) shows the mathematical expression of log transformation

l = clog (1+a) (1)
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Figure 7 Intensity scaling techniques. (A) Original, (B) Power Law (Gamma) Transform, (C) log trans-

form.

Full-size DOI: 10.7717/peerjcs.1167/fig-7

l = intensity of output,

a>=0 is the pixel intensity of the input,

and c = constant of scaling.

c = 255/(log(1+mp)) (2)

where mp express as max. Pixel value which cannot be exceeded from 255, or (L-1). Log

transformation maps a minimum range of low-intensity values of input to a broad range

of output values.

Power-law (gamma) transformation is expressed mathematically expression in Eq. (3).

l(g )= ca\gamma (3)

l = output intensity
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c = scaling constant

a = input intensity of pixels.

Technique color thresholding is chosen to use for creating pixel mask values of colors

of interest area. When color thresholding was applied to the images, the mask removed

the background and shadow from the images, which are not needed. Eqs. (4) to xref[ref-

type=disp-formula,rid=eqn-7]7 represents the mathematical expressions of the color

thresholding techniques.

Binary : dst (a,b) =

{

maxwalifsrc (a,b) > thrsh

0otherwise
(4)

InvertedBinary : dst (a,b) =

{

0ifsrc (a,b) > thrsh

maxwalotherwise
(5)

Truncated : dst (a,b) =

{

thresholdsrc (a,b) > thrsh

src (a,b)otherwise
(6)

ToZero : dst (a,b) =

{

src (a,b)src (a,b) > thrsh

0otherwise
(7)

ToZeroinverted : dst (a,b) =

{

0src (a,b) > thrsh

src(a,b)otherwise
(8)

Six different color thresholding techniques are applied in Figs. 8 and 9, such as binary

threshold inverted, binary threshold, set to 0 inverted, set to 0, and truncated threshold.

The binary threshold inverted is the opposite of binary thresholding, the destination pixel

is set to zero, and if the pixel is greater than the threshold, the max value of the threshold

is considered if the source pixel is less than 1. The truncated threshold is applied on the

ground truth value threshold to convert the image into the pixelated format to extract the

pixel value and compare it with the binary values, if it is said to be 1, then it is the minimum

threshold or if the −1 then the value of the threshold is maximum. After applying and

comparing the color thresholding technique, we choose the binary threshold inverted and

set it to 0 technique because it gives clear images.

Image data augmentation

The data augmentation techniques are applied to increase the data size and reduce the

overfitting problem common to the data augmentation process. The augmented images

are shown in Figs. 10 and 11 for training the model at different angles for precise detection

and fine-tuning the parameters shown in Table 3.

This section explains the four sub-sections: training and testing of data, performance

matrix, comparative analysis, and the modified YO-CNN. In training and testing
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Figure 8 Thresholding techniques for every pixel in the images (Hispa).

Full-size DOI: 10.7717/peerjcs.1167/fig-8

Figure 9 Thresholding techniques for every pixel in the images (stem borer).

Full-size DOI: 10.7717/peerjcs.1167/fig-9

Figure 10 Applied augmentation techniques on images of Hispa.

Full-size DOI: 10.7717/peerjcs.1167/fig-10

data, object detector models, different backbone architectures, hardware, and software

specifications used for training algorithms are mentioned in detail, along with Fig. 12 and

Table 4. The performance matrix Eqs (9) to (11) explains the performance measures. The

comparison of different algorithms in Table 5 is provided in the comparative analysis

section, which helps to identify the performance of different architectures and modify

them accordingly. The custom YO-CNN explains all the measures taken to customize the

model. The summary architecture and parameters of modified YO-CNN in Tables 5, 6,

and Fig. 13 and its performance compared with other models are also provided.
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Figure 11 Applied augmentation techniques on images of stem borer.

Full-size DOI: 10.7717/peerjcs.1167/fig-11

Table 3 Fine-tuning parameters with ranges of data augmentation.

Augmentation parameters Ranges unit

Zoom_Random 0.5

Flip_Left_Right 0.5

Rotation 10

Flip_Top_Bottom 0.5

Figure 12 CNN based image detector architecture of the proposed backbone.

Full-size DOI: 10.7717/peerjcs.1167/fig-12

Training and testing of data

The image or object detector is based on CNN (Das, Hazarika & Bora, 2021), an object

detector that is two-stage detection of objects. In this framework, the initial stage is replaced

with the other CNN, which is considered a backbone, such as Vgg16, Vgg19, ResNet50,

ResNet50V2, ResNet101V2, and YOLOv5. The framework architecture is shown in Fig. 12.

We propose a modified CNN architecture which is still an end-to-end detection network

as a faster RCNN.

The image detector is based on CNN, which has three blocks: head, backbone, and

output. The modification of the model depends on the best outcome of the stated models.

The CNN architecture

A convolutional neural network (CNN) is an artificial class of neural network that has

become very famous in different tasks of computer vision (CV). It is also becoming

dominant in other fields such as radiology. To learn spatial hierarchies of features

repeatedly, adaptively, and automatically, CNN is designed perfectly for this purpose

due to backpropagation using multiple building blocks (Zhang et al., 2017a).
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Table 4 Hardware and software environments for research implementation.

Hardware environment Software environment

Memory 256 GB System ubuntu 18.0

CPU intel R©

Xeon(R)

Silver 4214

CPU @

2.20 GHz ×48

Environment Python 3.6

GPU NVIDIA Jetson Xavier Pytorch framework

NVIDIA Tesla T4

Table 5 Comparative analysis of models.

Algorithm Precision

Vgg16 0.901

Vgg19 0.90

ResNet50 0.880

ResNet50v2 0.899

ResNet101v2 0.901

YOLO v5 0.910

CNN is a mathematical construct typically comprised of three building blocks or

layers: convolution layer, pooling layer, and fully connected layer. The first two layers of

convolution and pooling execute feature extraction, and the third, a fully connected layer,

map the features extracted from the image into the final desired output, which is termed

classification (Kuenzer & Knauer, 2013).

Models training and evaluation

The research work is evaluated by using Vgg16 and Vgg19.ResNet50, ResNet50V2,

ResNet101V2, and YOLOv5 model, and on comparing these models, the custom YO-CNN

is proposed. The presented work is performed using the NVIDIA JETSON AGX XAVIER

controller, and we have evaluated the processing performed based on the RAM utilization,

Inference Time, Temperature, and GPU utilization at different resolutions. The overall

software and hardware packages required to train and test the system are shown in Table 4.

Performance metrics

The estimation metrics (Raghavan, Bollmann & Jung, 1989) are used to be calculated to

figure out the precision of the model, so the estimation metrics of the rice pest detection

model for YO-CNN are expressed in the below-stated equations.

Precision(Pi) =
nTS

nS
(9)

Recall (Ri) =
nTS

ntS
(10)
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Table 6 Summary of YO-CNN.

S.no From n Parameters Module Arguments

0 −1 1 3,520 models.common.Conv [3, 32, 6, 2, 2]

1 −1 1 18,560 models.common.Conv [32, 64, 3, 2]

2 −1 1 18,816 models.common.C3 [64, 64, 1]

3 −1 1 73,984 models.common.Conv [64, 128, 3, 2]

4 −1 2 115,712 models.common.C3 [128, 128, 2]

5 −1 1 295,424 models.common.Conv [128, 256, 3, 2]

6 −1 3 625,152 models.common.C3 [256, 256, 3]

7 −1 1 1,180,672 models.common.Conv [256, 512, 3, 2]

8 −1 1 1,182,720 models.common.C3 [512, 512, 1]

9 −1 1 656,896 models.common.SPPF [512, 512, 5]

10 −1 1 131,584 models.common.Conv [512, 256, 1, 1]

11 −1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, ’nearest’]

12 [−1, 6] 1 0 models.common.Concat [1]

13 −1 1 361,984 models.common.C3 [512, 256, 1, False]

14 −1 1 33,024 models.common.Conv [256, 128, 1, 1]

15 −1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, ’nearest’]

16 [−1, 4] 1 0 models.common.Concat [1]

17 −1 1 90,880 models.common.C3 [256, 128, 1, False]

18 -1 1 147,712 models.common.Conv [128, 128, 3, 2]

19 [−1, 14] 1 0 models.common.Concat [1]

20 −1 1 296,448 models.common.C3 [256, 256, 1, False]

21 −1 1 590,336 models.common.Conv [256, 256, 3, 2]

22 [−1, 10] 1 0 models.common.Concat [1]

23 −1 1 1,182,720 models.common.C3 [512, 512, 1, False]

24 [17, 20, 23] 1 59,334 models.yolo.Detect [17, [[10, 13, 16, 30, 33, 23],

[30, 61, 62, 45, 59, 119],

[116, 90, 156, 198, 373, 326]],

[128, 256, 512]]

Notes.

Model Summary: 270 layers, 7,065,478 parameters, 7,065,478 gradients, 16.0 GFLOPs.

Avg (Pi)=

i=n−I
∑

i=0

[Ra−Ri(i+1)]∗Pa (11)

In Eq. (9), precision evaluation is carried out in which nTS represents the number of

true spots and nS represents several true spots. In Eq. (10), the recall function is calculated,

including the bounded and unbounded spots. The same spots are considered once. Average

precision is calculated in Eq. (11).

Comparative analysis

The implemented algorithms evaluation is represented in Table 5, which shows the average

accuracy of Vgg16 and Vgg19.ResNet50, ResNet50V2, ResNet101V2 and YOLOv5.

This research is based on the deep learning algorithms Res Net, VGG16, and YOLO.

The VGG16 shape is like a pyramid or bottleneck where the layers become deeper while
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Figure 13 Block diagram for rice pest detection.

Full-size DOI: 10.7717/peerjcs.1167/fig-13

moving forward and input layers are wide. VGG16 is easy to access, and pre-trained models

are also available online easily, but training VGG16 requires more significant time, which

exhausts GPU.

On another side, many residual modules consist of Res Net, which performs either

input function or not. These modules are stacked to form the architecture of a connected

network on top of one another. Res Net allows to addition or removal of the residual layers

but becomes more complex and consumes time when the network gets deeper.

YOLO consists of ‘three convolutional neural network backbone layers: input layer,

hidden layer, and output layer. The YOLO works well for multiple objects, with each object

associated with one grid cell, which is helpful in case of overlapping where one grid cell

contains the center points of the two objects known as anchor boxes. Each bounding box

in the anchor box contains a certain height and width. It has fewer number layers and

requires a large amount of data. High-end GPU requires processing due to big data and

processing time. The misclassification also occurs if we do not have a large amount of data

for each class (minimum 1k for each class) and if the data is not labeled accurately.

The comparison of the CNNs model in Table 4 shows that the winner or best performer

model was YOLOv5 with a precision of 0.91 on real data.

The proposed approach YO-CNN

The proposed approach recommended in this study is described in this section. This

research starts with the input of real-time images and progresses to building a sentiment

classification convolutional neural network (CNN). The network is composed of 213 layers.

Every group of neurons in a layer passes through themax-pooling, reducing dimensionality

to get its most excellent possible value as a contribution. ‘‘A new deep learning-based

technique for rice pest detection using remote sensing’’ is achieved in the shortest period

than existing techniques (Mahle, 2016; Pethybridge & Nelson, 2015; Stewart & McDonald,

2014; Bock et al., 2009; Bai et al., 2017; Zhang et al., 2017a; Dorj, Lee & Yun, 2017; Zhang et

al., 2017b; Du et al., 2016; Atole, 2018). The network receives a preprocessed 64 x 64 pixel
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as input. Using the results of the previous model, a new model was developed as YO-CNN.

A smaller network was regarded to be better than a bigger one. Using additional layers

has the advantage of preventing memorization. A broad but shallow network is good at

memorizing but not at generalizing. It is possible to generalize successfully usingmulti-layer

networks since they can learn properties at multiple abstraction levels. For practical uses,

the 213 layers were selected to assure a high level of precision. Four convolutional layers,

each with a distinct filter size, are included in the proposed CNN, distinguishing it from

a basic CNN. To further prevent overfitting, it utilized max-pooling and dropouts more

effectively.

The YO-CNN accomplishes more detection results than Vgg16, Vgg19, ResNet50,

ResNet50V2, ResNet101V2, and YOLOv5. The architecture YO-CNN reduces the model

size and increases the precision. Figure 13 shows the working block diagram, including

YO-CNN, which detects rice pests.

The YO-CNN is used because it is a modified, improved, and optimized algorithm

designed to reduce the size of the image and tuning of hyperparameters. The existing

algorithms are not optimized enough to work on image classification precisely to promote

a smart agriculture system.

A detailed description of YO-CNN is provided in Table 6, in which modules are the

number of models having 24 convolution layers and 270 overall layers, including max

pooling, fully connected layers, convolution layers, and present Adams as an optimization

layer. The total number of parameters is 7,065,478, representing the trained model’s

hyperparameters.

The model is trained with CNN based technique which has three parts:

Backbone: CSP darknet

The initial part of the YO-CNN represents the cross-stage partial network into the darknet,

which creates the CSP darknet as its backbone. It solves the gradient information, which

is repeated in the backbone. The gradient integrates the gradients by changing the feature

map; therefore, decreasing the FLOPS and parameters of the model will guarantee the

accuracy, model, and speed of the inferences. In the rice pest detection task, the detection

speed and accuracy are imperative, and the model size is smaller than others.

Neck: PA net

In the second stage, data is aggregated for passing the boost information flow, which links

the feature grid and feature levels.

Output layer

The third layer output layer acts as a binary classifier, which is responsible for learning the

entire picture to identify the images that contain pests’ objects. Finally, the pest detection

and classification results are directed into a decision-making module, which detects pests

like HISPA and STEM BORER from images.

The algorithm of YO-CNN

The pseudo-code in Table 7 is provided below, which describes the entire procedure of the

modified YO-CNN model.
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Table 7 Pseudo-code for explaining the work flow of model.

Algorithm YO-CNN

Input: Rice Pest images with annotation files.

Output: Trained Rice Pest Detection (YO-CNN) Model

Processing Steps:

1. If a set is training data set, then follow steps 2 to 4.

2. pre-processing to resize the image (640 × 640)

3. normalize pixel values [0, 1]

4. standardize pixel values to (640 × 640)

5. augment the data with different augmentation techniques

6. Apply Upsampling technique to reshape the shapes of input parameters

7. Model training with MODEL = YOLO v5

8. Set epoch = 0 to 100.

9. Set learning rate as Lr= 0.01 use steps 13 to 14

10. Set g0 as optimizer parameter group

11. for a model selection use steps 7 to 10

12. If OPTIMIZER == Adam:

optimizer = Adam (g0, Lr=hyp[‘Lr0’], betas= (hyp[‘momentum’], 0.937))

else optimizer = SGD (g0, Lr=hyp[‘Lr0’], betas= (hyp[‘momentum’], nesterov=True))

13. In a batch of no of images: 456

14. update model parameter

15. end of for loop of step 14

16. Training of the model parameters started

17. End of training step 16

18. for testing no of images in batch: update model parameter

19. end of for loop of step 18

Table 8 Training parameters and accuracy of models in comparison with YO-CNN.

Training parameters and accuracy

Model Labels Image size Batch size Weight size Recall Precision mAP

YO-CNN 2 640 ×640 16 14.5 MB 0.976 0.97 0.98

Vgg16 528 0.88 0.901 0.923

Vgg19 549 0.89 0.900 0.921

ResNet50 98 0.879 0.88 0.890

ResNet50v2 100 0.889 0.899 0.90

ResNet101v2 109 0.89 0.901 0.91

YOLOv5 14MB 0.90 0.91 0.91

The accuracy of proposed model YO-CNN is 0.980, which is more precise than existing

models, as mentioned in Table 8.

RESULTS

This section composes of two more subsections: the Results of the pests detection and

the confusion matrix. In the subsection, results of the pest’s detection, the original images
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Figure 14 Drone while collecting rice pests’ data.

Full-size DOI: 10.7717/peerjcs.1167/fig-14

Figure 15 YO-CNN detection of pests.

Full-size DOI: 10.7717/peerjcs.1167/fig-15

are provided, which are obtained during training, processing, testing, evaluation, and

validation which may visualize in Figs. 14, 15, 16 and 17. The confusion matrix provides

the confusion analysis in Fig. 18.

Results of the pest detection

In Fig. 14, the UAV is used for monitoring the rice field so that the detection of pests can

be done at this early stage. It helps the farmers to do operations for controlling pests which

results in increasing yield, and also safe pesticide sprays harmful to the environment and

living beings.

The results of image detection during training are shown in Fig. 15. Light purple with

the number 15 shows Hispa, and dark purple boxes with the number 16 show stem borer.

The two categories of rice pests, stem borer, and Hispa, can be spotted concurrently. The

touching boundaries may be the reflection of dissimilar grazes. The detection speed was

about 0.025s due to the high processing unit.

In Fig. 16, validation of pests can be visualized as the name of classified pests stem borer

or Hispa are written along with bounding boxes.

Figure 17 shows the losses, precision, recall, and average precision. Losses can be

visualized during training and validation on the left side of the figure. All the losses are
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Figure 16 YO-CNN validation of pests.

Full-size DOI: 10.7717/peerjcs.1167/fig-16

Figure 17 (A–J) Evaluationmetrics of YO-CNN.

Full-size DOI: 10.7717/peerjcs.1167/fig-17

falling from the maximum position while the graph of precisions is increasing, and the

average accuracy of custom YO-CNN is about 0.980.

Confusion matrix

The confusionmatrix is provided in Fig. 18, which shows the complete picture of confusion

faced by the detector as the detector would be confused in Hispa and stem borer. The

confusion may occur due to blur or the complex background of images. In the matrix, it is
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Figure 18 Confusionmatrix of stem borer and Hispa.

Full-size DOI: 10.7717/peerjcs.1167/fig-18

clearly shown that the accuracy of the model misses very few points. Figure 18 shows the

confusion matrix below.

DISCUSSION

This section provides a comparative analysis of existing techniques, showing differences in

the customized model YO-CNN achievement. Table 9 is designed to show the comparison

of YO-CNN with existing technologies. The outcome of YO-CNN is more precise, which

is the standout feature of this research. Moreover, it can be utilized in other agriculture

scenarios with other data sets related to the application. Figures 19 and 20 show the

precision and recall curve.

Comparative analysis

The comparison of YO-CNN with other models VGG16, VGG19 ResNet-50, ResNet50v2,

ResNet-101v2, and YOLOv5, is provided in Table 8. Their precision shows the efficiency of

models and declares that the modified YO-CNN is much better than the existing models.

The current models VGG16, VGG19 ResNet-50, ResNet50v2, ResNet-101v2, and YOLOv5

might have an unacceptable finding result on a little blur effect on images while YO-CNN

reduces this problem too as verification of the YO-CNN onHispa and stem borer finds that
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Table 9 Average accuracy of algorithm in comparison with customized YO-CNN.

Algorithm Average accuracy

YO-CNN 0.980

Vgg16 0.923

Vgg19 0.921

ResNet50 0.890

ResNet50v2 0.90

ResNet101v2 0.910

YOLO v5 0.910

Figure 19 Precision curve of YO-CNN.

Full-size DOI: 10.7717/peerjcs.1167/fig-19

YO-CNN performs better for object detection with blur boundaries and uneven surfaces.

The average accuracy of the custom YO-CNN is better than other architectures.

Figures 19 and 20 show the precision curve and recall curve for the Hispa and Stem

borer, which offers the performance of YO-CNN. The curve with light blue color represents

Hispa, Curve with red color represents Stem borer, and the curve with dark blue color,

which is in between these two curves, represents the cumulative performance of both

classes.

CONCLUSIONS

Identifying the pests at the right time is essential for protecting and increasing the yield,

which helps in growing healthy crops and minimizing the use of pest spray, increasing

yield, and reducing human effort. In this article, the image detection of two categories of

rice pests, Hispa and stem borer, using the new transfer learning-based model YO-CNN
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Figure 20 Recall curve of YO-CNN.

Full-size DOI: 10.7717/peerjcs.1167/fig-20

is successfully achieved. Features are extracted using fully connected layers. The image

detection is performed with different algorithms and provides their comparative analysis

in Table 5 shows YOLO v5 is more accurate than 0.910 accuracies. We modified YOLO v5

and provided a detailed summary of customizing YO-CNN in Table 6 and pseudo-code

in Table 7. A design of modified YO-CNN architecture for pest detection is presented,

which is more suitable for pest of rice image detection with the accuracy of 0.980 shown

in Table 9. We notice that VGG16, VGG19 ResNet-50, ResNet50v2, ResNet-101v2, and

YOLOv5 might have an unacceptable finding result on a little blur effect on images. Also,

we verify the YO-CNN on Hispa and stem borer and find that YO-CNN performs better

with an accuracy of 0.980 for object detection with blur boundaries and uneven surfaces

and shapes compared with other algorithms, which is a standout feature of this result. The

proposed system can be applied to other crops for pre-detection after suitable modification.

The future of this finding is to adopt this method for precise spraying with an unmanned

aerial vehicle which helps to spray on the targeted location in an adequate amount and

precisely to optimize the resources, human effort, and harmful effects on nature.
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