
A survey of field programmable gate array
(FPGA)-based graph convolutional neural
network accelerators: challenges and
opportunities
Shun Li1,*, Yuxuan Tao2,*, Enhao Tang1, Ting Xie1 and Ruiqi Chen3,4

1 College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, China
2 Department of Informatics Faculty of Natural, Mathematical & Engineering Sciences, King’s
College London, Strand, London, United Kingdom

3 VeriMake Innovation Lab, Nanjing Renmian Integrated Circuit Co., Ltd., Nanjing, Jiangsu,
China

4 Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, Shanghai,
China

* These authors contributed equally to this work.

ABSTRACT
Graph convolutional networks (GCNs) based on convolutional operations have been
developed recently to extract high-level representations from graph data. They have
shown advantages in many critical applications, such as recommendation system,
natural language processing, and prediction of chemical reactivity. The problem
for the GCN is that its target applications generally pose stringent constraints on
latency and energy efficiency. Several studies have demonstrated that field
programmable gate array (FPGA)-based GCNs accelerators, which balance high
performance and low power consumption, can continue to achieve orders-of-
magnitude improvements in the inference of GCNs models. However, there still are
many challenges in customizing FPGA-based accelerators for GCNs. It is necessary
to sort out the current solutions to these challenges for further research. For this
purpose, we first summarize the four challenges in FPGA-based GCNs accelerators.
Then we introduce the process of the typical GNN algorithm and several examples of
representative GCNs. Next, we review the FPGA-based GCNs accelerators in recent
years and introduce their design details according to different challenges. Moreover,
we compare the key metrics of these accelerators, including resource utilization,
performance, and power consumption. Finally, we anticipate the future challenges
and directions for FPGA-based GCNs accelerators: algorithm and hardware
co-design, efficient task scheduling, higher generality, and faster development.

Subjects Artificial Intelligence, Computer Architecture, Distributed and Parallel Computing,
Neural Networks
Keywords GCN, FPGA, Hardware accelerator, SW/HW co-design

INTRODUCTION
Inspired by the powerful learning ability of neural networks and the great success of
convolutional neural networks (CNNs) (LeCun et al., 1998) in the field of deep learning,
graph neural networks (GCNs) based on convolutional operations such as GCN (Bruna
et al., 2013), GraphSAGE (Hamilton, Ying & Leskovec, 2017), and GAT (Veličković et al.,

How to cite this article Li S, Tao Y, Tang E, Xie T, Chen R. 2022. A survey of field programmable gate array (FPGA)-based graph
convolutional neural network accelerators: challenges and opportunities. PeerJ Comput. Sci. 8:e1166 DOI 10.7717/peerj-cs.1166

Submitted 17 August 2022
Accepted 31 October 2022
Published 28 November 2022

Corresponding author
Ruiqi Chen,
rickychen@verimake.com

Academic editor
Miriam Leeser

Additional Information and
Declarations can be found on
page 31

DOI 10.7717/peerj-cs.1166

Copyright
2022 Li et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1166
mailto:rickychen@�verimake.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1166
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

2017) were developed and used to extract high-level representations from graph data (Wu
et al., 2021). GCN uses convolutional operations to learn node features, GraphSAGE uses
neighborhood sampling to implement inductive learning on large-scale datasets, and GAT
uses an attention mechanism to obtain the weight of neighbor nodes. These models have
been successfully applied to many applications, such as social networks (Wu et al., 2022),
knowledge graphs (Arora, 2020), and molecular attribute prediction (Wieder et al., 2020),
and have gradually become a new addition to the data centers of many companies, such as
Google, Facebook, and Alibaba. Despite the diversity of these models, in general, the
computational process of GCNs can be roughly divided into two stages: aggregation and
combination (Abadal et al., 2021). The irregular distribution of the number and location of
neighbor nodes will cause the matrix to exhibit sparsity and irregularity, which seriously
affects the inference speed of GCNs models. Accelerators based on software frameworks
such as PyG (Fey & Lenssen, 2019) and DGL (Wang et al., 2020) simplify the execution of
these two stages, but the improvement they bring is limited, so the efficient computation of
GCNs has become a hot topic.

It is currently a popular and effective method to design accelerators for corresponding
GCNs models using FPGA that take into account fine-grained computation, high
parallelism, and programmability, such as AWB-GCN (Geng et al., 2020), LW-GCN (Tao
et al., 2021), FPGAN (Yan, Tong & Zhi, 2020), BoostGCN (Zhang, Kannan & Prasanna,
2021), I-GCN (Geng et al., 2021b), etc. These customized FPGA models all completed the
inference of GCNs efficiently through specific optimization.

However, implementing efficient inference of GCNs on FPGA is not a simple task. Due
to the particularity of graph data, customizing FPGA accelerators for GCNs has the
following challenges:

� Efficient processing of sparse matrix

The inference process of neural networks is full of large matrix operations, which have
different sparsity, and can lead to irregular memory accesses. The inefficiency of matrix
operations will seriously affect the speed of model inference, and how to effectively
resolve sparsity and data reuse is critical for efficient processing of sparse matrix.

� Unbalanced workload

Since graph data has a different sparsity, as well as the fact that the memory location of
the neighbors of each node and the number of neighbors of each node are irregular, it
will result in an unbalanced workload among the nodes of the graph, thus reducing the
computational efficiency.

� Execution order differences

There are two steps in the GCNs model: aggregation and combination. The aggregation
phase collects neighbor node information, and the combination phase completes the
feature update. The combination phase relative to the aggregation phase can be
considered a rule calculation.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 2/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

� Quantification and preservation of accuracy

Compared with full-precision computing, fixed-point computing can significantly
improve the speed of inference, but it will bring a certain loss of precision. At the same
time, maintaining accuracy is very challenging when many optimizations are used in the
model.

It is necessary to summarize the methods to deal with these challenges. We conduct a
comprehensive survey of the current GCNs accelerators based on FPGA, which includes
the design details of some accelerators under different challenges. We also analyze future
development opportunities and provide guidance value for follow-up research work.
Hopefully, people who are interested in the FPGA-based GCN accelerator design can
benefit from this survey.

Our article has some significant contributions, which are summarized as follows:

1. To our knowledge, this is the first survey of current FPGA-based inference
accelerators for GCNs. We list the current accelerators with excellent performance,
introduce their characteristics and compare their performance, and introduce the
details of some designs according to different challenges.

2. We review three famous GCNs models based on convolutional operations: GCN,
GraphSAGE, and GAT. There are many GCNs based on convolution operations. In
this article, we detail the inference process of three representative models.

3. We look forward to the future development direction and challenges of FPGA-based
GCNs accelerators. The complexity of graph data will continuously challenge the
acceleration of GCNs, and accelerators of software and hardware co-design can often
maximize performance. Due to the unbalanced development between the algorithms
and accelerators of GCNs, maintaining generality and accelerating the development
speed are significant challenges for future FPGA-based GCNs accelerators.

The rest of this article is organized as follows. The “Survey methodology” will briefly
introduce the development process and computing characteristics of GCNs, the
advantages of FPGAs compared to CPUs and GPUs, and the sorting out of previous
investigations on GNNs. “Background” introduces the traditional GNN model and several
representative GCNs models. “GNN and GCNs models” lists the current state-of-the-art
accelerators, presents their characteristics, details some designs according to four different
challenges, and discusses their performance. “FPGA based hardware accelerators”
summarizes this article and looks forward to the future development direction and
challenges of FPGA-based GCNs accelerators.

SURVEY METHODOLOGY
There are large volumes of non-Euclidean data produced in software applications, that are
denoted to graphs with complex dependencies. These graphs pose challenges in efficient
computing and modeling. The convolution-based GNNs are developed to extract hidden
relations from the data and get superiority in graph representation learning. However, this

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 3/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

results in a significant increase in computation time. Consequently, researchers began to
pay attention to designing the GCN specifical accelerator. Unlike GPU and ASIC with
fixed hardware architectures, FPGA is reconfigurable hardware, which means developers
can connect the logical blocks within the FPGA through programmable connections to
achieve their desired function (Nurvitadhi et al., 2016). In the design process of
FPGA-based GCN accelerators, some challenges are presented or solved. However, the
existing GCNs surveys don’t focus on it. Before conducting it, the literature was needed to
search and review. First, we chose the related electronic bibliographic databases such as
IEEE Xplore and ACM Digital Libraries. Moreover, the arXiv is selected. Although the
quality of studies is heterogeneous in arXiv, there is the newest research to be released.
Next, we formulated a search strategy as illustrated in Table 1. After the first-round search,
the keyword and search strategy were updated based on the keyword of results. Then, we
make the second-round search. After it, we used Google Scholar to scan the references,
cited in these articles with the snowballing approach (Dengel et al., 2022). It is worthwhile
to mention that we focused on the FPGA-based designs published in the top FPGA
conferences (FPGA, FCCM, FPL, FPT), EDA conferences (DAC, ASP-DAC, DATE,
ICCAD), and architecture conferences (MICRO, HPCA, ISCA, ASPLOS) since 2019 (Guo
et al., 2019). Because these articles are state-of-the-art in this field. Finally, records
excluded are based on the following reasons duplication, GPU-based implementation, and
simply implementing an application using an FPGA.

BACKGROUND
In the past few years, deep learning has succeeded in artificial intelligence and machine
learning, bringing huge progress to society. In many machine learning tasks, such as image
classification, video processing, speech recognition, language understanding, data is
usually represented in Euclidean space. However, in more and more applications, data are

Table 1 Search strategy.

Database Initial search strategy Updated search strategy

IEEE Xplore digital library (“Full Text Only”: FPGA) AND (“All Metadata”: FPGA) AND

(“Full Text Only”: hardware) OR (“Full Text & Metadata”: GCN) OR

(“Full Text Only”: software) AND (“Full Text & Metadata”: GNN) AND

(“All Metadata”: GCN) AND (“Full Text & Metadata”: accelerat)

(“All Metadata”: accelarator)

ACM digital libraries [All: GCN] AND [All: GCN] OR

[All: FPGA] AND [All: GNN] AND
[All: FPGA] AND

[All: Accelerator] [All: accelerat]

[Abstract: GCN] AND [Abstract: GNN] OR

ArXiv [Fulltext: FPGA] AND [Abstract: GCN] AND

[Fulltext: Accelerator] [Abstract: FPGA] AND

[Fulltext: accelerat]

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 4/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

generated from non-Euclidean space and represented as graphs with complex
interdependencies between objects (Wu et al., 2021). There has been interest in deep
learning techniques that can model graph-structured data (Battaglia et al., 2018; Bronstein
et al., 2017; Gao et al., 2020; Geng et al., 2019; Zhang, Cui & Zhu, 2020). GNNs have grown
rapidly due to their ability to learn and model from graph-structured data. Early research
was mainly on Recurrent Graph Neural Networks (RecGNNs) (Sperduti & Starita, 1997;
Scarselli et al., 2009; Gallicchio & Micheli, 2010), which learn the representation of target
nodes by iteratively propagating neighbor information until a stable fixed point is reached
(Zhou et al., 2020).

With the rapid development of CNN, deep learning has been taken to a new level.
CNN’s translation invariance, locality, and compositionality make it suitable for
processing Euclidean Structured Data such as images, and it can also be applied to various
other fields of machine learning. One of the reasons why deep learning is successful is that
we are able to extract valid data from Euclidean data. It hinders the transformation of CNN
from Euclidean space to non-Euclidean space due to the difficulty of defining local
convolutional filters and pooling operators. Extending deep neural models to
non-Euclidean space has become an emerging field of research.

Inspired by the success of CNN in the field of deep learning, a large number of neural
networks based on convolutional operations have been developed. For example, GCN uses
a convolutional neural network to learn Node Features, GraphSAGE uses neighborhood
sampling to implement inductive learning on large-scale data sets, and GAT uses an
attention mechanism to obtain the weight of neighborhood nodes. They both contain
GCNs with convolutional operations, and GCN is the core of building other models.
Algorithmic research on GCNs has been extensive (Wu et al., 2020; Abadal et al., 2021;Wu
et al., 2021), but there are some challenges in applying it to new applications and
demonstrating its efficiency. Due to these factors, the development of the field of GCNs
appears to have reached a turning point, and how to achieve the efficient inference of
GCNs has become an important research theme to realize its full potential.

Although GCNs have shown good inference results, their inference process is still high
cost in terms of latency, computational resources, and energy consumption. An existing
popular and effective solution is to design a specialized accelerator for a specific domain,
which can solve the inefficiency of the existing architecture because it can customize the
hierarchical structure and computing units according to the specific workload (Wang et al.,
2019). Because of the characteristics of GCNs, they can be optimized from the following
aspects. First, the aggregation phase needs to work hard to alleviate memory access
irregularities caused by the unbalanced number of neighbors, which mainly relies on graph
preprocessing and an efficient and load-balanced sparse matrix processing architecture.
Second, the combination phase is like a fully connected layer of a neural network, which
requires more use of regularity to improve intensive computation with multiple levels of
parallelism. Third, execution order and model quantization are also optimizable parts
when designing accelerators. However, many existing structures fail to meet these needs
resulting in inefficiencies. On the CPU, the irregularity of the aggregation phase makes
GCNs unsuitable for current cache hierarchy designs and data prefetching techniques.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 5/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Furthermore, it is difficult for the CPU to efficiently utilize highly reusable parametric data
between computational units (Chen, Emer & Sze, 2016). And GPU is inherently optimized
for compute-intensive workloads with regular execution patterns, such as neural networks.
But GPUs are inefficient at processing aggregation phases with irregular memory accesses.
Furthermore, combinatorial processing with strong parameter sharing also requires
expensive data copying and thread synchronization (Lindholm et al., 2008).

In addition to CPU and GPU, FPGA is emerging as a candidate platform for neural
network processing (Guo et al., 2017;Mittal, 2020). FPGA can realize high parallelism and
simplify logic according to the calculation process of the neural network, combined with
the hardware design of a specific model. Recently, FPGA-based inference models have
achieved performance and power consumption improvements of dozens or even
thousands of times over CPUs and GPUs. Therefore, FPGAs can achieve higher energy
efficiency than CPU and GPU. FPGAs, which combine fine-grained computing, high
parallelism and programmability, are ideal for customizing accelerators for GCNs.

There have been some investigations on GNNs. At the algorithm level, Bronstein et al.
(2017) outline deep learning methods in the non-Euclidean space, which is the first review
of GNN, mainly on graph neural networks that include convolutional layers. Lee et al.
(2019) conducted a partial survey of GNNs applying different attention mechanisms.
Hamilton, Ying & Leskovec (2018) investigated a limited number of GNNs to analyze how
to solve the problem of network embedding. But these works are all done at the level of the
neural network model. Geng et al. (2021a) summarized four types of irregular behaviors in
the processing of neural network models, but their work is not specific to GNNs and the
computational process of the GNN algorithms are not presented. Regarding hardware
acceleration, Abadal et al. (2021) conducted a more comprehensive survey of GNN from a
computational perspective, conducted an in-depth analysis of current software and
hardware acceleration schemes, revealed the emerging field of GNN accelerators, and
elaborated on existing challenges and opportunities. However, there is no in-depth analysis
of FPGA based accelerators. As evidenced by, first, the lack of a more in-depth analysis of
their unique computing architecture, second, the lack of a summary of the challenges of
implementing GNN accelerators on FPGA platforms. Currently, there are still many
challenges in using FPGA to accelerate GCNs, including efficient processing of sparse
matrices, load imbalance, differences in computing modes, and quantization and
maintaining model accuracy. To facilitate the follow-up research work, our work helps the
readers to understand the computational process of these accelerators by presenting the
computational process of several representative GNNs algorithms first. What’s more,we
conduct a comprehensive review of existing FPGA-based accelerators for GCNs and
review some design details of the accelerators from the perspective of the above four
challenges.

GNN AND GCNS MODELS
GCN learns node features by defining convolution operations in GNN, GraphSAGE uses
neighbor sampling to enable GNN to adapt to large-scale datasets, and GAT takes the
attention mechanism in transformer to learn edge information. Check Table 2 for their

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 6/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

characteristics. This section will introduce the traditional GNN model and several
representative GCNs models above.

GNN
GNN is a deep learning method that operates on the graph domain; it has been successful
in many applications, such as molecule property prediction (Fout et al., 2017),
recommender systems (Fan et al., 2019), traffic speed prediction (Xie et al., 2020),
computer vision (Wang et al., 2018), particle physics (Ju et al., 2020), and resource
allocation in computer networks (Rusek & Chołda, 2018) already utilize GNNs to
accomplish their tasks.

Given is a graph G, there are multiple nodes in the graph, and each node and the edge
connecting two nodes has its characteristics. The learning goal of GNN is to obtain the
hidden state of each node. For each node, its hidden state needs to contain information
from neighbor nodes, so the information of neighbor nodes needs to be aggregated to the
target node. GNN does this by iteratively updating the hidden state of all nodes.

First, we have a hidden state update function f that is shared among all nodes, also called
a local update function, which can be represented by Eq. (1).

hu ¼ f ðxu; xðe½u�Þ; hðn½u�Þ; xðn½u�ÞÞ (1)

where, xu refers to the feature of node u itself, and xe½u� represents the features of the edges
associated with node u, xn½u� represents the neighbor node features of node u, hn½u�
represents the hidden state of the neighbor node of node u at the current moment.

In Fig. 1, a simple graph structure with six nodes was given and represented the edges
connecting them. We focus on this local area containing node one and its two neighbor
nodes. Then for node 1, its hidden state update function can be expressed by Eq. (2) as:

h1 ¼ f ðx1; x 1;2ð Þ; x 1;3ð Þ; h2; h3; x2; x3Þ (2)

Using the update function, we can continuously use the hidden state of the neighbor
node at the current moment,they are part of the input which will be used to generate the
hidden state of the target node at the next moment until the hidden state of each node

Table 2 The main features of different GNN models.

GNN models Main features

GNN (Scarselli et al., 2009) Fixed-point iteration method

The same parameters are used in feature aggregation

GCN (Bruna et al., 2013) Aggregation based on degree matrix and adjacency
matrix

More advanced operations to extract node information

GraphSAGE (Hamilton, Ying & Leskovec,
2017)

Mini batch training

Three aggregator, mean, LSTM and pooling

GAT (Veličković et al., 2017) Adding attention mechanism of transformer

More interpretable information

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 7/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

changes very little. If we use F to denote the function obtained by stacking all the local
update functions f, that is, the global update function, then the state update function of all
nodes on the graph can be expressed by a more compact Eq. (3).

Htþ1 ¼ FðHt;XÞ (3)

At this time, as long as F is a compressed map, according to the fixed point theorem, H0

will converge to a fixed point after continuous iteration, which is called a fixed point.
In the classic GNN model, the way to ensure that F is a compression map is to use a

feedforward neural network to simply splice the features of each neighbor node, the hidden
state, the features of each connected edge, and the features of the node itself. Together, do a
simple summation after going through the feedforward neural network.

However, this state update of GNN is not one-step but based on a general framework,
Message Passing Neural Network (MPNN) (Gilmer et al., 2020). The basic idea is as
follows: the vectors representing nodes are obtained after k rounds of message propagation
mechanism iteration through the message function M (message) and the update function
U (update). For the convenience of description and understanding, we divide the state
update process of GNN into the aggregation phase and combination process, and the
corresponding functions are aggregation function: Aggregation (Agg) and Combination
(Com). As shown in Eqs. (4) and (5), we can express the forward propagation of GNN in
the k layer as:

akþ1
u ¼ Agg hkv v 2 Nu

� �
(4)

hkþ1
u ¼ Com ðakþ1

u Þ (5)

akþ1
u is the aggregated feature of the node u at the k+1th layer, and hkþ1

u is the updated

output feature of the node u of the kth layer. As shown in Fig. 2, the aggregation function
collects the neighborhood features of the target node U1, and the combination function
transforms the features of the node U1 through the neural network.

X5

X6

X4

X3

X2

X1
X(1,3)

X(1,2)

X(3,6)

X(3,5)

X(3,4)

X(2,3)

Figure 1 Simple graph structure with six nodes and the lines between nodes represent information
about the edges. Full-size DOI: 10.7717/peerj-cs.1166/fig-1

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 8/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-1
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Although the GNNmodel has shown the potential to handle graph data, but it has some
limitations. On the one hand, using an iterative approach to update node features for fixed
points is inefficient. On the other hand, the original GNN uses the same parameters in
feature extraction, and the model cannot learn deeper feature representations. Therefore,
the variant model of GNN emerges as the times require. GCNs can use different
parameters in different network layers to perform hierarchical feature extraction. Several
representative GCNs models, such as GCN, GraphSAGE, and GAT, are illustrated below.

GCN
GCN (Bruna et al., 2013) extracts node features of graph data by utilizing convolution
operations, which is similar to a feature extractor and has been used in many applications
successfully (Zhao et al., 2020;Han et al., 2019). Traditional GNN uses the same parameter
to aggregate neighbor information in the aggregation phase. In the GCN model, the
convolution operation allows the aggregation phase to selectively extract neighbor
information rather than a simple summation.

As shown in Eq. (6), we first consider a multi-layer graph convolutional network whose
layer-to-layer propagation rules are as follows:

Hðkþ1Þ ¼ r ~D
�1

2 ~A eD�1
2 H kð Þ W kð Þ

� �
(6)

where, ~A represents the adjacency matrix, including self-connection in the undirected
graph, and ~A ¼ Aþ I, I represents the identity matrix because we want to preserve the
feature information of the node itself when the node updates the information. H kð Þ

represents the feature matrix of the kth layer, W kð Þ is a trainable neural network weight

matrix, ~D is the degree matrix of the node, where ~Dii ¼
P

j
~Aij is used to represent the

distribution density of node neighbors. Each layer of GCN is multiplied by the adjacency
matrix ~A and feature matrix H kð Þ to obtain a summary of the neighbor features of each
vertex and then multiply by a weight matrixW kð Þ, through the activation function r to do a
nonlinear transformation obtains a matrix Hðkþ1Þ that aggregates the features of neighbor

vertices. The normalization operation ~D�1
2 ~A eD�1

2 on the neighbor matrix ~A is to maintain
the original distribution of the feature matrix in the information transmission process,
preventing some high-degree and low-degree vertices from producing large differences in
feature distribution.

Aggregation

Combination

neural
network

Figure 2 The hybrid computing paradigm of GNN which includes combination and aggregation.
Full-size DOI: 10.7717/peerj-cs.1166/fig-2

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 9/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-2
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

When we only focus on ~AH kð Þ, we can find that this is actually a process of aggregating
neighbor information. As shown in Fig. 3, we divide H kð Þ into multiple lines, each line
representing is the information of the corresponding node in the graph.

At the same time, considering the adjacency matrix ~A, it is shown in Fig. 4. According to
the multiplication rule of the matrix, we can observe that the information update of node 0
needs to aggregate the information of node 0, node 1, and node 2. But this aggregation
method is not reasonable enough because it just does a simple addition of neighbor
information. If a neighbor node has many adjacent nodes, its correlation with the target
node is not strong enough, so the information it transmits to the target node should be
multiplied by a corresponding ratio. This is also the meaning of the normalization

operation ~D�1
2 ~A eD�1

2. ~D sums up each row of ~A. After normalization, the information of
neighbor nodes will participate in the aggregation in a corresponding proportion, and this
proportion is related to the degree of neighbors. In this way, the aggregation phase of the
neighbor information is completed and then multiplied by a weight matrix W kð Þ, and a
nonlinear transformation is performed by the activation function r to obtain the matrix

Hðkþ1Þ, which completes a feature update, also called the combination process. Actually,
the process of combination and aggregation can be reversed, which will be discussed in the
later section, Execution Order.

Gu H0
(k)

H1
(k)

H2
(k)

H3
(k)

H4
(k)

H6
(k)

H5
(k)

H(k)

Figure 3 Node information matrix and each row represents the feature vector of a node.
Full-size DOI: 10.7717/peerj-cs.1166/fig-3

Figure 4 The process of node information update, the first stage represents the aggregation process
and the second stage represents the combination process.

Full-size DOI: 10.7717/peerj-cs.1166/fig-4

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 10/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-3
http://dx.doi.org/10.7717/peerj-cs.1166/fig-4
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

After all the nodes complete the information update, a layer of graph convolution
network is implemented. Repeat the above process k times to obtain a multi-layer graph
convolution network, and obtain the final H kð Þ as a node representation, it is sent to the
corresponding downstream task to realize other functions, such as node classification.

GraphSAGE
On the one hand, GraphSAGE (Hamilton, Ying & Leskovec, 2017) transforms GCN from a
full batch training method to a node-centered mini-batch training method by sampling
neighbors, avoiding the problem of the neighbor explosion so that it can be used on large
scales. Inductive learning is implemented on large-scale datasets, and on the other hand,
the algorithm expands the operation of aggregating neighbor information.

Since the degree of some nodes in a large graph will be very large, the time cost of
traversing the subgraph, the computational cost of model training, and the storage cost will
become uncontrollable. To this end, GraphSAGE uses the operation of sampling neighbors
to control the growth rate of nodes as the subgraph diverges.

The sampling operation is defined by setting the sampling depth k and the sampling size
s. As shown in Fig. 5, starting from the central node, the first-order (1-hop) neighbors are
sampled, and the sampling scale is Si ¼ 3, and then each first-order neighbor is used as the
starting point to sample the second-order (2-hop) neighbors. For sampling, the sampling

scale is si ¼ 2, and the space complexity of sampling is fixed at O
Qk

i¼1 si
� �

. This can

release a certain amount of storage and reduce the amount of computation when dealing
with large graphs. With the increase of the value of k, the computational cost will also
increase exponentially, which leads to the fact that the algorithm cannot have a too deep
structure, but the experiments show that GraphSAGE can already show high performance
when k = 2.

GraphSAGE investigates the properties required for aggregation. On the one hand,
aggregation must be adaptive to the number of aggregation nodes. No matter how the

Figure 5 Random sampling of neighboring nodes. Full-size DOI: 10.7717/peerj-cs.1166/fig-5

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 11/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-5
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

number of neighbors of a node changes, the dimensions of the output after the aggregation
operation must be consistent, which is generally a vector of uniform length. On the other
hand, the aggregation has arrangement invariance to aggregation nodes, which requires
that regardless of the neighbor nodes, the output result is always the same. From the
perspective of model optimization, the aggregation must also be derivable. With the
guarantee of the above properties, aggregation can be adaptive to any set of input nodes.
After comparing three aggregation functions (mean aggregator, LSTM aggregator, and
pooling aggregator), it is found that the aggregation functions of LSTM and pooling-based
are more profitable than mean and GCN-based. However, LSTM is designed for ordered
data rather than unordered data, and the pooling-based aggregation function maintains an
advantage in latency.

GraphSAGE deconstructs the GCN from the perspective of airspace, introduces the step
of sampling node neighbors, and compares and analyzes the performance of several different
aggregation functions. It not only reduces the calculation amount of the model and
shows strong performance but also improves the engineering value of the algorithm, so this
method has been successfully applied to industrial-scale large-scale recommendation
systems, and the effect is very significant (Lee et al., 2019).

GAT
The graph attention network (GAT) (Geng et al., 2021a) is based on GCN, adds the
attention mechanism in the transformer, and the importance of each neighbor node to the
target node in the aggregation phase is represented by calculating the attention coefficient.

Each layer of the GAT model has the same structure, called a graph attention layer.
The input of each layer is a set of node features, H ¼ H1;H2; . . . ;HN , N represents
the number of nodes, and the output of each layer is a new set of node features
H0 ¼ H0

1;H0
2; . . . ;H0

N . The process from H to H0 needs to go through multiple steps.
First, the input node features need to undergo a learnable linear transformation. Therefore,
as shown in Eq. (7), a shared linear transformation is used for each node with a weight
matrix W:

H0 ¼ HW (7)

As shown in Eq. (8),Then use a shared attention mechanism a to calculate the attention
coefficient eij of a neighbor node j for the target node i:

eij ¼ a WHi;WHj
� �

(8)

This reflects the importance of node j to node i, where j 2 Ni, Ni is the set of first-order
neighbor nodes for node i, including node i itself. a is a single-layer feedforward neural
network incorporating a nonlinear variation of LeakyReLU (negative input slope a = 0.2).
As shown in Eq. (9),To make the coefficients easy to compare across different nodes, the
softmax function is used to normalize all neighbor nodes j:

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 12/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

aij ¼ softmaxjðeijÞ ¼
expðeijÞP

k2Ni
expðeikÞ (9)

This normalized attention coefficient is then used to extract high-level representations
of neighbor features in the aggregation phase, applying a nonlinear activation function r to
generate output features for each node at that layer, as shown in Eq. (10):

H0
i ¼ r

X
j2Ni

aijWHj

 !
(10)

GAT extends the attention mechanism to multi-head attention to refine this learning
process, as shown in Fig. 6. GAT uses k independent attention mechanisms to implement
the feature update process described above and then concatenates the resulting features, as
shown in Eq. (11):

H0
i ¼

[K
k¼1

r
X
j2Ni

akijW
kHj

 !
(11)

U represents connection, akij represents the kth independent attention coefficient, Wk

represents the weight matrix of the linear transformation corresponding to the kth
independent attention mechanism, which is the process of combining feature updates
under the kth independent attention mechanism. It is worth mentioning that if this
multi-head attention mechanism is used on the output layer of the network, the average
method can be used instead of the connection, and then the activation function can be
applied for nonlinear transformation, as shown in Eq. (12):

H0
i ¼ r

1
K

XK
k¼1

X
j2Ni

akijW
kHj

 !
(12)

GAT is computationally efficient, the computation of attention coefficients and output
features can be parallelized across edges and across nodes respectively. The computational
complexity is similar to that of GCN. Although the multi-head attention mechanism
will expand the storage space and calculation parameters to k times the original, the k
calculations are completely independent, so parallelism can also be achieved.

Different from GCN, this attention mechanism introduced by GAT will be more advanced
than GCN’s feature extraction method based on node degree. The attention coefficients
obtained from this analysis have higher interpretability, which will make GAT perform
better in inference applications, such as the field of machine translation (Bahdanau, Cho &
Bengio, 2014). The attention mechanism is applied to all edges of the graph in a shared
manner, so it does not rely on prior access to the global graph structure or all its node features,
making GAT directly applicable to inductive learning.

This section introduces the traditional GNNmodel and three classic variant models. On
the whole, they all include two stages of aggregating neighbor features and feature updates.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 13/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

The main difference is the way of aggregation when extracting the neighbor feature. A
simple summation method is used in the traditional GNN model. GCN uses a node-based
degree to represent the proportion of aggregated neighbor information. GraphSAGE
proposes three aggregation functions, such as mean, LSTM, and pooling, to extract features
from neighbor nodes. The attention mechanism introduced into Transformer by GAT
makes the aggregated information more interpretable. In short, deep learning algorithms
are continuously proposed to deal with complex graph data, and we do not go into more
detail because our work mainly reviews FPGA-based accelerators for GCNs, which will be
elaborated on in the next section.

FPGA BASED HARDWARE ACCELERATORS
There are currently many accelerators under software frameworks such as PyG (Fey &
Lenssen, 2019), DGL (Wang et al., 2020), PCGCN (Tian et al., 2020), AliGraph (Yang,
2019), AGL (Zhang et al., 2020) that simplify the execution of GCNs and achieve
significant speedup in model inference. Custom hardware accelerators are a viable way to
continue to achieve order-of-magnitude improvements in neural network inference, and
this has been achieved on CNN (Chen, Emer & Sze, 2016; Han et al., 2016; Kim, Ahn &
Yoo, 2017; Kim et al., 2017; Bai, Zhao & Huang, 2018). Because of their fine-grained
computing, high degree of parallelism, and programmability, FPGAs are a candidate
platform for processing neural network inference. However, implementing inference of
GCNs on FPGA still needs to overcome some challenges. This section reviews the
currently released FPGA-based GCNs accelerators and introduces some details of the
above designs from four perspectives: efficient operations on sparse matrix, load balance,
execution order, quantify and accuracy.

Figure 6 Multi-head attention used to aggregate neighbor node characteristics.
Full-size DOI: 10.7717/peerj-cs.1166/fig-6

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 14/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-6
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Overview
This section reviews the currently released accelerators of GCNs based on FPGA, analyzes
the reasons for their success, and collates their characteristics in Table 3.

AWB-GCN (Geng et al., 2020) proposed a sparse matrix multiplication (SPMM) kernel
that can efficiently handle matrices with power-law distribution, the data in memory is
input to a set of processing units (PEs) and accumulators through task distributor and
queue (TDQ), and two kinds of TDQ are designed according to data sparsity, TDQ1 is
suitable for medium sparsity, TDQ2 is suitable for super sparsity. AWB-GCN achieves
dynamic adjustment of workloads between PEs through three hardware-based auto-tuning
techniques (distribution smoothing, remote switching, evil row remapping), the details of
which will be introduced in “GraphSAGE”. These three automatic tuning techniques are
the most critical work of AWB-GCN and the main reason for its success.

LW-GCN (Tao et al., 2021) proposed a lightweight software-hardware co-optimization
accelerator. The software introduced the PCOO matrix compression format to compress
input data, which is easy to decompress in hardware. LW-GCN has designed a micro-
architecture to handle matrix multiplication, uses optimized computational pipelines in
each processing unit to overcome irregularities in memory access while improving data
throughput, and is balanced by tiling workload between processing units. In addition,
LW-GCN reduces the memory requirements of the model and maintains the accuracy
through quantization, and LW-GCN is successful on edge devices with limited resources.

SPA-GCN (Sohrabizadeh, Chi & Cong, 2022) is a GCN accelerator specialized for
processing small graphs, employing deep pipelines with different levels and degrees of
parallelization to improve performance. The author first proposes an infrastructure for
processing GCN and then deeply explores the possible parallelism in GCN computations
through node-level parallelization, feature-level parallelization, and inter-layer parallelism.
And batch processing achieves a breakthrough in performance and maps the optimized
architecture into three FPGAs with different configurations. Meanwhile, SPA-GCN
accelerates an end-to-end application, SimGNN (Bai et al., 2019), with a four-level
parallelized efficient architecture, improving the real-time performance of GCN-based
graph matching.

FP-GNN (Tian et al., 2022) analyzes specifically the impact on non-zero operation,
memory usage, and inference time by changing the aggregation and combination order.
On this basis, an adaptive GNN accelerator framework (AGA) is proposed. The workflow
is optimized, including balancing workloads, feature-level parallelism, and node-level
parallelization, enabling flexible execution order and efficient resource utilization.
FP-GNN also proposes an adaptive graph partitioning (AGP) strategy, which alleviates the
memory bottleneck caused by unaligned memory accesses and redundant source node
transfers, and eliminates graph repartitioning overhead between GNN layers.

FPGAN (Yan, Tong & Zhi, 2020) is based on FPGA to accelerate the inference process
of GAT. FPGAN designs a shift calculation unit for the intensive exp operation in GAT,
which eliminates the dependence of computing performance on DSP, and uses an
exponential approximation algorithm to fit SoftMax to normalize the attention coefficient.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 15/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Table 3 Overview of FPGA based GCNs accelerators.

Name Main features Graph
size

Algorithms Baseline

AWB-GCN (Geng et al., 2020) Three load balancing techniques Large GCN PyG-CPU

Fine-grained pipelining of aggregation and combination. PyG-GPU

HyGCN

LW-GCN (Tao et al., 2021) Apply data Quantization and workload tiling Small GCN PyG-CPU

Works effectively on resource limited edge devices. GraphSAGE PyG-GPU

AWB-GCN

SPA-GCN (Sohrabizadeh, Chi & Cong, 2022) Four levels of parallelization Small GCN PyG-CPU

GCN-based graph matching. SimGNN PyG-GPU

PyG-CPU

FP-GNN (Tian et al., 2022) Support flexible execution order Large GCN PyG-GPU

Adaptive graph partition strategy GraphSAGE HyGCN

GAT BoostGCN

FPGAN (Yan, Tong & Zhi, 2020) Accelerate GAT inference Large

Shift addition unit GAT PyG-CPU

SoftMax approximation PyG-GPU

BoostGCN (Zhang, Kannan & Prasanna,
2021)

Large GCN PyG-CPU

PCFA with 3-D partitioning PyG-GPU

Two types of feature update modules. DGL-CPU

Task scheduling optimization for aggregation and
combination

DGL-GPU

HyGCN

PyG-CPU

I-GCN (Geng et al., 2021b) Graph restructuring algorithm—islandization Large GCN PyG-GPU

Improve data locality GraphSAGE DGL-CPU

Avoiding redundant aggregation GIN DGL-GPU

HyGCN

AWB-GCN

GCN

BlockGNN (Zhou et al., 2021) CirCore architecture for matrices computation Large GCN HyGCN

Performance and resource model GraphSAGE

Reduce the computational complexity of GNNs GAT

G-GCN

GCN

GIN

FlowGNN (Sarkar et al., 2022) Generic GNN acceleration framework Large GAT PyG-CPU

Developed by using high-level synthesis (HLS) PNA PyG-GPU

DGN I-GCN

VN

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 16/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

FPGAN designed a new data structure to align edges, node features, and weights to align
these data to achieve efficient computing. In addition, FPGAN also compresses the model
size, quantizes node features, and implements fixed-point calculations.

BoostGCN (Zhang, Kannan & Prasanna, 2021) proposed a PCFA scheme for memory
constraints, which divides the data into three dimensions: (1) Divide the adjacency matrix
into multiple sub-blocks. (2) Cache the source node and the target node, respectively.
(3) The input features are divided from the feature dimension, which improves the
reusability of on-chip data. BoostGCN has designed a feature aggregation module (FAM)
and a feature update module (FUM) to handle the operations of the aggregation and
combination phases, respectively. Among them, the feature update module has two
architectures, divided into Sparse-FUM and Dense-FUM according to the sparsity of the
input feature matrix, which is used to achieve efficient calculation under different matrix
densities. Besides, BoostGCN also proposes a task scheduling strategy to balance the
workload of the aggregation and combination phases.

The I-GCN (Geng et al., 2021b) proposed a new algorithm for graph
reconstruction—islandization, which can detect nodes with more neighbors and then
use the neighbors of the node as a starting point to divide multiple groups of nodes. The
non-zero elements of the adjacency matrix are clustered in this manner. Afterward,
aggregates and combinations can be performed in these node groups until all nodes are
updated. On the one hand, memory access can be completed in a much smaller region than
the original, improving data reuse while avoiding many off-chip memory accesses. On the
other hand, nodes in a node group have many common neighbors so pre-aggregation may
prevent some redundant operations in the aggregation phase.

BlockGNN (Zhou et al., 2021) proposes a pipelined CirCore architecture to compute
block circulant matrices efficiently. BlockGNN selected the Reddit dataset to analyze the
total computation and algorithm strength of GCN, Graphsage, GAT, and G-GCN in the
aggregation and combination phases, respectively. Then a structured compression method
using block circulant matrices is proposed to reduce the computational complexity. To
efficiently calculate the block circulant matrix, BlockGNN designs a Circore structure with
three-stage pipelines and proposes a Performance and Resource Model. It helps determine
the number of channels and the parallelism of processing units and other hardware
parameters to adapt to the input of the GNN model, ensuring that in the different best
performance at the input, which is important for FPGA-based reconfiguration.

FlowGNN (Sarkar et al., 2022) proposes a general-purpose GNN acceleration
framework using high-level synthesis to deal with the imbalanced development between
new GNN algorithms and new accelerators. Unlike previous class-specific GNN model
accelerators, FlowGNN supports edge embeddings for widely popular GNN models and
can be extended to new models. FlowGNN does not rely on graph preprocessing but builds
a message passing architecture common to most GNNs, and designs specific components
(such as multi-head self-attention in GAT) for different GNN models to achieve
compatibility. At the same time, FlowGNN enables multiple levels of parallelism to
drastically improve performance, including node parallelism, edge parallelism, apply
parallelism, and scatter parallelism.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 17/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

In this section, we review the currently released accelerators for FPGA-based GCNs and
describe their characteristics, which are the main reasons for their success. We will review
some of the design details of the above accelerators from the perspective of four challenges.

Efficient operations on sparse matrix
Large-scale matrix operations accompany the inference process of neural networks.
Existing matrix multiplication-oriented accelerators (Yu et al., 2020b, 2020a) usually
exploit the structured properties of dense tensors and apply data reuse techniques to
improve high performance. However, these techniques do not maintain high efficiency in
GCNs because the adjacency matrix in GCNs is usually sparse, random, and irregular due
to the difference in node degrees. The aggregation phase in GCNs is embodied in the
computation by sparse, dense matrix multiplication (SDMM), which is expressed as the
multiplication of the adjacency matrix and the feature matrix and the multiplication of the
feature and the weight matrix. The inefficiency of matrix operations will seriously affect
the speed of model inference. Compressing data format, overcoming irregular memory
access, and configuring computing units to achieve efficient processing of sparse matrices
is also key link. This section introduces some design details of AWB-GCN, LW-GCN,
SPA-GCN, FP-GNN, I-GCN, and Table 4 presents their key information.

AWB-GCN proposed a new and efficient accelerated geometry algorithm and sparse
matrix multiplication kernel (SPMM) for matrices with a power-law distribution, as shown
in Fig. 7. SpMMeM buffers the input sparse matrix S from off-chip and provides non-zero
elements and relevant indices to TDQ. The DCM buffers the columns of the dense input
matrix and broadcasts its elements to TDQ. TDQ assigns tasks to individual PEs. Each PE
has two units: a multiply-accumulate unit (MAC) and an address generation unit (AGU)
for the generation and forwarding of the resulting address. PEs perform concurrent
multiplication of non-zero pairs, accumulation of partial results, and data exchange of
ACC buffers. Finally, the ACC buffer caches the partial results of the result matrix C and
sends them to the next SpMM engine when the entire column calculation is complete.
When storing sparse matrices in CSC format, there are two alternative TDQ designs.
When the sparse matrix S is a general sparse matrix (sparsity < 0.75), TDQ-1 replaces the
above TDQ; when the sparse matrix S is a super sparse matrix, TDQ-2 replaces TDQ
above. Among them, TDQ-1 forwards a certain number of non-zero elements (non-zero
elements) to each PE for operation in each cycle. To balance the non-zero element
distribution in practice, each PE is equipped with multiple task queues (TQ) to ensure

Table 4 Efficient operation of some accelerators which contains data preprocess and efficient architecture.

Name Data preprocess Efficient architecture

AWB-GCN (Geng et al., 2020) CSC Two TDQs for different sparsity

LW-GCN (Tao et al., 2021) PCOO Data replication and row grouping

SPA-GCN (Sohrabizadeh, Chi & Cong, 2022) Prune the zeros on-the-fly Input by column-wise and four levels of parallelization

FP-GNN (Tian et al., 2022) CSR Outer product and mixed execution

I-GCN (Geng et al., 2021b) Islandization Remove redundancy of aggregation

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 18/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

sufficient concurrency to cache all valid data. Before calculation, each element needs to
check the Read-after-Write (RaW) risk brought by multiply-accumulate-unit (MAC).
RaW risk is detected by checking whether the row index at which the data is calculated is
the MAC’s current processing row index.

A stall buffer size is set for the delay of the MAC unit to ensure that the danger can be
resolved. TDQ-2 uses a multi-stage Omega network to route non-zero elements to the
correct PE based on their row indices, solving the problem of highly scattered indices of
adjacent elements. TDQ-2 uses a multi-stage Omega network to route non-zero elements
to the correct PE based on their row indices, solving the problem of highly scattered indices
of adjacent elements. The network is designed to scale better with less hardware
complexity. In addition, AWB-GCN makes many effective attempts to balance load work,
which will be introduced in “GraphSAGE”.

A PCOO format is defined in LW-GCN to compress the inputting sparse matrix,
eliminating zero elements to preserve storage space and simplify operations. The PCOO
format is also easy to decompress into hardware. LW-GCN also designs a computation
engine for efficiently processing multiple non-zero elements.

As shown in Fig. 8, the data of the dense matrix is stored in the dense data memory
(DDM). Due to the sparsity and irregularity of sparse matrices, it is difficult to predict the
column positions of non-zero elements in advance, which may lead to several PEs that
may require different addresses from the same DDM. Limited by the read capability of
on-chip memory, this access restriction can lead to data conflicts. To reduce this data
conflict, the LW-GCN microarchitecture constructs a multi-port memory through data
replication and row grouping. Within the acceptable resource consumption range, r dense
data copies are replicated for PE, and each dense data copy is divided into g row groups to
reduce the possibility of data conflicts. Due to the additional complexity and resource

Sparse
Matrix

Memory

Dense
Column
Memory

PE

ACC
BUF

PE

ACC
BUF

PE

ACC
BUF

PE

ACC
BUF

PE

ACC
BUF

PE

ACC
BUF

PE

ACC
BUF

PE

ACC
BUF

Task Dirtributor & Queue

Figure 7 Architecture of the proposed baseline SpMM engine in AWB-GCN.
Full-size DOI: 10.7717/peerj-cs.1166/fig-7

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 19/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-7
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

consumption caused by data replication and a large number of row groups g, LW-GCN
conducts experiments with different r and g to determine the optimal number of memory
copies and row groups. Based on the address generated by a single PE, the memory
selector and data distributor send the corresponding dense data. A priority decoder is used
when assigning addresses to memory banks, allowing different PEs to access the same
address in the same memory bank. In the SDMM process, the compressed sparse data is
directly streamed to each PE. The compressed data is first decoded by the PCOO decoder,
and the column index is used as a memory address to obtain dense data. Since multiple
rows of data need to be calculated on each PE, SOR and EOR are used to indicate the
start and end of a row, respectively. SOR controls the input of the accumulator to its
previous result (SOR = 0) or the intermediate result of the previous tile stored in OMMB
(SOR = 1). At the same time, the EOR control generates the address used to store the
current result in the output buffer and increments the line number of the internal trace
(EOR = 1). Finally, the final result is produced by accumulating the results of all tiles. And
the underlying SDMM design used by LW-GCN is also applicable to other graph neural
network algorithms, such as GraphSAGE, which also achieves very significant results.

SPA-GCN adopts deep pipelines with different levels and degrees of parallelization to
improve performance. To avoid RAW dependency, SPA-GCN changes the order of
computation, flows into the node information matrix column by column, and reads the
weight matrix row by row.SPA-GCN takes an element from an input matrix (read as a
stream) and broadcasts it to parallel MAC units. Each MAC unit reads a different element
from a pre-stored weight matrix which the information matrix can reuse. This change is
depicted in the figure, as shown in Fig. 9, where SPA-GCN divides the workload within the
PE by feature-parallelized SIMD operations. To read each element only once, all
operations involved in it are completely arranged for each fetched element of Hl.

This schedule also increases the cycles before RAW dependency occurs to ensure that
different output locations are updated in the next SIMD cycle. The PEs are then replicated
by a replication factor (RF), enabling node-level parallelization. The adjacency matrix is
usually super sparse when computing matrix multiplications in the aggregation phase.

Memory
Selector &

Data
Distributor

PE Group 1

Memory
Selector &

Data
Distributor

PE Group m

PE Array

Dense
Data &
Edge

Weights

PCOO Decoder

Bias

Addr Gen

EOR

Output
Buffer

Final
Output

Multiply - Accumulators

VLD

Dense
Data

0

Address

Edge
Weights

Figure 8 The architecture of the PE array in LW-GCN. Full-size DOI: 10.7717/peerj-cs.1166/fig-8

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 20/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-8
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Unlike most accelerators, SPA-GCN does not use on-chip memory to store data structures
containing vertices and edges. Rather, the matrix is pruned, and only the non-zero
elements representing edges are passed to the FPGA in a stream, and all properties of the
target nodes are updated before exiting the edge. To prevent RAW dependency, edges are
rearranged during preprocessing of the adjacency matrix so that edges with the same target
node are at least L positions apart. This can ensure that no more than one update to the
same node is made within L period windows. In this step, SPA-GCN only uses feature-level
parallelism to distribute the workload. In addition, SPA-GCN also utilizes a dataflow
architecture to connect modules, adding an in-layer pipeline, making the overall latency
close to that of the slowest module. At the same time, this operation avoids off-chip
memory accesses between modules.

FP-GNN supports different GNN models such as GCN, GraphSAGE, and GAT.
FP-GNN designs special PE for them to handle matrix operations. Among them, PE used
to calculate GCN and GraphSAGE has a similar structure, while GAT introduced an
attention mechanism with more basic operations. First, FP-GNN compresses the sparse
matrix in CSR format and merges the index and data to facilitate indexing and save
memory space. During the aggregation phase, the adjacency matrix flows into the edge
cache (EB) in each processing unit in a compact CSR format, and then the task scheduler
assigns edges to each PE array and obtains the corresponding node information from the
source node cache (SNC) and the target node cache (NC). The combination phase adopts
the outer product method to obtain higher input feature reusability. Since the partial sums
are locally accumulated inside each PE, the outer product method avoids data transfer
between PEs. Node Features are assigned to the rows of each PE array through a shared

h10

h10

h00

h00

x12

x10

x02

x00

w02

w00

w02

w00

x13

x11

x03

x01

w03

w01

w03

w01

fin

|V|

Hl

fout

fin

Wl

fout

|V|

Xl

h00

h00

x02

x00

w02

w00

x03

x01 w01

w03

SIMD PEMA
C

MA
C

X00-L X01-L

h10

h10

x12

x10

w02

w00

x13

x11 w01

w03

SIMD PEMA
C

MA
C

X10-L X11-L

SIMD PEMA
C

MA
C

X00-L X01-L

II=1
L

atency
= L

Feature-level Parallelization
SIMD = 2

Adding Node-level Parallelization
DF = 2

Figure 9 Feature-level parallelization and node-level parallelization. Full-size DOI: 10.7717/peerj-cs.1166/fig-9

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 21/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-9
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

bus, and the weights are also streamed to the PE array columns for corresponding
operations. Therefore, the aggregation phase achieves feature-level parallelization by
aggregating multiple feature dimensions over the columns of the PE array and exploits
node-level parallelism by aggregating multiple target nodes on rows of PE arrays. The
combination phase achieves feature-level parallelism by accumulating multiple output
feature dimensions on the columns of the PE array and exploits node-level parallelism by
converting multiple node features on the rows of the PE array (node-level parallelization).

The graph reconstruction algorithm—islandzation proposed by I-GCN makes the non-
zero elements of the sparse adjacency matrix become clustered. This enables higher data
reusability when aggregating the information of common neighbors between nodes.
Redundant operations in the aggregation phase are avoided. Details of the redundant
removal operation are detailed in Fig. 10. A1 and A2 demonstrate redundant operations on
common neighbors during the aggregation phase. Nodes d, e, f, and g are the four common
neighbors of nodes b and c. When the aggregation is centered on b and c, the eigenvectors
of d, e, f, and g are aggregated twice. When the aggregation is centered on d, e, f, and g, the
eigenvectors of b and c are aggregated four times. If the feature vector dimension of the
node is large, this redundant aggregation will bring great computational complexity.
Therefore, two additional virtual nodes are added, and the aggregation results of the
precomputed neighbor nodes are given to them, and then they are connected to the actual
nodes according to the needs of the aggregation. This precomputed aggregation result can
be reused during the aggregation phase.

The data of the public node is aggregated only once, but it participates in the
aggregation of multiple nodes. B1 and B2 show examples of searching for common nodes
and removing redundant operations in dimension k = 2. Scanning starts when all nodes
complete the combination and pre-aggregation of adjacent k nodes. If both positions are 1,
it means that the node currently scanned is the common neighbor of the other two nodes.
As shown in B1 and B2, d is the common neighbor of b and c, d is no longer repeatedly
aggregated but directly uses the pre-aggregation result, reducing a vector addition

c
f

a

g
b

d
e H

(A1)

c
f

a

g

b
d

e H

(A2)

[d+e]+[f+g]

(B1)

1
1 1

1 1 1 1
1 1 1 1

1 1
1 1

1 1 1
1 1

a b c d e f gH

H
a
b
c

d
e
f
g

Slide Window (B2)

1
1 1

1

a b c d e f gH

b+c

d+e

f+g

b+c

b+c
b+c
b+c

d+e

d+e

f+g

f+g

dout=eout=gout=aggr(b+c);

fout=aggr(b+c+a);

bout=cout=aggr(d+e+f+g);

aggr(b+c)=t1; aggr(d+e+f+g)=t2;

dout=eout=gout=t1;

fout=t1+aggr(a); bout=cout=t2;

b+c

Figure 10 Redundancy removal of a typical island in I-GCN which can reduce redundant operations in the aggregation process.
Full-size DOI: 10.7717/peerj-cs.1166/fig-10

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 22/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-10
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

operation. After the entire adjacency matrix is scanned, the combination and aggregation
phase is completed.

Load balance
Since graph data has different sparsity, the memory location of a node’s neighbors and the
number of neighbors of each node are irregular, and the degree of a single node generally
follows a power-law distribution. This will result in an unbalanced computing workload
for each node of the graph, reducing computational efficiency. This is usually manifested
in computations where there are large differences in the density of individual rows of the
adjacency matrix. Simply dividing the matrix into rows, and assigning each row to a
different unit, will result in very different workloads assigned to each unit. The latency of
this group of ops will then be dominated by only the densest input rows, which greatly
reduces efficiency, and we discuss this challenge separately. In this section, we introduce
the work of AWB-GCN, LW-GCN, SPA-GCN, and BoostGCN on workload balancing,
and their key information is given in Table 5.

AWB-GCN has made some effective attempts to balance the workload of sparse matrix
multiplication computing cores, mainly dealing with load balancing from three aspects,
Distribution Smoothing, Remote Switching, and Evil Row Remapping remapping. The
Distribution Smoothing structure tracks the number of tasks to be completed in the task
queue (TQ) to obtain PE utilization information at runtime and then dispatches the work
of those PEs with many pending tasks to those that are relatively less busy. For neighboring
PEs, these sent jobs need to be returned and accumulated with the partial results of the
original PE after processing. To balance the design complexity, the range of adjacent PEs is
set within 3-hop neighbors. However, when non-zero rows are aggregated, the PEs in an
area are all busy, and tasks to be completed on PE cannot be sent to adjacent PEs. At this
time, the smooth distribution structure will not perform well in balancing the load. Remote
switching was proposed to solve the dense row clustering problem. PE Status Monitor
(PESM) is used to identify a certain number of overloaded and underloaded PEs. When the
number of pending tasks in the TQ reaches 0, a signal is sent to the PESM, which will
indicate which PEs are free, save this information in the buffer, then search for the
corresponding number of PEs in the overloaded state, and a part of the work of these PEs is
exchanged to idle PEs. Since the adjacency matrix is shared in each round of calculation,
the current switching strategy is of great significance for the next round of calculation. The

Table 5 Methods for load balance of some accelerators.

Name Methods of load balance

AWB-GCN (Geng et al., 2020) Distribution smoothing, remote switching, evil row
remapping

LW-GCN (Tao et al., 2021) Round-robin assignment

SPA-GCN (Sohrabizadeh, Chi & Cong, 2022) Feature-level parallelization

BoostGCN (Zhang, Kannan & Prasanna,
2021)

Centralized load balancing scheme and phase-level balance

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 23/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

accelerator remembers the switching strategy used in the current round. It is gradually
optimized according to the PE utilization information obtained in the next round. Adding
remote switching distribution smoothing structures can effectively solve the dense row
clustering problem. The main reason for load imbalance is the existence of dense rows.
When remote switching cannot handle the huge gap in PEs utilization, Evil Row
Remapping will be used to remap the rows that cause PE overload. The task of the
overloaded PE will use the Super-PE to switch to a set of Labor-PEs controlled by it in the
next round, and the original workload of the Labor-PEs can still exchange tasks with the
idlest PEs through remote switching. Super-PEs and Labor-PEs will act as regular PEs if no
row remapping is triggered. Experiments show that AWB-GCN achieves 2.11×, 1.41×,
1.62×, 8.75×, and 1.20× PE utilization improvements based on five datasets, respectively.

LW-GCN assigns the multiplication of non-zero elements in a row of an adjacency
matrix to the same arithmetic unit (PE), while the multiplication of non-zero elements in
different rows is a cyclic way to assign to different PEs. This way, the non-zero elements in
each row will be processed sequentially on the same PE, and the same accumulators need
not be used at the same time. However, due to large differences in the degrees of nodes in
the graph data, different rows of the adjacency matrix may have extremely different
densities. If you simply assign each row to a different operation unit, then there is likely to
be an inefficient situation. That is most PEs complete operations while waiting for a PE to
complete a particularly intensive row operation. As shown in the allocation step in Fig. 11,
to improve the efficiency of PEs, each PE is designed to work independently, and each PE
starts computing a new row as soon as it finishes the previous PE. Considering that the
density of a row is unlikely to be related to the number of rows, according to the Law of
Large Numbers, the sum of the densities of the rows assigned to each PE is similar. The
experimental results show that the idle time of the PE with the lowest utilization is less than
20% of the SDMM time. However, this round-robin allocation cannot avoid the
coincidence that a denser row happens to be allocated to the same PE. Therefore,
LW-GCN exhibits a large PE load imbalance in the dataset PubMed, which indicates that
there is room for improvement in workload scheduling for this round-robin allocation.

The feature-level parallelization in SPA-GCN can handle workload imbalance well.
Unlike other accelerators, SPA-GCN changes the order of computation and reads the node
information matrix column by column. Each element is read-only once, and all operations
involved are scheduled for each element to read and divide the workload within the PE by
feature-parallelized SIMD operations.SPA-GCN adopts a technique of dynamically
pruning zero elements, which can skip all operations involving zero node embeddings.
Figure 12 shows the benefit of this operation, the non-zero elements of the matrix are
remapped to SIMD dimensions by clipping and arbiter, and all CUs in the PE will perform
the corresponding valid operation. To ensure correctness, SPA-GCN adds a control unit
that tracks the last cycle of each output position update. If the number of cycles between
two updates to the same location is less than L, the control unit will insert bubbles in the
pipeline until the last update is committed.

BoostGCN utilizes a centralized load balancing scheme to distribute tasks to the FAM.
When FAM completes feature aggregation for one partition, it will get another partition

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 24/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

from the task pool for computation. This solves the load imbalance caused by the uneven
distribution of node degrees. Besides, BoostGCN proposes task scheduling to solve the load
imbalance problem between the aggregation and combination phases. As shown in Fig. 13,
the data is sent to the FAM to perform the calculation in the aggregation phase, and then
the aggregated feature vector is sent to the FUM to complete the feature update. Due to the
task-level pipelining strategy, if the aggregation phase is processing a partition with many
nodes so that the execution time of the aggregation phase is longer than that of the
combination phase, this will result in FUM not doing work but waiting for the aggregated
feature vector. In order to solve this problem, BoostGCN sorts the partitions according to
the number of nodes. FAM first executes the partition with a smaller number of nodes and

a b c
d

e f g
h i

k
l m n o
p q

r s

j

assignment

a b cPE1
d l m n oPE2
e f g p qPE3
h i r sPE4

Figure 11 Round-robin assignment in LW-GCN which tiling workloads to multiple PEs.
Full-size DOI: 10.7717/peerj-cs.1166/fig-11

CU CU CU CU

CU CU CU

Wasted

Pruner+Arbiter

CU CU CU CU

Wastdul
Scheduling

Weights

CU

Efficient
Scheduling

Weights

Figure 12 Efficient scheduling in SPA-GCN which can send non-zero elements to each CU via
pruner and arbiter. Full-size DOI: 10.7717/peerj-cs.1166/fig-12

FA(V3) FA(V2)FA(V4)FA(V1)

FA(V3) FA(V2)FA(V4)FA(V1)

FAM:

FAM:

Prolog Epilog
Buffer in external memory

Figure 13 Task scheduling optimization in BoostGCN which solved the load imbalance between the
combination phase and the aggregation phase. Full-size DOI: 10.7717/peerj-cs.1166/fig-13

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 25/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-11
http://dx.doi.org/10.7717/peerj-cs.1166/fig-12
http://dx.doi.org/10.7717/peerj-cs.1166/fig-13
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

uses a buffer to store the aggregated feature vector. FUM can load the aggregated feature
vector from this buffer to complete the feature update, which solves the problem of FUM
calculation stagnation.

Execution order
The GNN model is divided into two stages, aggregation and combination, and the
executive order does not affect the final result. However, some works have already
mentioned the impact of the execution order of these two phases. AWB-GCN analyzes the
number of non-zero operations brought by different execution orders of GCN on different
datasets. BoostGCN, Engn (Liang et al., 2020), GCNAX (Li et al., 2021) mentioned that the
computation order does not affect the final result, but choosing an appropriate
computation order can reduce the number of floating-point operations and external
memory accesses. These works all choose to combine first and then aggregation to design
accelerators, but this is only observed from the perspective of GCN with fixed feature
dimensions. FP-GNN analyzes the effect of changing the execution order under multiple
GNN models and multiple feature dimensions, and the accelerator designed on this basis
shows excellent performance.

FP-GNN quantitatively analyzes the effect of execution order on non-zero operations,
memory footprint, and execution time by changing the aggregation and combination
order. Set the execution order with the most operations in each layer as the baseline, CoAg
and AgCo represent the execution order as combination-aggregation and aggregation-
combination, respectively. For dense input features, CoAg reduces aggregation and its
memory footprint more than AgCo.For sparse input features, CoAg reduces aggregation
operations but increases aggregation and aggregation memory footprint. The proportion
of aggregation and combination operations are related to the dataset, GNN model, and the
number of model layers. Based on the analysis of the above problems, FP-GNN proposes
an AGA architecture that supports flexible execution order to handle the aggregation and
combination phases and utilizes feature-level parallelization and node-level parallelism
and optimization methods such as workload balancing, feature sparsity elimination, and
hybrid execution, resulting in good performance and efficiency. Compared with other
accelerators, FP-GNN has significant advantages in inference execution time for the four
datasets, mainly because the architecture of FP-GNN supports flexible execution order to
achieve higher computational efficiency, which is the benefit of quantitatively analyzing
the impact of execution order on non-zero operations, memory footprint, and execution
time.

Quantify and accuracy
Quantization is an effective method to improve the computational efficiency of neural
networks. Compared with full-precision computation, the fixed-point computation can
significantly improve inference speed. It reduces computational and memory overhead by
converting model parameters into a low-precision data format with less memory overhead.
Continuing to maintain model accuracy after employing multiple model-specific

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 26/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

optimizations is another challenge for GCNs accelerators. LW-GCN and FPGAN describe
their quantization strategies.

LW-GCN quantizes the values of all matrices in GCNs to further reduce memory
requirements. LW-GCN uses a 4-bit signed integer (SINT4) to perform the quantization of
the input feature value. During the computation, store the intermediate result as a 32-bit
signed integer SINT32, and after the final result of each layer is obtained, it is performed
quantization of a 16-bit signed integer SINT16. The quantization strategy is evaluated on
GCN and GraphSAGE of three datasets, and the results show that the accuracy loss caused
by using the quantization strategy is controlled within 0.2%, which is almost negligible.

To save memory and reduce the computational difficulty, FPGAN (Yan, Tong & Zhi,
2020) compresses the model, and its core idea is to convert the weights to powers of 0 or 2
and judge whether retraining is required by observing the loss of accuracy after conversion.
If the compression accuracy loss for one set is within a reasonable range, start the next set
of compressions. Otherwise, retraining is required to reduce the accuracy loss. Model
compression allows larger models to fit in the original memory space. In FPGAN, the
designed shift operation unit is used to reduce the dependence on DSP, and the input
feature needs to be mapped from a floating-point number to an integer range before the
shift operation. FPGAN first calculates the quantization coefficient QðlÞ of each layer
through Eq. (13).

QðlÞ ¼ round log2
2b�1 � 1

maxðabsða lð ÞÞÞ
� �

(13)

Among them, the round is a rounding function, b is the number of bits of the
quantization feature, and maxðabsða lð ÞÞÞ is the maximum value of the absolute value of the
input feature of this layer. As shown in Eq. (14), the value after quantization can be
expressed as:

aint ¼ roundð2Q � afloatÞ (14)

afloat and aint represent the floating-point number before quantization and the integer

after quantization, respectively. Experimental results show that the inference results of
FPGAN maintain good accuracy compared to the full-precision model pyGAT.

Performance and discussion
Due to the limited resources on the FPGA, resource consumption is an important
reference for evaluating accelerator performance. We give the resource consumption of
some accelerators, as shown in Table 6. It should be noted that Intel and Xilinx use ALM
and LUT, respectively, for the logic resources of FPGA, which is represented by Logic
Resource, uniformly. I-GCN did not give more detailed data, so we did not put it in for
comparison. FP-GNN is the most resource-intensive among all accelerators in summary.
The reason is that FP-GNN uses resources to support Adaptive Accelerator Architecture
(AGA) and Adaptive Graph Partitioning Strategy (AGP), making FP-GNN have stronger
algorithm and data adaptability. LW-GCN uses the least logic resource and DSP to achieve

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 27/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

a decent performance improvement, which is of great significance to GCN deployment in
edge devices. The best performance in terms of acceleration, FlowGNN, still performs well
in terms of resource consumption. This is because the multiple levels of parallelism of
FlowGNN make resource utilization more efficient. Figure 14 shows the resource
consumption ratio of some accelerators. The DSP is at the heart of the computation, so it
deserves a separate discussion. From the perspective of consumption ratio, the DSP
utilization rate of BlockGNN is as high as 98%, which greatly affects their frequency. The
frequency of BlockGNN has been as low as 100 MHz, which reduces the computing
efficiency. However, AWB-GCN relies on a complete three-level task scheduling scheme and
reaches the highest frequency of 330 MHz under the condition of high DSP usage.

The above FPGA-based GCNs accelerators have achieved great performance
improvements compared to the acceleration under the software framework. As an earlier
hardware accelerator, HyGCN (Yan et al., 2020) proposed a hardware design with two
efficient processing engines, which effectively overcomes the irregularity of the aggregation
phase and makes full use of the regularity of the combination phase, and implemented on a
12 nm ASIC. Compared to state-of-the-art software frameworks running on Intel Xeon
CPU and NVIDIA V100 GPU, HyGCN achieves an average speedup of 1,509× and 6.5×,

Table 6 Resource consumption and frequency of accelerators.

Accelerator Device Logic resource BRAM DSP Frequency (MHz)

AWB-GCN (Geng et al., 2020) Stratix 10 SX 700,000/2,800,000 N/A 8,192/11,520 330

LW-GCN (Tao et al., 2021) Xilinx Kintex-7 K325T 161,529/326,080 291.5/445 512/840 200

FP-GNN (Tian et al., 2022) Xilinx VCU128 717,578/2,852,000 1,792/2,016 8,192/9,024 225

BoostGCN (Zhang, Kannan & Prasanna, 2021) Stratix 10 GX 10M 389,000/3,466,080 N/A 3,584/5,760 250

BlockGNN (Zhou et al., 2021) Xilinx ZC706 85,254/218,600 452/1,090 882/900 100

FlowGNN (Sarkar et al., 2022) Xilinx Alveo U50 229,521/872,000 185/1,344 1,048/5,925 300

25%

49%

25%

11%

39%

26%

N/A

65%

88%

N/A

41%

13%

71%

61%

91%

62%

98%

17%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AWB-GCN LW-GCN FP-GNN BoostGCN BlockGNN FlowGNN

R
es

ou
rc

e
U

ti
liz

at
io

n

LUT BRAM DSP

Figure 14 Hardware resource utilization of accelerators.
Full-size DOI: 10.7717/peerj-cs.1166/fig-14

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 28/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-14
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

respectively. This also makes HyGCN a target for performance comparisons of other
FPGA-based accelerators for GCNs. As an early work on FPGA-based accelerators for
GCNs, AWB-GCN achieves phenomenal improvements in performance by relying on
three approaches to balance workloads. Compared with HyGCN, AWB-GCN improves
inference speed by 5.1 times. We will use HyGCN as the baseline because it was an early
work. The latency with different datasets and throughput of accelerators are given in
Tables 7 and 8. For those accelerators that are directly compared to HyGCN, we calculate
the average speedup for different datasets based on the multiplicative relationship of
latency. For others, we represent speedup by an indirect method. For example, FlowGNN
was evaluated on two different datasets (Cora, CiteSeer), and normalized the number of
DSPs, the evaluation results obtained an average speedup of 2.5 times compared to AWB-
GCN. Compared to HyGCN, AWB-GCN achieves an average speedup of 5.8× (based on
Cora and CiteSeer). So in Fig. 15, we use 14.5 (2.5 × 5.8) to denote the speedup multiplier
of FlowGNN compared to HyGCN. The results are shown in Fig. 15. In summary, all
comparisons were made based on their common datasets. Furthermore, we evaluate the
throughput of these accelerators uniformly by calculating the number of bits per second of
input. It can be easily observed that I-GCN and FlowGNN demonstrate a great advantage
in average throughput. It must be mentioned that since SPA-GCN improves the
performance of SimGNN, an end-to-end application, FPGAN is only for the GAT
algorithm, BlockGNN does not give explicit data of latency, so they were not used for
comparison. The data in the figure reflects the average performance improvement of the
FPGA-based GCNs accelerator in accelerating GCN compared to HyGCN on common
datasets. We can observe that these accelerators all achieve high-performance
improvements compared to HyGCN, among which FlowGNN achieves up to 14.5×
speedup by relying on multiple levels of parallelism.

1

5.1

7.8

5.9

4.6

9.6

14.5

0

2

4

6

8

10

12

14

16

HyGCN AWB-GCN LW-GCN FP-GNN BoostGCN I-GCN FlowGNN

Sp
ee

du
p

M
ul

ti
pl

es
(×

)

Accelerator

Speedup

Figure 15 Speedup of accelerators compared with HyGCN.
Full-size DOI: 10.7717/peerj-cs.1166/fig-15

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 29/36

http://dx.doi.org/10.7717/peerj-cs.1166/fig-15
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

CONCLUSION AND DISCUSSION
Conclusion
GCNs have been widely used for graph data processing in recent years, but their target
applications often impose severe constraints on latency and throughput. To address this
challenge, research on FPGA-based accelerators for GCNs has increased, and many
accelerators have overcome many irregularities in processing graph data and achieved
orders of magnitude performance improvements. In this article, we reviewed
representative GCNs algorithms and FPGA-based GCNs accelerators, summarized their
characteristics and compared their performance, and introduced some design details
according to different challenges.

In a word, the efficient processing of sparse matrix is the key to speeding up the
inference process of GCNs. Balancing the workload can greatly improve the utilization of
the computing unit, and selecting the appropriate execution order according to different
inputs can reduce the computational cost. Complexity and model quantization can
alleviate memory requirements while maintaining accuracy, which is why the above
accelerators achieve orders of magnitude performance improvement.

Discussion
It is foreseeable that in the future, the graph data will be larger, which will continue to
challenge the design of accelerators. At present, high-performance accelerators adopt
software and hardware co-design, use corresponding software algorithms to partition or
compress data formats, and customize an efficient computing architecture to achieve fine-
grained computing and more efficient task scheduling. We believe that the future
accelerator design will also adopt a co-design scheme to accelerate GCNs inference.
However, what needs to be improved is to reduce the complex operations and memory
requirements brought about by data preprocessing and even not require data

Table 7 Latency of accelerators with different datasets.

Accelerator Cora CiteSeer Pubmed Nell Reddit

HyGCN 21 300 640 N/A 289,000

AWB-GCN 17 29 230 3,250 49,700

LW-GCN 11 17 167 NA N/A

FP-GNN 36 61 539 N/A 17,100

BoostGCN 76 125 1,140 N/A 18,850

I-GCN 8.2 12.9 110 1,200 46,000

FlowGNN 7.8 10.4 N/A N/A N/A

Table 8 Average throughput with different datasets of accelerators.

Accelerator HyGCN AWB-GCN LW-GCN FP-GNN BoostGCN I-GCN FlowGNN

Throughput (Gb/s) 1,887.2 12,104.1 1,475.6 2,619.8 1,291.1 30,465.1 26,199.6

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 30/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

preprocessing. In addition, the current GCNs computations are all around matrix
computations without exception, and a new understanding of graph data may lead to
innovative computational forms.

The development speed of GCNs algorithms is faster than that of GCNs accelerators,
and this unbalanced development will make maintaining generality a potential feature of
future GCNs accelerators. For example, the latest FP-GNN, Flow-GNN, etc., have been
able to support more GCNs algorithms than the previous accelerators. Based on this, we
propose an outlook for two potential development directions. First, a unified and efficient
architecture may emerge in the future to support continuously updated GCNs algorithms.
This challenges the adaptability of accelerators. The operation unit is modularized, which
is divided into general modules and special modules. Through the transformation of the
data path between general modules and the scheduling of special modules to support
different GCNs algorithms. Data manipulation strategies, that is according to the input
graph data to adjust the corresponding calculation strategy, such as adjusting the execution
order and quantization scheme, improve efficiency while maintaining accuracy, and get rid
of the dependence on data. Second, the development method based on HDL is an
important reason for the imbalance between the speed of the algorithm and accelerator
development. Development tools using high-level languages (such as HLS) may become a
balanced bridge across this gap. Excellent high-level synthesis tools can ensure that the
advantages of software development can be integrated, the learning cost of hardware
developers can be reduced, and the work efficiency of accelerator development can be fully
released under the premise of meeting design requirements. For example, when designing
with HLS, each component can be simulated at the RTL level using the C models of the
other components, and can easily take advantage of both coarse-grained and fine-grained
parallelism. This allows designers to focus more on the high-level algorithm and
architecture design without worrying about low-level implementation details (Cong et al.,
2022).

In summary, FPGA-based GCNs accelerators will develop in the following directions:
software and hardware co-design, efficient task scheduling, higher generality, and faster
development speed.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Ruiqi Chen is a visiting researcher for VeriMake Innovation Lab of Nanjing Renmian
Integrated Circuit Co., Ltd.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 31/36

http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Author Contributions
� Shun Li conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

� Yuxuan Tao conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, and approved the final draft.

� Enhao Tang conceived and designed the experiments, prepared figures and/or tables,
and approved the final draft.

� Ting Xie performed the computation work, authored or reviewed drafts of the article,
and approved the final draft.

� Ruiqi Chen conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

There is no data or code; this is a literature review.

REFERENCES
Abadal S, Jain A, Guirado R, López-Alonso J, Alarcón E. 2021. Computing graph neural

networks: a survey from algorithms to accelerators. ACM Computing Surveys 54(9):1–38
DOI 10.1145/3477141.

Arora S. 2020. A survey on graph neural networks for knowledge graph completion. ArXiv
preprint. DOI 10.48550/arXiv.2007.12374.

Bahdanau D, Cho K, Bengio Y. 2014. Neural machine translation by jointly learning to align and
translate. ArXiv preprint. DOI 10.48550/arXiv.1409.0473.

Bai Y, Ding H, Bian S, Chen T, Sun Y, Wang W. 2019. SimGNN: a neural network approach to
fast graph similarity computation. In: Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, WSDM’19. Melbourne VIC, Australia: Association for
Computing Machinery, 384–392.

Bai L, Zhao Y, Huang X. 2018. A CNN accelerator on FPGA using depthwise separable
convolution. IEEE Transactions on Circuits and Systems II: Express Briefs 65(10):1415–1419
DOI 10.1109/TCSII.2018.2865896.

Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M,
Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J,
Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P,
Botvinick M, Vinyals O, Li Y, Pascanu R. 2018. Relational inductive biases, deep learning, and
graph networks. ArXiv preprint DOI 10.48550/arXiv.1806.01261.

Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P. 2017. Geometric deep learning:
going beyond Euclidean data. IEEE Signal Processing Magazine 34(4):18–42
DOI 10.1109/MSP.2017.2693418.

Bruna J, ZarembaW, Szlam A, LeCun Y. 2013. Spectral networks and locally connected networks
on graphs. ArXiv preprint. DOI 10.48550/arXiv.1312.6203.

Chen Y-H, Emer J, Sze V. 2016. Eyeriss: a spatial architecture for energy-efficient dataflow for
convolutional neural networks. SIGARCH Computer Architecture News 44(3):367–379
DOI 10.1145/3007787.3001177.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 32/36

http://dx.doi.org/10.1145/3477141
http://dx.doi.org/10.48550/arXiv.2007.12374
http://dx.doi.org/10.48550/arXiv.1409.0473
http://dx.doi.org/10.1109/TCSII.2018.2865896
http://dx.doi.org/10.48550/arXiv.1806.01261
http://dx.doi.org/10.1109/MSP.2017.2693418
http://dx.doi.org/10.48550/arXiv.1312.6203
http://dx.doi.org/10.1145/3007787.3001177
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Cong J, Lau J, Liu G, Neuendorffer S, Pan P, Vissers K, Zhang Z. 2022. FPGA HLS today:
successes, challenges, and opportunities. ACM Transactions on Reconfigurable Technology and
Systems 15(4):1–42 DOI 10.1145/3530775.

Dengel A, Iqbal M, Grafe S, Mangina E. 2022. A review on augmented reality authoring toolkits
for education. Frontiers in Virtual Reality 3:798032 DOI 10.3389/frvir.2022.798032.

Fan W, Ma Y, Li Q, He Y, Zhao E, Tang J, Yin D. 2019. Graph neural networks for social
recommendation. In: The World Wide Web Conference, WWW’19. San Francisco, CA, USA:
Association for Computing Machinery, 417–426.

Fey M, Lenssen JE. 2019. Fast graph representation learning with PyTorch geometric.
DOI 10.48550/arXiv.1903.02428.

Fout A, Byrd J, Shariat B, Ben-Hur A. 2017. Protein interface prediction using graph
convolutional networks. In: NIPS’17: Proceedings of the 31st International Conference on Neural
Information Processing Systems. Vol. 30. Long Beach: Curran Associates, Inc.

Gallicchio C, Micheli A. 2010. Graph echo state networks. In: The 2010 International Joint
Conference on Neural Networks (IJCNN). Piscataway: IEEE, 1–8.

Gao J, Sun C, Zhao H, Shen Y, Anguelov D, Li C, Schmid C. 2020. VectorNet: Encoding HD
maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 11525–11533.

Geng T, Li A, Shi R, Wu C, Wang T, Li Y, Haghi P, Tumeo A, Che S, Reinhardt S, Herbordt
MC. 2020. AWB-GCN: a graph convolutional network accelerator with runtime workload
rebalancing. In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 922–936.

Geng X, Li Y, Wang L, Zhang L, Yang Q, Ye J, Liu Y. 2019. Spatiotemporal multi-graph
convolution network for ride-hailing demand forecasting. Proceedings of the AAAI Conference
on Artificial Intelligence 33(1):3656–3663 DOI 10.1609/aaai.v33i01.33013656.

Geng T, Wu C, Tan C, Xie C, Guo A, Haghi P, He SY, Li J, Herbordt M, Li A. 2021a. A survey:
handling irregularities in neural network acceleration with FPGAs. In: 2021 IEEE High
Performance Extreme Computing Conference (HPEC). Piscataway: IEEE, 1–8.

Geng T, Wu C, Zhang Y, Tan C, Xie C, You H, Herbordt M, Lin Y, Li A. 2021b. I-GCN: a graph
convolutional network accelerator with runtime locality enhancement through islandization. In:
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’21. New York, NY, USA: Association for Computing Machinery, 1051–1063.

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. 2020. Message passing neural networks.
In: Machine Learning Meets Quantum Physics. Berlin: Springer, 199–214.

Guo K, Zeng S, Yu J, Wang Y, Yang H. 2017. A survey of FPGA-based neural network accelerator.
ArXiv preprint. DOI 10.48550/arXiv.1712.08934.

Guo K, Zeng S, Yu J, Wang Y, Yang H. 2019. [DL] A survey of FPGA-based neural network
inference accelerators. ACM Transactions on Reconfigurable Technology and Systems 12(1):1–26
DOI 10.1145/3289185.

Hamilton W, Ying Z, Leskovec J. 2017. Inductive representation learning on large graphs. In:
NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing
Systems. Vol. 30. Long Beach: Curran Associates, Inc.

Hamilton WL, Ying R, Leskovec J. 2018. Representation learning on graphs: methods and
applications. DOI 10.48550/arXiv.1709.05584.

Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ. 2016. EIE: efficient inference
engine on compressed deep neural network. In: 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). Piscataway: IEEE, 243–254.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 33/36

http://dx.doi.org/10.1145/3530775
http://dx.doi.org/10.3389/frvir.2022.798032
http://dx.doi.org/10.48550/arXiv.1903.02428
http://dx.doi.org/10.1609/aaai.v33i01.33013656
http://dx.doi.org/10.48550/arXiv.1712.08934
http://dx.doi.org/10.1145/3289185
http://dx.doi.org/10.48550/arXiv.1709.05584
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Han P, Yang P, Zhao P, Shang S, Liu Y, Zhou J, Gao X, Kalnis P. 2019. GCN-MF: disease-gene
association identification by graph convolutional networks and matrix factorization. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’19. New York, NY, USA: Association for Computing Machinery, 705–713.

Ju X, Farrell S, Calafiura P, Murnane D, Gray L, Klijnsma T, Pedro K, Cerati G, Kowalkowski J,
Perdue G, Spentzouris P, Tran N, Vlimant JR, Zlokapa A, Pata J, Spiropulu M, An S,
Aurisano A, Hewes J, Tsaris A, Terao K, Usher T. 2020. Graph neural networks for particle
reconstruction in high energy physics detectors. ArXiv preprint.
DOI 10.48550/arXiv.2003.11603.

Kim D, Ahn J, Yoo S. 2017. A novel zero weight/activation-aware hardware architecture of
convolutional neural network. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. 1462–1467.

Kim JH, Grady B, Lian R, Brothers J, Anderson JH. 2017. FPGA-based CNN inference
accelerator synthesized from multi-threaded C software. In: 2017 30th IEEE International
System-on-Chip Conference (SOCC). Piscataway: IEEE, 268–273.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11):2278–2324 DOI 10.1109/5.726791.

Lee JB, Rossi RA, Kim S, Ahmed NK, Koh E. 2019. Attention models in graphs: a survey. ACM
Transactions on Knowledge Discovery from Data 13(6):1–25 DOI 10.1145/3363574.

Li J, Louri A, Karanth A, Bunescu R. 2021. GCNAX: a flexible and energy-efficient accelerator for
graph convolutional neural networks. In: 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). Piscataway: IEEE, 775–788.

Liang S, Wang Y, Liu C, He L, Huawei L, Xu D, Li X. 2020. EnGN: a high-throughput and
energy-efficient accelerator for large graph neural networks. IEEE Transactions on Computers
70(9):1511–1525 DOI 10.1109/TC.2020.3014632.

Lindholm E, Nickolls J, Oberman S, Montrym J. 2008. NVIDIA Tesla: a unified graphics and
computing architecture. IEEE Micro 28(2):39–55 DOI 10.1109/MM.2008.31.

Mittal S. 2020. A survey of FPGA-based accelerators for convolutional neural networks. Neural
Computing and Applications 32(4):1109–1139 DOI 10.1007/s00521-018-3761-1.

Nurvitadhi E, Sim J, Sheffield D, Mishra A, Krishnan S, Marr D. 2016. Accelerating recurrent
neural networks in analytics servers: comparison of FPGA, CPU, GPU, and ASIC. In: 2016 26th
International Conference on Field Programmable Logic and Applications (FPL). Piscataway:
IEEE, 1–4.

Rusek K, Chołda P. 2018. Message-passing neural networks learn little’s law. IEEE
Communications Letters 23(2):274–277 DOI 10.1109/LCOMM.2018.2886259.

Sarkar R, Abi-Karam S, He Y, Sathidevi L, Hao C. 2022. FlowGNN: a dataflow architecture for
universal graph neural network inference via multi-queue streaming.
DOI 10.48550/arXiv.2204.13103.

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. 2009. The graph neural network
model. IEEE Transactions on Neural Networks 20(1):61–80 DOI 10.1109/TNN.2008.2005605.

Sohrabizadeh A, Chi Y, Cong J. 2022. SPA-GCN: efficient and flexible GCN accelerator with
application for graph similarity computation. In: Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA’22. New York, NY, USA:
Association for Computing Machinery, 156.

Sperduti A, Starita A. 1997. Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks 8(3):714–735 DOI 10.1109/72.572108.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 34/36

http://dx.doi.org/10.48550/arXiv.2003.11603
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3363574
http://dx.doi.org/10.1109/TC.2020.3014632
http://dx.doi.org/10.1109/MM.2008.31
http://dx.doi.org/10.1007/s00521-018-3761-1
http://dx.doi.org/10.1109/LCOMM.2018.2886259
http://dx.doi.org/10.48550/arXiv.2204.13103
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/72.572108
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Tao Z, Wu C, Liang Y, He L. 2021. LW-GCN: a lightweight FPGA-based graph convolutional
network accelerator.

Tian C, Ma L, Yang Z, Dai Y. 2020. PCGCN: partition-centric processing for accelerating graph
convolutional network. In: 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Piscataway: IEEE, 936–945.

Tian T, Zhao L, Wang X, Wu Q, Yuan W, Jin X. 2022. FP-GNN: adaptive FPGA accelerator for
graph neural networks. Future Generation Computer Systems 136(6):294–310
DOI 10.1016/j.future.2022.06.010.

Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. 2017. Graph attention
networks. ArXiv preprint. DOI 10.48550/arXiv.1710.10903.

Wang X, Girshick R, Gupta A, He K. 2018.Non-local neural networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 7794–7803.

Wang T, Wang C, Zhou X, Chen H. 2019. A survey of FPGA based deep learning accelerators:
challenges and opportunities. DOI 10.48550/arXiv.1901.04988.

Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y, Xiao T, He T,
Karypis G, Li J, Zhang Z. 2020.Deep graph library: a graph-centric, highly-performant package
for graph neural networks. DOI 10.48550/arXiv.1909.01315.

Wieder O, Kohlbacher S, Kuenemann M, Garon A, Ducrot P, Seidel T, Langer T. 2020. A
compact review of molecular property prediction with graph neural networks. Drug Discovery
Today: Technologies 37(8):1–12 DOI 10.1016/j.ddtec.2020.11.009.

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. 2021. A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems 32(1):4–24
DOI 10.1109/TNNLS.2020.2978386.

Wu S, Sun F, Zhang W, Xie X, Cui B. 2020. Graph neural networks in recommender systems: a
survey. In: ACM Computing Surveys (CSUR).

Wu S, Sun F, Zhang W, Xie X, Cui B. 2022. Graph neural networks in recommender systems: a
survey. In: ACM Computing Surveys (CSUR).

Xie Z, Lv W, Huang S, Lu Z, Du B, Huang R. 2020. Sequential graph neural network for urban
road traffic speed prediction. IEEE Access 8:63349–63358 DOI 10.1109/ACCESS.2019.2915364.

Yan M, Deng L, Hu X, Liang L, Feng Y, Ye X, Zhang Z, Fan D, Xie Y. 2020. HyGCN: a GCN
accelerator with hybrid architecture. In: 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 15–29.

Yan W, Tong W, Zhi X. 2020. FPGAN: an FPGA accelerator for graph attention networks with
software and hardware co-optimization. IEEE Access 8:171608–171620
DOI 10.1109/ACCESS.2020.3023946.

Yang H. 2019. AliGraph: a comprehensive graph neural network platform. In: Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining. 3165–3166.

Yu Y, Wu C, Zhao T, Wang K, He L. 2020a. OPU: an FPGA-based overlay processor for
convolutional neural networks. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 28(1):35–47 DOI 10.1109/TVLSI.2019.2939726.

Yu Y, Zhao T, Wang K, He L. 2020b. Light-OPU: an FPGA-based overlay processor for
lightweight convolutional neural networks. In: Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA’20. New York, NY, USA:
Association for Computing Machinery, 122–132.

Zhang Z, Cui P, ZhuW. 2020.Deep learning on graphs: a survey. IEEE Transactions on Knowledge
and Data Engineering 34(1):249–270 DOI 10.1109/TKDE.2020.2981333.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 35/36

http://dx.doi.org/10.1016/j.future.2022.06.010
http://dx.doi.org/10.48550/arXiv.1710.10903
http://dx.doi.org/10.48550/arXiv.1901.04988
http://dx.doi.org/10.48550/arXiv.1909.01315
http://dx.doi.org/10.1016/j.ddtec.2020.11.009
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1109/ACCESS.2019.2915364
http://dx.doi.org/10.1109/ACCESS.2020.3023946
http://dx.doi.org/10.1109/TVLSI.2019.2939726
http://dx.doi.org/10.1109/TKDE.2020.2981333
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

Zhang D, Huang X, Liu Z, Hu Z, Song X, Ge Z, Zhang Z,Wang L, Zhou J, Shuang Y, Qi Y. 2020.
AGL: a scalable system for industrial-purpose graph machine learning. ArXiv preprint.
DOI 10.48550/arXiv.2003.02454.

Zhang B, Kannan R, Prasanna V. 2021. BoostGCN: a framework for optimizing GCN inference
on FPGA. In: 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). Piscataway: IEEE, 29–39.

Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H. 2020. T-GCN: a temporal graph
convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation
Systems 21(9):3848–3858 DOI 10.1109/TITS.2019.2935152.

Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M. 2020. Graph neural
networks: a review of methods and applications. AI Open 1(1):57–81
DOI 10.1016/j.aiopen.2021.01.001.

Zhou Z, Shi B, Zhang Z, Guan Y, Sun G, Luo G. 2021. BlockGNN: towards efficient GNN
acceleration using block-circulant weight matrices. In: 2021 58th ACM/IEEE Design Automation
Conference (DAC). Piscataway: IEEE, 1009–1014.

Li et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1166 36/36

http://dx.doi.org/10.48550/arXiv.2003.02454
http://dx.doi.org/10.1109/TITS.2019.2935152
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.7717/peerj-cs.1166
https://peerj.com/computer-science/

	A survey of field programmable gate array (FPGA)-based graph convolutional neural network accelerators: challenges and opportunities ...
	Introduction
	Survey methodology
	Background
	Gnn and gcns models
	Fpga based hardware accelerators
	Conclusion and discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

