
In this article we propose an extension for the Agents and Artifacts
meta-model to enable modularization.

The issues that are solved by our proposal are:

Facilitating teamwork when
developing agents

We adopt the Belief-Desire-Intention (BDI) model of agency to represent
independent and reusable units of code by means of modules. The key
idea behind our proposal is to take advantage of the syntactic
notion of namespace, i.e., a unique symbol identifier to organize a set
of programming elements. On this basis, agents can decide in BDI terms
which beliefs, goals, events, percepts and actions will be independently
handled by a particular module.

Differently from others, our solution allows developers to encapsulate
environment components into modules as it remains independent
from a particular BDI-Agent-Oriented Programming language.

The practical feasibility of this approach is demonstrated by developing an
auction scenario, where source code enhances scores of coupling, cohesion
and complexity metrics, when compared against a non-modular version of
the scenario. Our solution allows developers to address the name-collision
issue, provides an interface for modules that follows the information
hiding principle, and promotes software engineering principles related to
modularization such as reusability, extensibility and maintainability.

The A&A meta-model extended for supporting modularization.

BACKGROUND

OUR MODEL

CONCLUSION

EVALUATION

This is an open access graphic
distributed under the terms of the

Creative Commons Attribution License.Modularization in Belief Desire Intention-agent
programming and artifact-based environments
PeerJ Computer Science 8:e1162
DOI: 10.7717/peerj-cs.1162
http://peerj.com/articles/cs-1162/

Modularization in Belief
Desire Intention-agent
programming and
artifact-based
environments

make
focus
dispose
stopFocus

perceive

load

perceive

act

1

1 111
1..*

1

*

*

*

MODULE

PROPERTY

SIGNAL

OPERATION

LOCAL

COMPONENT

GLOBAL

DEFAULT

NAMESPACE

BR
ID

G
E trigger

assoc assoc

<<instanceOf>>

body

*

*

**

*

*
*

EVENT

ACTION

ARTIFACT BELIEF PLAN GOAL

AGENT

Conceptual mapping

LEGEND

Lowering the cost of maintaining
and extending the code

Dynamically updating agents with
new functionality

TypeOf

Scores of an auction MAS’s according to the Halstead metric for complexity (Length,
Difficulty, and Effort); where X-axis denotes the version of the MAS from the initial
implementation (1) to that resulting of performing all six extensions (7) (c.f. Table 5), and
Y-axis corresponds to the score. The updates chart summarizes the block additions and
deletions of source code that had to be performed to implement each extension. Plans
and Components charts stand for the total plans and components (i.e., beliefs, goals,
events, etc.), respectively. The coupling chart shows the sum of coupling scores of all
modules in the MAS. The cohesion chart presents the average cohesion per module, the
maximum value for this score is 1, and higher values mean less cohesive modules.

LENGTH DIFFICULTY EFFORT UPDATES

PLANS COMPONENTS COUPLING COHESION

Modular
Non-modular

LEGEND

Image credits:
Icons from The Noun Project / Prettycons

http://peerj.com/articles/cs-1162/

